
Coresets for Clustering in Excluded-minor Graphs and Beyond∗

Vladimir Braverman† Shaofeng H.-C. Jiang‡ Robert Krauthgamer§ Xuan Wu†

Abstract

Coresets are modern data-reduction tools that are
widely used in data analysis to improve efficiency in
terms of running time, space and communication com-
plexity. Our main result is a fast algorithm to construct
a small coreset for k-Median in (the shortest-path met-
ric of) an excluded-minor graph. Specifically, we give
the first coreset of size that depends only on k, ε and
the excluded-minor size, and our running time is quasi-
linear (in the size of the input graph).

The main innovation in our new algorithm is that is
iterative; it first reduces the n input points to roughly
O(log n) reweighted points, then to O(log log n), and so
forth until the size is independent of n. Each step in
this iterative size reduction is based on the importance
sampling framework of Feldman and Langberg (STOC
2011), with a crucial adaptation that reduces the num-
ber of distinct points, by employing a terminal embed-
ding (where low distortion is guaranteed only for the
distance from every terminal to all other points). Our
terminal embedding is technically involved and relies on
shortest-path separators, a standard tool in planar and
excluded-minor graphs.

Furthermore, our new algorithm is applicable
also in Euclidean metrics, by simply using a re-
cent terminal embedding result of Narayanan and
Nelson (STOC 2019), which extends the Johnson-
Lindenstrauss Lemma. We thus obtain an efficient core-
set construction in high-dimensional Euclidean spaces,
thereby matching and simplifying state-of-the-art re-

∗Some details are omitted due to space constraints and can be

found in the full version arXiv:2004.07718.
†Johns Hopkins University. This research was supported

in part by NSF CAREER grant 1652257, NSF grant 1934979,

ONR Award N00014-18-1-2364 and the Lifelong Learning Ma-

chines program from DARPA/MTO. Email: vova@cs.jhu.edu,

xwu71@jh.edu
‡Aalto University. Part of this work was done when

the author was at Weizmann Institute of Science. Email:
shaofeng.jiang@aalto.fi
§Weizmann Institute of Science. Work partially supported

by ONR Award N00014-18-1-2364, the Israel Science Foundation
grant #1086/18, and a Minerva Foundation grant. Part of
this work was done while some of the authors were visiting

the Simons Institute for the Theory of Computing. Email:
robert.krauthgamer@weizmann.ac.il

sults (Sohler and Woodruff, FOCS 2018; Huang and
Vishnoi, STOC 2020).

In addition, we also employ terminal embedding
with additive distortion to obtain small coresets in
graphs with bounded highway dimension, and use ap-
plications of our coresets to obtain improved approx-
imation schemes, e.g., an improved PTAS for planar
k-Median via a new centroid set.

1 Introduction

Coresets are modern tools for efficient data analysis
that have become widely used in theoretical computer
science, machine learning, networking and other ar-
eas. This paper investigates coresets for the metric k-
Median problem that can be defined as follows. Given
an ambient metric space M = (V, d) and a weighted set
X ⊆ V with weight function w : X → R+, the goal is to
find a set of k centers C ⊆ V that minimizes the total
cost of connecting every point to a center in C:

cost(X,C) :=
∑
x∈X

w(x) · d(x,C),

where d(x,C) := miny∈C d(x, y) is the distance to the
closest center. An ε-coreset for k-Median on X is a
weighted subset D ⊆ X, such that

∀C ⊆ V, |C| = k, cost(D,C) ∈ (1± ε) · cost(X,C).

We note that many papers study a more general prob-
lem, (k, z)-Clustering, where inside the cost function
each distance is raised to power z. We focus on k-
Median for sake of exposition, but most of our results
easily extend to (k, z)-Clustering.

Small coresets are attractive since one can solve the
problem on D instead of X and, as a result, improve
time, space or communication complexity of down-
stream applications [41, 42, 22]. Thus, one of the most
important performance measures of a coreset D is its
size, i.e., the number of distinct points in it, denoted
‖D‖0.1 Har-Peled and Mazumdar [30] introduced the
above definition and designed the first coreset for k-
Median in Euclidean spaces (V = Rm with `2 norm),

1For a weighted set X, we denote by ‖X‖0 the number of
distinct elements, by ‖X‖1 its total weight.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2004.07718

and since their work, designing small coresets has be-
come a flourishing research direction, including not only
k-Median and (k, z)-Clustering e.g. [29, 12, 38, 20,
51, 33, 22], but also many other important problems,
such as subspace approximation/PCA [19, 21, 22], pro-
jective clustering [20, 56, 22], regression [43], density es-
timation [37, 47], ordered weighted clustering [10], and
fair clustering [49, 32].

Many modern coreset constructions stem from
a fundamental framework proposed by Feldman and
Langberg [20], extending the importance sampling ap-
proach of Langberg and Schulman [38]. In this frame-
work [20], the size of an ε-coreset for k-Median is
bounded by O(poly(k/ε) ·sdim), where sdim is the shat-
tering (or VC) dimension of the family of distance func-
tions. For a general metric space (V, d), a direct appli-
cation of [20] results in a coreset of size Ok,ε(log |V |),
which is tight in the sense that in some instances, every
coreset must have size Ω(log |V |) [5].Therefore, to ob-
tain coresets of size independent of the data set X, we
have to restrict our attention to specific metric spaces,
which raises the following fundamental question.

Question 1.1. Identify conditions on a data set X
from metric space (V, d) that guarantee the existence
(and efficient construction) of an ε-coreset for k-
Median of size Oε,k(1)?

This question has seen major advances recently.
Coresets of size independent of X (and V) were ob-
tained, including efficient algorithms, for several impor-
tant special cases: high-dimensional Euclidean spaces
[51, 24, 33] (i.e., independently of the Euclidean dimen-
sion), metrics with bounded doubling dimension [31],
and shortest-path metric of bounded-treewidth graphs
[5].

1.1 Our Results
Overview We make significant progress on this

front (Question 1.1) by designing new coresets for k-
Median in three very different types of metric spaces.
Specifically, we give (i) the first Oε,k(1)-size coreset for
excluded-minor graphs; (ii) the first Oε,k(1)-size coreset
for graphs with bounded highway dimension; and (iii) a
simplified state-of-the-art coreset for high-dimensional
Euclidean spaces (i.e., coreset-size independent of the
Euclidean dimension with guarantees comparable to [33]
but simpler analysis.)

Our coreset constructions are all based on the well-
known importance sampling framework of [20], but with
subtle deviations that introduce significant advantages.
Our first technical idea is to relax the goal of comput-
ing the final coreset in one shot: we present a gen-
eral reduction that turns an algorithm that computes a

coreset of size O(poly(k/ε) log ‖X‖0) into an algorithm
that computes a coreset of size O(poly(k/ε)). The re-
duction is very simple and efficient, by straightforward
iterations. Thus, it suffices to construct a coreset of
size O(poly(k/ε) log ‖X‖0). We construct this using
the importance sampling framework [20], but applied
in a subtly different way, called terminal embedding,
in which distances are slightly distorted, trading accu-
racy for (hopefully) a small shattering dimension. It
still remains to bound the shattering dimension, but
we are now much better equipped — we can distort
the distances (design a new embedding or employ a
known one), and we are content with dimension bound
Ok,ε(log ‖X‖0), instead of the usual Ok,ε(1).

We proceed to present each of our results and
its context-specific background, see also Table 1 for
summary, and then describe our techniques at a high-
level in Section 1.2.

Coresets for Clustering in Graph Metrics k-
Median clustering in graph metrics, i.e. shortest-path
metric of graphs, is a central task in data mining of
spatial networks (e.g., planar networks such as road
networks) [50, 57], and has applications in various
location optimization problems, such as placing servers
on the Internet [39, 35] (see also a survey [52]), and in
data analysis methods [48, 17]. We obtain new coresets
for excluded-minor graphs and new coresets for graphs
of bounded highway dimension. The former generalize
planar graphs and the latter capture the structure of
transportation networks.

Coresets for Excluded-minor Graphs A minor
of graph G is a graph H obtained from G by a sequence
of edge deletions, vertex deletions or edge contractions.
We are interested in graphs G that exclude a fixed graph
H as a minor, i.e., they do not contain H as a minor.
Excluded-minor graphs have found numerous applica-
tions in theoretical computer science and beyond and
they include, for example, planar graphs and bounded-
treewidth graphs. Besides its practical importance, k-
Median in planar graphs received significant attention
in approximation algorithms research [54, 15, 16]. Our
framework yields the first ε-coreset of size Ok,ε(1) for
k-Median in excluded-minor graphs, see Corollary 4.1
for details. Such a bound was previously known only
for the special case of bounded-treewidth graphs [5].
We stress that our technical approach is significantly
different from [5]; we introduce a novel iterative con-
struction and a relaxed terminal embedding of excluded-
minor graph metrics (see Section 1.2), and overall by-
pass bounding the shattering dimension by O(1) (which
is the technical core in [5]).

Coresets for Graphs with Bounded Highway
Dimension Due to the tight relation to road networks,

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 1: our results of ε-coresets for k-Median in various types of metric spaces M(V, d) with comparison to
previous works. By graph metric, we mean the shortest-path metric of an edge-weighted graph G = (V,E).
Corollary 4.2 (and [33]) also work for general (k, z)-Clustering, but we list the result for k-Median (z = 1)
only.

Metric space Coreset size2 Reference

General metrics Õ(ε−2k log |V |) [20]

Graph metrics
Bounded treewidth3 Õ(ε−2k2) [5]

Excluding a fixed minor Õ(ε−4k2) Corollary 4.1

Bounded highway dimension Õ(kO(log(1/ε))) Corollary 4.3

Euclidean Rm Dimension-dependent Õ(ε−2km) [20]

Dimension-free Õ(ε−4k) [33], Corollary 4.2

graphs of bounded highway dimension is another im-
portant family for the study of clustering in graph met-
rics. The notion of highway dimension was first pro-
posed by [2] to measure the complexity of transporta-
tion networks such as road networks and airline net-
works. Intuitively, it captures the fact that going from
any two far-away cities A and B, the shortest path be-
tween A and B always goes through a small number of
connecting hub cities. The formal definition of highway
dimension is given in Definition 4.1, and we compare re-
lated versions of definitions in Remark 4.3. The study of
highway dimension was originally to understand the ef-
ficiency of heuristics for shortest path computations [2],
while subsequent works also study approximation algo-
rithms for optimization problems such as TSP, Steiner
Tree [23] and k-Median [7]. We show the first coreset
for graphs with bounded highway dimension, and as we
will discuss later it can be applied to design new ap-
proximation algorithms. The formal statement can be
found in Corollary 4.3.

Coresets for High-dimensional Euclidean
Space The study of coresets for k-Median (and more
generally (k, z)-Clustering) in Euclidean space Rm
spans a rich line of research. The first coreset for k-
Median in Euclidean spaces, given by [30], has size
O(kε−m log n) where n = ‖X‖1, and the log n fac-
tor was shaved by a subsequent work [29]. The expo-
nential dependence on the Euclidean dimension m was
later improved to poly(km/ε) [38], and to O(km/ε2)
[20]. Very recently, the first coreset for k-Median of
size poly(k/ε), which is independent of the Euclidean

2Throughout, the notation Õ(f) hides poly log f factors, and
Om(f) hides factors that depend on m.

3In fact, the main claim in [5] was a weaker bound of Õ(ε−2k3),
but it was noted that the dependence in k may be reduced to k2

by using an improved framework in a recent work [22].

dimension m,4 was obtained by [51] (see also [24]).5

This was recently improved in [33], which designs a
(much faster) near-linear time construction for (k, z)-
Clustering, with slight improvements in the coreset
size and the (often useful) additional property that the
coreset is a subset of X. Our result extends this line
of research; an easy application of our new framework
yields a near-linear time construction of coreset of size
poly(k/ε), which too is independent of the dimension
m. Compared to the state of the art [33], our result
achieves essentially the same size bound, while greatly
simplifying the analysis. A formal statement and de-
tailed comparison with [33] can be found in Corollary 4.2
and Remark 4.2.

Applications: Improved Approximation
Schemes We apply our coresets to design approxima-
tion schemes for k-Median in shortest-path metrics of
planar graphs and graphs with bounded highway dimen-
sion. In particular, we give an FPT-PTAS, parameter-
ized by k and ε, in graphs with bounded highway dimen-
sion, and a PTAS in planar graphs. Both algorithms run
in time near-linear in |V |, and improve previous results
in the corresponding settings.

The PTAS for k-Median in planar graphs is ob-
tained using a new centroid-set result. A centroid set
is a subset of V that contains centers giving a (1 + ε)-
approximate solution. We obtain centroid sets of size
independent of the input X in planar graphs, which
improves a recent size bound (log |V |)O(1/ε) [16], and
moreover runs in time near-linear in |V |.

Due to the space limit, details of these applications
are omitted and they can be found in the full version.

4Dimension-independent coresets were obtained earlier for

Euclidean k-Means [9, 22], however these do not apply to k-

Median.
5The focus of [51] is on k-Median, but the results extend to

(k, z)-Clustering.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

1.2 Technical Contributions
Iterative Size Reduction This technique is

based on an idea so simple that it may seem too naive:
Basic coreset constructions have size Ok,ε(log n), so why
not apply it repeatedly, to obtain a coreset of size
Ok,ε(log log n), then Ok,ε(log log log n) and so on? One
specific example is the size bound O(ε−2k log n) for a
general n-point metric space [20], where this does not
work because n = |V | is actually the size of the ambient
space, irrespective of the data set X. Another exam-
ple is the size bound O(ε−mk log n) for Euclidean space
Rm [30], where this does not work because n = ‖X‖1
is the total weight of the data points X, which coresets
do not reduce (to the contrast, they maintain it). These
examples suggest that one should avoid two pitfalls: de-
pendence on V and dependence on the total weight.

We indeed make this approach work by requir-
ing an algorithm A that constructs a coreset of size
O(log ‖X‖0), which is data-dependent (recall that ‖X‖0
is the number of distinct elements in a weighted set
X). Specifically, we show in Theorem 3.1 that, given
an algorithm A that constructs an ε′-coreset of size
O(poly(k/ε′) log ‖X‖0) for every ε′ and X ⊆ V , one
can obtain an ε-coreset of size poly(k/ε) by simply ap-
plying A iteratively. It follows by setting ε′ carefully, so
that it increases quickly and eventually ε′ = O(ε). See
Section 3.1 for details.

Not surprisingly, the general idea of applying the
sketching/coreset algorithm iteratively was also used in
other related contexts (e.g. [40, 13, 45]). Moreover, a
related two-step iterative construction was applied in
a recent coreset result [33]. Nevertheless, the exact
implementation of iterative size reduction in coresets is
unique in the literature. As can be seen from our results,
this reduction fundamentally helps to achieve new or
simplified coresets of size independent of data set. We
expect the iterative size reduction to be of independent
interest to future research.

Terminal Embeddings To employ the iterative
size reduction, we need to construct coresets of size
poly(k/ε) · log ‖X‖0. Unfortunately, a direct application
of [20] yields a bound that depends on the number
of vertices |V |, irrespective of X. To bypass this
limitation, the framework of [20] is augmented (in
fact, we use a refined framework proposed in [22]),
to support controlled modifications to the distances
d(·, ·). As explained more formally in Section 3.2, one
represents these modifications using a set of functions
F = {fx : V → R+ | x ∈ X}, that corresponds to
the modified distances from each x, i.e., fx(·)↔ d(x, ·).
Many previous papers [38, 20, 9, 22] work directly with
the distances and use the function set F = {fx(·) =
d(x, ·) | x ∈ X}, or a more sophisticated but still direct

variant of hyperbolic balls (where each fx is an affine
transformation of d(x, ·)). A key difference is that we
use a “proxy” function set F , where each fx(·) ≈ d(x, ·).
This introduces a tradeoff between the approximation
error (called distortion) and the shattering dimension of
F (which controls the number of samples), and overall
results in a smaller coreset. Such tradeoff was first
used in [31] to obtain small coresets for doubling spaces,
and was recently used in [33] to reduce the coreset size
for Euclidean spaces. This proxy function set may be
alternatively viewed as a terminal embedding on X, in
which both the distortion of distances (between X and
all of V) and the shattering dimension are controlled.

We then consider two types of terminal em-
beddings F . The first type (Section 3.3) main-
tains (1 + ε)-multiplicative distortion of the dis-
tances. When this embedding achieves dimension
bound O(poly(k/ε) log ‖X‖0), we combine it with the
aforementioned iterative size reduction, to further re-
duce the size to be independent of X. It remains to ac-
tually design embeddings of this type, which we achieve
(as explained further below), for excluded-minor graphs
and for Euclidean spaces, and thus we overall obtain
Oε,k(1)-size coresets in both settings. Our second type
of terminal embeddings F (Section 3.4) maintains ad-
ditive distortion on top of the multiplicative one. We
design embeddings of this type (as explained further be-
low) for graphs with bounded highway dimension; these
embeddings have shattering dimension poly(k/ε), and
thus we overall obtain Oε,k(1)-size coresets even with-
out the iterative size reduction. We report our new
terminal embeddings in Table 2.

Terminal Embedding for Euclidean Spaces
Our terminal embedding for Euclidean spaces is sur-
prisingly simple, and is a great showcase for our new
framework. In a classical result [20], it has been shown
that sdimmax(F) = O(m) for Euclidean distance in Rm
without distortion. On the other hand, we notice a
terminal embedding version of Johnson-Lindenstrauss
Lemma was discovered recently [46]. Our terminal em-
bedding bound (Lemma 4.8) follows by directly combin-
ing these two results, see Section 4.3 for details.

We note that without our iterative size reduction
technique, plugging in the recent terminal Johnson-
Lindenstrauss Lemma [46] into classical importance
sampling frameworks, such as [20, 22] does not yield
any interesting coreset. Furthermore, the new termi-
nal Johnson-Lindenstrauss Lemma was recently used
in [33] to design coresets for high-dimensional Euclidean
spaces. Their size bounds are essentially the same as
ours, however they go through a complicated analysis to
directly show a shattering dimension bound poly(k/ε).
This complication is not necessary in our method, be-

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 2: New terminal embeddings F for different metrics spaces. The reported distortion bound is the upper
bound on fx(c), in addition to the lower bound fx(c) ≥ d(x, c). The embeddings of graphs with bounded highway
dimension, called here “highway graphs” for short, are defined with respect to a given S ⊆ V (see Lemma 4.9).

Metric space Dimension sdimmax(F) Distortion Result

Euclidean O(ε−2 log ‖X‖0) (1 + ε) · d(x, c) Lemma 4.8

Excluded-minor graphs Õ(ε−2 log ‖X‖0) (1 + ε) · d(x, c) Lemma 4.1
Highway graphs O(|S|O(log(1/ε))) (1 + ε) · d(x, c) + ε · d(x, S) Lemma 4.9

cause by our iterative size reduction it suffices to show
a very loose Ok,ε(log ‖X‖0) dimension bound, and this
follows immediately from the Johnson-Lindenstrauss re-
sult.

Terminal Embedding for Excluded-minor
Graphs The technical core of the terminal embedding
for excluded-minor graphs is how to bound the shatter-
ing dimension. In our proof, we reduce the problem of
bounding the shattering dimension into finding a repre-
sentation of the distance functions on X × V as a set
of min-linear functions. Specifically, we need to find for
each x a min-linear function gx : Rs → R of the form
gx(t) = min1≤i≤s{aiti + bi}, where s = O(log ‖X‖0),
such that ∀c ∈ V , there is t ∈ Rs with d(x, c) = gx(t).

The central challenge is how to relate the graph
structure to the structure of shortest paths d(x, c).
To demonstrate how we relate them, we start with
discussing the simple special case of bounded treewidth
graphs. For bounded treewidth graphs, the vertex
separator theorem is applied to find a subset P ⊆ V ,
through which the shortest path x y has to pass.
This translates into the following

d(x, c) = min
p∈P
{d(x, p) + d(p, c)},

and for each x ∈ X, we can use this to define the desired
min-linear function gx(d(p1, c), . . . , d(pm, c)) = d(x, c),
where we write P = {p1, . . . , pm}.

However, excluded-minor graphs do not have small
vertex separator, and we use the shortest-path separa-
tor [53, 3] instead. Now assume for simplicity that the
shortest paths x c all pass through a fixed short-
est path l. Because l itself is a shortest path, we know
∀x ∈ X, c ∈ V ,

d(x, c) = min
u1,u2∈l

{d(x, u1) + d(u1, u2) + d(u2, c)}.

Since l can have many (i.e. ω(log ‖X‖0)) points, we
need to discretize l by designating poly(ε−1) portals P lx
on l for each x ∈ X (and similarly P lc for c ∈ V). This
only introduces (1 + ε) distortion to the distance, which
we can afford.

Then we create d′x : l → R+ to approximate
d(x, u)’s, using distances from x to the portals P lx
(and similarly for d(c, u)). Specifically, for the sake of
presentation, assume P lx = {p1, p2, p3} (p1 ≤ p2 ≤ p3),
interpret l as interval [0, 1), then for u ∈ [0, p1), define
d′x(u) = d(x, 0), for u ∈ [p1, p2), define d′x(u) = d(x, p1),
and so forth. Hence, each d′x(·) is a piece-wise linear
function of O(|P lx|) pieces (again, similarly for d′c(·)),
and this enables us to write d(x, c) ≈ d′(x, c), where

d′(x, c) := min
u1,u2∈P lx∪P lc

{d′x(u1) + d(u1, u2) + d′c(u2)}.

Therefore, it suffices to find a min-linear represen-
tation for d′(x, ·) for x ∈ X. However, the piece-wise
linear structure of d′x creates extra difficulty to de-
fine min-linear representations. To see this, still as-
sume P lx = {p1, p2, p3}. Then to determine d′x(u) for
u ∈ P lx ∪ P lc , we not only need to know d(x, pi) for
pi ∈ P lx, but also need to know which sub-interval
[pi, pi+1) that u belongs to. (That is, if u ∈ [p1, p2),
then d′x(u) = d(x, p1).) Hence, in addition to using dis-
tances {c} × P lc as variables of gx, the relative ordering
between points in P lx ∪ P lc is also necessary to evaluate
d′(x, c).

Because c ∈ V can be arbitrary, we cannot simply
“remember” the ordering in gx. Hence, we “guess” this
ordering, and for each fixed ordering we can write gx as
a min-linear function of few variables. Luckily, we can
afford the “guess” since |P lx ∪ P lc | = poly(ε−1) which
is independent of X. A more detailed overview can be
found in Section 4.1.

Terminal Embedding for Graphs with
Bounded Highway Dimension In addition to a (1+
ε) multiplicative error, the embedding for graphs with
bounded highway dimension also introduces an additive
error. In particular, for a given S ⊆ V , it guarantees
that ∀x ∈ X, c ∈ V

d(x, c) ≤ fx(c) ≤ (1 + ε) · d(x, c) + ε · d(x, S).

This terminal embedding is a direct consequence of a
similar embedding from graphs with bounded highway
dimension to graphs with bounded treewidth [7], and

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

a previous result about the shattering dimension for
graphs with bounded treewidth [5]. In our applications,
we will choose S to be a constant approximate solution6

C? to k-Median. So the additive error becomes ε ·
d(x,C?). In general, this term can still be much larger
than d(x, c), but the collectively error in the clustering
objective is bounded. This observation helps us to
obtain a coreset, and due to the additional additive
error, the shattering dimension is already independent
of X and hence no iterative size reduction is necessary.

1.3 Related Work Approximation algorithms for
metric k-Median have been extensively studied. In
general metric spaces, it is NP-hard to approximate
k-Median within a 1 + 2

e factor [34], and the state
of the art is a (2.675 + ε)-approximation [11]. In
Euclidean space Rm, k-Median is APX-hard if both
k and the dimension m are part of the input [27].
However, PTAS’s do exist if either k or dimension m
is fixed [30, 4, 15, 25].

Tightly related to coresets, dimensionality reduc-
tion has also been studied for clustering in Euclidean
spaces. Compared with coresets which reduce the data
set size while keeping the dimension, dimensionality re-
duction aims to find a low-dimensional representation
of data points (but not necessarily reduce the number
of data points). As a staring point, a trivial appli-
cation of Johnson-Lindenstrauss Lemma [36] yields a
dimension bound O(ε−2 log n) for (k, z)-Clustering.
For k-Means with 1 + ε approximation ratio, [14]
showed an O(k/ε2) dimension bound for data-oblivious
dimension reduction and an O(k/ε) bound for the data-
dependent setting. Moreover, the same work [14] also
obtained a data-oblivious O(ε−2 log k) dimension bound
for k-Means with approximation ratio 9 + ε. Very
recently, [6] obtained an Õ(ε−6(log k + log log n)) di-
mension bound for k-Means and [44] obtained an
O(ε−2 log k

ε) bound for (k, z)-Clustering. Both of
them used data-oblivious methods and have approxi-
mation ratio 1+ε. Dimensionality reduction techniques
are also used for constructing dimension-free coresets in
Euclidean spaces [51, 6, 33, 22].

2 Preliminaries

Notations Let V k := {C ⊆ V : |C| ≤ k} denote
the collection of all subsets of V of size at most k. 7

For integer n, i > 0, let log(i) n denote the i-th iterated
logarithm of n, i.e. log(1) n := log n and log(i) n :=

6in fact, a bi-criteria approximation suffices.
7Strictly speaking, V k is the collection of all ordered k-tuples

of V , but here we use it to denote the subsets. Note that tuples
may contain repeated elements so the subsets in V k are of size at
most k.

log(log(i−1) n) (i ≥ 2). Define log? n as the number
of times the logarithm is iteratively applied before the
result is at most 1, i.e. log? n := 0 if n ≤ 1 and log? n =
1 + log?(log n) if n > 1. For a weighted set S, denote
the weight function as wS : S → R+. Let OPTz(X) be
the optimal objective value for (k, z)-Clustering on
X, and we call a subset C ⊆ V an (α, β)-approximate
solution for (k, z)-Clustering on X if |C| = αk
and costz(X,C) :=

∑
x∈X wX(x) · (d(x,C))z ≤ β ·

OPTz(X).
Functional Representation of Distances We

consider sets of functions F from V to R+. Specifically,
we consider function sets F = {fx : V → R+ |
x ∈ X} that is indexed by the weighted data set
X ⊆ V , and intuitively fx(·) is used to measure the
distance from x ∈ X to a point in V . Because we
interpret fx’s as distances, for a subset C ⊆ V , we
define fx(C) := minc∈C fx(C), and define the clustering
objective accordingly as

costz(F , C) :=
∑
fx∈F

wF (fx) · (fx(C))z.

In fact, in our applications, we will use fx(y) as a “close”
approximation to d. We note that this functional repre-
sentation is natural for k-Clustering, since the objective
function only uses distances from X to every k-subset
of V only. Furthermore, we do not require the triangle
inequality to hold for such functional representations.

Shattering Dimension For c ∈ V, r ≥ 0, define
BF (c, r) := {f ∈ F : f(c) ≤ r}. We emphasize that c is
from the ambient space V in addition to the data set X.
Intuitively, BF (c, r) is the ball centered at c with radius
r when the f functions are used to measure distances.
For example, consider X = V and let fx(·) := d(x, ·) for
x ∈ V . Then BF (c, r) = {fx ∈ F : d(c, x) ≤ r}, which
corresponds to the metric ball centered at c with radius
r.

We introduce the notion of shattering dimension in
Definition 2.1. In fact, the shattering dimension may be
defined with respect to any set system [28], but we do
not need this generality here and thus we consider only
the shattering dimension of the “metric balls” system.

Definition 2.1. (Shattering Dimension [28])
Suppose F is a set of functions from V to R+. The
shattering dimension of F , denoted as sdim(F), is the
smallest integer t, such that for every H ⊆ F with
|H| ≥ 2,
(2.1)
∀H ⊆ F , |H| ≥ 2, |{BH(c, r) : c ∈ V, r ≥ 0}| ≤ |H|t.

The shattering dimension is tightly related to the
well-known VC-dimension [55], and they are equal to

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

each other up to a logarithmic factor [28, Corollary 5.12,
Lemma 5.14]. In our application, we usually do not use
sdim(F) directly. Instead, given a point weight v : X →
R+, we define Fv := {fx · v(x) | x ∈ X}, and then
consider the maximum of sdim(Fv) over all possible v,
defined as sdimmax(F) := maxv:X→R+ sdim(Fv).

3 Framework

We present our general framework for constructing
coresets. Our first new idea is a generic reduction,
called iterative size reduction, through which it suffices
to find a coreset of size O(log ‖X‖0) only in order to
get a coreset of size independent of X. This general
reduction greatly simplifies the coreset construction,
and in particular, as we will see, “old” techniques such
as importance sampling gains new power and becomes
useful for new settings such as excluded-minor graphs.

Roughly speaking, the iterative size reduction turns
a coreset construction algorithm A(X, ε) with size
O(poly(ε−1k) · log ‖X‖0) into a construction A′(X, ε)
with size poly(ε−1k). To define A′, we simply itera-
tively apply A, i.e. Xi := A(Xi−1, εi), and terminate
when ‖Xi‖0 does not decrease. However, if A is applied
for t times in total, the error of the resulted coreset
is accumulated as

∑t
i=1 εt. Hence, to make the error

bounded, we make sure εi ≥ 2εi−1 and εt = O(ε), so∑t
i=1 εi = O(ε). Moreover, our choice of εi also guaran-

tees that ‖Xi‖0 is roughly poly(ε−1k·log(i) ‖X‖0). Since

log(i) ‖X‖0 decreases very fast with respect to i, ‖Xi‖0
becomes poly(ε−1k) in about t = log? ‖X‖0 iterations.
The detailed algorithm A′ can be found in Algorithm 1,
and we present the formal analysis in Theorem 3.1.

To construct the actual coresets which is to be
used with the reduction, we adapt the importance
sampling method that was proposed by Feldman and
Langberg [20]. In previous works, the size of the coresets
from importance sampling is related to the shattering
dimension of metric balls system (i.e. in our language,
it is the shattering dimension of F = {d(x, ·) | x ∈ X}.)
Instead of considering the metric balls only, we give a
generalized analysis where we consider a general set of
“distance functions” F that has some error but is still
“close” to d. The advantage of doing so is that we could
trade the accuracy with the shattering dimension, which
in turn reduces the size of the coreset.

We particularly examine two types of such func-
tions F = {fx : V → R+ | x ∈ X}. The first type
F introduces a multiplicative (1 + ε) error to d, i.e.
∀x ∈ X, c ∈ V , d(x, c) ≤ fx(c) ≤ (1 + ε) · d(x, c). Such
a small distortion is already very helpful to obtain an
O(log ‖X‖0) shattering dimension for minor-free graphs
and Euclidean spaces. In addition to the multiplicative
error, the other type of F introduces a certain additive

error, and we make use of this to show O(k) shatter-
ing dimension bound for bounded highway dimension
graphs and doubling spaces. In this section, we will
discuss how the two types of function sets imply effi-
cient coresets, and the dimension bounds for various
metric families will be analyzed in Section 4 where we
also present the coreset results.

3.1 Iterative Size Reduction

Theorem 3.1. (Iterative Size Reduction) Let
ρ ≥ 1 be a constant and let M be a family of
metric spaces. Assume A(X, k, z, ε, δ,M) is a ran-
domized algorithm that constructs an ε-coreset of
size ε−ρs(k) log δ−1 log ‖X‖0 for (k, z)-Clustering
on every weighted set X ⊆ V and metric space
M(V, d) ∈ M, for every z ≥ 1, 0 < ε, δ < 1

4 ,
running in time T (‖X‖0, k, z, ε, δ,M) with success
probability 1 − δ. Then algorithm A′(X, k, z, ε, δ,M),
stated in Algorithm 1, computes an ε-coreset of size
Õ(ε−ρs(k) log δ−1) for (k, z)-Clustering on every
weighted set X ⊆ V and metric space M(V, d) ∈ M,
for every z ≥ 1, 0 < ε, δ < 1

4 , in time

O

(
T
(
‖X‖0, k, z,

ε

(log ‖X‖0)
1
ρ

,
δ

‖X‖0
,M
)
· log? ‖X‖0

)
,

and with success probability 1− δ.

Algorithm 1 Iterative size reduction
A′(X, k, z, ε, δ,M)

Require: algorithm A(X, k, z, ε, δ,M) that computes
an ε-coreset for (k, z)-Clustering on X with size
ε−ρs(k) log δ−1 log ‖X‖0 and success probability 1−
δ.

1: let X0 := X, and let t be the largest
integer such that log(t−1) ‖X‖0 ≥
max{20ε−ρs(k) log δ−1, ρ2ρ+1}

2: for i = 1, · · · , t do

3: let εi := ε/(log(i) ‖X‖0)
1
ρ , δi := δ/‖Xi−1‖0

4: let Xi := A(Xi−1, k, z, εi, δi,M)
5: end for
6: Xt+1 := A(Xt, k, z, ε, δ,M)
7: return Xt+1

3.2 Importance Sampling We proceed to design
the algorithm A required by Theorem 3.1. It is based on
the importance sampling algorithm introduced by [38,
20], and at a high level consists of two steps:

1. Computing probabilities: for each x ∈ X, compute
px ≥ 0 such that

∑
x∈X px = 1.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

2. Sampling: draw N (to be determined later) inde-
pendent samples from X, each drawn from the dis-
tribution (px : x ∈ X), and assign each sample x a

weight wX(x)
px·N to form a coreset D.

The key observation in the analysis of this algorithm
is that the sample size N , which is also the coreset size
‖D‖0, is related to the shattering dimension (see Defini-
tion 2.1) of a suitably defined set of functions [20, The-
orem 4.1]. The analysis in [20] has been subsequently
improved [9, 22], and we make use of [22, Theorem 31],
restated as follows.

Lemma 3.1. (Importance Sampling [22]) Fix z ≥
1, 0 < ε < 1

2 , an integer k ≥ 1 and a metric space
(V, d). Let X ⊆ V have weights wX : V → R+ and
let F := {fx : V → R+ | x ∈ X} be a corresponding
set of functions with weights wF (fx) = wX(x). Suppose
{σx}x∈X satisfies

∀x ∈ X, σx ≥ σFx := max
C∈V k

wX(x) · (fx(C))z

costz(F , C)
,

and set a suitable

N = O(ε−2σX(k ·Dim · log(Dim) · log σX + log 1
δ)),

where σX :=
∑
x∈X σx and

Dim = sdimmax(F) := max
v:X→R+

sdim (Fv)

Fv := {fx · v(x) | x ∈ X}.

Then the weighted set D of size ‖D‖0 = N returned by
the above importance sampling algorithm satisfies, with
high probability 1− δ,

∀C ∈ V k,
∑
x∈D

wD(x) · (fx(C))z ∈ (1± ε) · costz(F , C).

Remark 3.1. We should explain how [22, Theorem 31]
implies Lemma 3.1. First of all, the bound in [22]
is with respect to VC-dimension, and we transfer to
shattering dimension by losing a logarithmic factor (see
Section 2 for the relation between VC-dimension and
shattering dimension). Another main difference is that
the functions therein are actually not from V to R+.
For F = {fx : V → R+ | x ∈ X}, they consider
Fk := {fx(C) = minc∈C{fx(c)} | x ∈ X}, and their
bound on the sample size is

N = Õ(ε−2σX(sdimmax(Fk) · log σX + log 1
δ)).

The notion of balls and shattering dimension they use
(for Fk) is the natural extension of our Definition 2.1
(from functions on V to functions on V k), where a ball

around C ∈ V k is BF (C, r) = {fx ∈ F : fx(C) ≤ r},
and (2.1) is replaced by∣∣{BH(C, r) : C ∈ V k, r ≥ 0}

∣∣ ≤ |H|t.
Our Lemma 3.1 follows from [22, Theorem 31] by using
the fact sdim(Fk) ≤ k · sdim(F) from [20, Lemma 6.5].

Terminal Embeddings. As mentioned in Sec-
tion 1, F in Lemma 3.1 corresponds to the distance
function d, i.e., fx(·) = d(x, ·), and Lemma 3.1 is usu-
ally applied directly to the distances, i.e., on a function
set F = {fx(·) = d(x, ·) | x ∈ X}. In our applications,
we instead use Lemma 3.1 with a “proxy” function set F
that is viewed as a terminal embedding on X, in which
both the distortion of distances (between X and all of
V) and the shattering dimension are controlled.

We consider two types of terminal embeddings
F . The first type (Section 3.3) maintains (1 + ε)-
multiplicative distortion of the distances, and achieves
dimension bound O(poly(k/ε) log ‖X‖0), and the other
type of F (Section 3.4) maintains additive distortion on
top of the multiplicative one, but then the dimension is
reduced to poly(k/ε). In what follows, we discuss how
each type of terminal embedding is used to construct
coresets.

3.3 Coresets via Terminal Embedding with
Multiplicative Distortion The first type of terminal
embedding distorts distances between V and X multi-
plicatively, i.e.,

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ε) d(x, c).
(3.2)

This natural guarantee works very well for (k, z)-
Clustering in general. In particular, using such F
in Lemma 3.1, our importance sampling algorithm will
produce (with high probability) an O(zε)-coreset for
(k, z)-Clustering.

Sensitivity Estimation. To compute a coreset
using Lemma 3.1 we need to define, for every x ∈ X,

σx ≥ σFx = max
C∈V k

wX(x) · (fx(C))z

costz(F , C)
.

The quantity σFx , usually called the sensitivity of point
x ∈ X with respect to F [38, 20]; essentially measures
the maximal contribution of x to the clustering objective
over all possible centers C ⊆ V . Since fx(y) approxi-
mates d(x, y) by (3.2), it actually suffices to estimate
the sensitivity with respect to d instead of F , given by

σ?x := max
C∈V k

wX(x) · (d(x,C))z

costz(X,C)
.(3.3)

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Even though computing σ?x exactly seems compu-
tationally difficult, we show next (in Lemma 3.2) that
a good estimate can be efficiently computed given an
(O(1), O(1))-approximate clustering. A weaker version
of this lemma was presented in [56] for the case where
X has unit weights, and we extend it to X with general
weights. We will need the following notation. Given a
subset C ⊆ V , denote the nearest neighbor of x ∈ X,
i.e., the point in C closest to x with ties broken arbi-
trarily, by NNC(x) := arg min{d(x, y) : y ∈ C}. The
tie-breaking guarantees that every x has a unique near-
est neighbor, and thus NNC(.) partitions X into |C|
subsets. The cluster of x under C is then defined as
C(x) := {x′ ∈ X : NNC(x′) = NNC(x)}.

Lemma 3.2. Fix z ≥ 1, an integer k ≥ 1, and a
weighted set X. Given Capx ∈ V k that is an (α, β)-
approximate solution for (k, z)-Clustering on X, de-
fine for every x ∈ X,

σapx
x := wX(x) ·

(
(d(x,Capx))z

costz(X,Capx)
+

1

wX(Capx(x))

)
.

Then σapx
x ≥ Ω(σ?x/(β22z)) for all x ∈ X, and σapx

X :=∑
x∈X σ

apx
x ≤ 1 + αk.

Conclusion. Our importance sampling algorithm
for this type of terminal embedding is listed in Algo-
rithm 2. By a direct combination of Lemma 3.1 and
Lemma 3.2, we conclude that the algorithm yields a
coreset, which is stated formally in Lemma 3.3.

Algorithm 2 Coresets for (k, z)-Clustering for F
with multiplicative distortion

1: compute an (O(1), O(1))-approximate solution Capx

for (k, z)-Clustering on X
2: for each x ∈ X, let σx := wX(x) ·(

(d(x,Capx))z

costz(X,Capx) + 1
wX(Capx(x))

)
. as in Lemma 3.2

3: for each x ∈ X, let px := σx∑
y∈X σy

4: N := O
(
ε−222zk ·

(
zk log k · sdimmax(F) + log 1

δ

))
5: draw N independent samples from X, each from the

distribution (px : x ∈ X) . sdimmax as in
Lemma 3.1

6: let D be the set of samples, and assign each x ∈ D
a weight wD(x) := wX(x)

pxN
7: return the weighted set D

Lemma 3.3. Fix 0 < ε, δ < 1
2 , z ≥ 1, an integer

k ≥ 1, and a metric space M(V, d). Given a weighted
set X ⊆ V and respective F = {fx : V → R+ | x ∈ X}
such that

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ε) · d(x, c),

Algorithm 2 computes a weighted set D ⊆ X of size

‖D‖0 = O
(
ε−222zk

(
zk log k · sdimmax(F) + log 1

δ

))
,

that with high probability 1−δ is an ε-coreset for (k, z)-
Clustering on X.

The running time of Algorithm 2 is dominated
by the sensitivity estimation, especially line 1 which
computes an (O(1), O(1))-approximate solution. In
Lemma 3.4 we present efficient implementations of the
algorithm, both in metric settings and in graph settings.

Lemma 3.4. Algorithm 2 can be implemented in time
Õ(k‖X‖0) if it is given oracle access to the distance d,
and it can be implemented in time Õ(|E|) if the input
is an edge-weighted graph G = (V,E) and M is its
shortest-path metric.

3.4 Coresets via Terminal Embedding with Ad-
ditive Distortion The second type of embedding has,
in addition to the above (1+ε)-multiplicative distortion,
also an additive distortion. Specifically, we assume the
function set F = FS is defined with respect to some
subset S ⊆ V and satisfies ∀x ∈ X, c ∈ V ,

d(x, c) ≤ fx(c) ≤ (1 + ε) · d(x, c) + ε · d(x, S).

The important sampling algorithm for this case
is largely similar to Algorithm 2, except for a slightly
larger number of samples N and some hidden con-
stants. Here, we use the embedding with S being an
(O(1), O(1))-approximate solution, and we choose N :=
O
(
ε−2k

(
k log k · sdimmax(FCapx) + log 1

δ

)
+ k2 log 1

δ

)
,

where FCapx is as in (3.4) of Lemma 3.5. We state
the algorithm in Algorithm 3, and its running time is
similar to Algorithm 2. Its correctness is presented in
Lemma 3.5.

Corollary 3.1. Algorithm 3 can be implemented in
time Õ(k‖X‖0) if it is given oracle access to the distance
d, and in time Õ(|V | + |E|) if the input is an edge-
weighted graph G = (V,E) and M is its shortest-path
metric.

Lemma 3.5. Fix 0 < ε, δ < 1
2 , an integer k ≥ 1, and

a metric space M(V, d). Given a weighted set X ⊆ V ,
and an (O(1), O(1))-approximate solution Capx ∈ V k

for k-Median on X, suppose FCapx = {fx : V → R+ |
x ∈ X} satisfies ∀x ∈ X, c ∈ V ,

d(x, c) ≤ fx(c) ≤ (1 + ε) · d(x, c) + ε · d(x,Capx);(3.4)

then Algorithm 3 computes a weighted set D ⊆ X of
size

O
(
ε−2k

(
k log k · sdimmax(FCapx) + log 1

δ

)
+ k2 log 1

δ

)
,

that with high probability 1 − δ is an ε-coreset for k-
Median on X.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 3 Coresets for k-Median on F with addi-
tive distortion

1: compute an (O(1), O(1))-approximate solution Capx

for k-Median on X
2: for each x ∈ X, let σapx

x := wX(x) ·(
d(x,Capx)

cost(X,Capx) + 1
wX(Capx(x))

)
. as in Lemma 3.2

3: for each x ∈ X, let px :=
σapx
x∑

y∈X σapx
y

4: N := O(ε−2k(k log k · sdimmax(FCapx) + log 1
δ) +

k2 log 1
δ)

5: draw N independent samples from X, each from the
distribution (px : x ∈ X) . sdimmax as in
Lemma 3.1, and FCapx as in (3.4)

6: for each x in the sample D assign weight wD(x) :=
wX(x)
pxN

7: return the weighted set D

4 Coresets

We now apply the framework developed in Section 3
to design coresets of size independent of X for vari-
ous settings, including excluded-minor graphs (in Sec-
tion 4.1), high-dimensional Euclidean spaces (in Sec-
tion 4.3), and graphs with bounded highway dimension
(in Section 4.4). Our workhorse will be Lemma 3.3 and
Lemma 3.5, which effectively translate a terminal em-
bedding F with low distortion on X × V and low shat-
tering dimension sdimmax into an efficient algorithm to
construct a coreset whose size is linear in sdimmax(F).

We therefore turn our attention to designing vari-
ous terminal embeddings. For excluded-minor graphs,
we design a terminal embedding F with multiplica-
tive distortion 1 + ε of the distances, and dimension
sdimmax(F) = O(poly(k/ε) · log ‖X‖0). For Euclidean
spaces, we employ a known terminal embedding with
similar guarantees. In both settings, even though the
shattering dimension depends on ‖X‖0, it still implies
coresets of size independent of X by our iterative size re-
duction (Theorem 3.1). We thus obtain the first coreset
(of size independent of X and V) for excluded-minor
graphs (Corollary 4.1), and a simpler state-of-the-art
coreset for Euclidean spaces (Corollary 4.2).

We also design a terminal embedding for graphs
with bounded highway dimension (formally defined in
Section 4.4). This embedding has an additive distortion
(on top of the multiplicative one), but its shattering
dimension is independent of X, hence the iterative size
reduction is not required. We thus obtain the first
coreset (of size independent of X and V) for graphs
with bounded highway dimension (Corollary 4.3).

4.1 Excluded-minor Graphs Our terminal embed-
ding for excluded-minor graphs is stated in the next

lemma. Previously, the shattering dimension of the
shortest-path metric of graphs excluding a fixed graph
H0 as a minor was studied only for unit point weight,
for which Bousquet and Thomassé [8] proved that
F = {d(x, ·) | x ∈ X} has shattering dimension
sdim(F) = O(|H0|). For arbitrary point weight, i.e.,
sdimmax(F), it is still open to get a bound that de-
pends only on |H0|, although the special case of bounded
treewidth was recently resolved, as Baker et al. [5],
proved that sdimmax(F) = O(tw(G)) where tw(G) de-
notes the treewidth of the graph G. Note that both
of these results use no distortion of the distances, i.e.,
they bound F = {d(x, ·) | x ∈ X}. Our terminal embed-
ding handles the most general setting of excluded-minor
graphs and arbitrary point weight, although it bypasses
the open question by allowing a small distortion and
dependence on X.

Lemma 4.1. For every edge-weighted graph G = (V,E)
that excludes some fixed minor and whose shortest-
path metric is denoted as M = (V, d), and for every
weighted set X ⊆ V , there exists a set of functions
F := {fx : V → R+ | x ∈ X} such that

∀x ∈ X, c ∈ V, d(x, c) ≤ fx(c) ≤ (1 + ε) · d(x, c),

and sdimmax(F) = Õ(ε−2) · log ‖X‖0.

Let us present now an overview of the proof of
Lemma 4.1, deferring the full details to Section 4.2.
Our starting point is the following approach, which was
developed in [5] for bounded-treewidth graphs. (The
main purpose is to explain how vertex separators are
used as portals to bound the shattering dimension, but
unfortunately additional technical details are needed.)
The first step in this approach reduces the task of
bounding the shattering dimension to counting how
many distinct permutations of X one can obtain by
ordering the points ofX according to their distance from
a point c, when ranging over all c ∈ V . An additional
argument uses the bounded treewidth to reduce the
range of c from all of V to a subset V̂ ⊂ V , that
is separated from X by a vertex-cut P ⊂ V of size
|P̂ | = O(1). This means that every path, including the
shortest-path, between every x ∈ X and every c ∈ V̂
must pass through P̂ , therefore

d(x, c) = min{d(x, p) + d(p, c) : p ∈ P̂},

and the possible orderings of X are completely deter-
mined by these values. The key idea now is to re-
place the hard-to-control range of c ∈ V̂ with a richer
but easier range of |P̂ | = O(1) real variables. Indeed,
each d(x, ·) is captured by a min-linear function, which
means a function of the form mini aiyi + bi with real

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

variables {yi} that represent {d(p, c)}p∈P̂ and fixed coef-

ficients {ai, bi}. Therefore, each d(x, ·) is captured by a

min-linear function gx : R|P̂ | → R+, and these functions
are all defined on the same |P̂ | = O(1) real variables. In
this representation, it is easy to handle the point weight
v : X → R+ (to scale all distances from x), because each
resulting function v(x) · gx is still min-linear. Finally,
the number of orderings of the set {gx}x∈X of min-linear
functions, is counted using the arrangement number for
hyperplanes, which is a well-studied quantity in compu-
tational geometry.

To extend this approach to excluded-minor graphs
(or even planar graphs), which do not admit small
vertex separators, we have to replace vertex separators
with shortest-path separators [53, 3]. In particular,
we use these separator theorem to partition the whole
graph into a few parts, such that each part is separated
from the graph by only a few shortest paths, see
Lemma 4.3 for planar graphs (which is a variant of a
result known from [18]) and Lemma 4.7 for excluded-
minor graphs. However, the immediate obstacle is
that while these separators consist of a few paths,
their total size is unbounded (with respect to X),
which breaks the above approach because each min-
linear function has too many variables. A standard
technique to address this size issue is to discretize the
path separator into portals, and reroute through them
a shortest-path from each x ∈ X to each c ∈ V . This
step distorts the distances, and to keep the distortion
bounded multiplicatively by 1 + ε, one usually finds
inside each separating shortest-path l, a set of portals
Pl ⊂ l whose spacing is at most ε · d(x, c). However,
d(x, c) could be very small compared to the entire path
l, hence we cannot control the number of portals (even
for one path l).

Vertex-dependent Portals In fact, all we need
is to represent the relative ordering of {d(x, ·) : x ∈ X}
using a set of min-linear functions over a few real
variables, and these variables do not have to be the
distance to fixed portals on the separating shortest
paths. (Recall this description is eventually used by the
arrangement number of hyperplanes to count orderings
of X.) To achieve this, we first define vertex-dependent
portals P lc with respect to a separating shortest path l
and a vertex c ∈ V (notice this includes also P lx for
x ∈ X). and then a shortest path from x ∈ X to
c ∈ V passing through l is rerouted through portals
P lx∪P lc , as follows. First, since l is itself a shortest path,
d(x, c) = minu1,u2∈l{d(x, u1) + d(u1, u2) + d(u2, c)}.
Observe that d(u1, u2) is already linear, because one
real variable can “capture” a location in l, hence we
only need to approximate d(x, u1) and d(c, u2). To
do so, we approximate the distances from c to every

vertex on the path l, i.e., {d(c, u)}u∈l, using only the

distances from c to its portal set P lc , i.e., {d(c, p)}p∈P lc .
Moreover, between successive portals this approximate
distance is a linear function, and it actually suffices to
use |P lc | = poly(1/ε) portals, which means that d(c, u)
can be represented as a piece-wise linear function in
poly(1/ε) real variables.

Note that the above approach ends up with the min-
imum of piece-wise linear (rather than linear) functions,
which creates extra difficulty. In particular, we care
about the relative ordering of {d(x, ·) : x ∈ X} over all
c ∈ V , and to evaluate d(x, c) we need the pieces that c
and x generate, i.e., information about P lc ∪ P lx. Since
the number of c ∈ V is unbounded, we need to “guess”
the structure of P lc , specifically the ordering between the
portals in P lc and those in P lx. Fortunately, since every
|P lc | ≤ poly(1/ε), such a “guess” is still affordable, and
this would prove Lemma 4.1.

Corollary 4.1. For every edge-weighted graph G =
(V,E) that excludes a fixed minor, every 0 < ε, δ < 1/2
and integer k ≥ 1, k-Median of every weighted set X ⊆
V (with respect to the shortest path metric of G) admits
an ε-coreset of size Õ(ε−4k2 log 1

δ). Furthermore, such

a coreset can be computed in time Õ(|E|) with success
probability 1− δ.

Remark 4.1. This result partly extends to (k, z)-
Clustering for all z ≥ 1. The importance sam-
pling algorithm and its analysis are immediate, and
in particular imply the existence of a coreset of size
Õ(ε−4k2 log 1

δ). However we rely on known algorithm
for z = 1 in the step of computing an approximate clus-
tering (needed to compute sampling probabilities).

4.2 Proof of Lemma 4.1 For the sake of presenta-
tion, we start with proving the planar case, since this
already requires most of our new technical ideas. The
statement of terminal embedding for planar graphs is
as follows, and how the proof can be modified to work
for the minor-excluded case is briefly discussed in Sec-
tion 4.2.1.

Lemma 4.2. For every edge-weighted planar graph G =
(V,E) whose shortest path metric is denoted as M =
(V, d) and every weighted set X ⊆ V , there exists a set
of functions F = FX := {fx : V → R+ | x ∈ X} such
that for every x ∈ X, and c ∈ V , fx(c) ∈ (1±ε) ·d(x, c),

and sdimmax(F) = Õ(ε−2) log ‖X‖0.

By definition, sdimmax(F) = maxv:X→R+
(Fv), so it

suffices to bound sdim(Fv) for every v. Also, by the
definition of sdim, it suffices to prove for every H ⊆ Fv

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

with |H| ≥ 2,

|{BH(c, r) : c ∈ V, r ≥ 0}| ≤ poly(‖X‖0) · |H|Õ(
log ‖X‖0

ε2
)

Hence, we fix some v : X → R+ and H ⊆ Fv with
|H| ≥ 2 throughout the proof.

General Reduction: Counting Relative Or-
derings For H ⊆ F and c ∈ V , let σHc be the permuta-
tion of H ordered by v(x) ·fx(c) in non-decreasing order
and ties are broken arbitrarily. Then for a fixed c ∈ V
and very r ≥ 0, the subset BH(c, r) ⊆ H is exactly the
subset defined by some prefix of σHc . Hence,

|{BH(c, r) : c ∈ V, r ≥ 0}| ≤ |H| ·
∣∣{σHc : c ∈ V }

∣∣ .
Therefore, it suffices to show∣∣{σHc : c ∈ V }

∣∣ ≤ poly(‖X‖0)|H|Õ(ε−2) log ‖X‖0

Hence, this reduces the task of bounding of shattering
dimension to counting the number of relative orderings
of {v(x) · fx(c) | x ∈ X}.

Next, we use the following structural lemma for
planar graphs to break the graph into few parts of simple
structure, so we can bound the number of permutations
for c coming from each part. A variant of this lemma
has been proved in [18], where the key idea is to use the
interdigitating trees.

Lemma 4.3. (see also [18]) For every edge-weighted
planar graph G = (V,E) and subset S ⊆ V , V can be
broken into parts Π := {Vi}i with |Π| = poly(|S|) and⋃
i Vi = V , such that for every Vi ∈ Π,

1. |S ∩ Vi| = O(1),

2. there exists a collection of shortest paths Pi in G
with |Pi| = O(1) and removing the vertices of all
paths in Pi disconnects Vi from V \Vi (points in Vi
are possibly removed).

Applying Lemma 4.3 with S = X (noting that
S is an unweighted set), we obtain Π = {Vi}i with
|Π| = poly(‖X‖0), such that each part Vi ∈ Π is
separated by O(1) shortest paths Pi. Then∣∣{σHc : c ∈ V }

∣∣ ≤ ∑
Vi∈Π

∣∣{σHc : c ∈ Vi}
∣∣.

Hence it suffices to show for every Vi ∈ Π, it holds that∣∣{σHc : c ∈ Vi}
∣∣ ≤ |H|Õ(ε−2) log ‖X‖0 .(4.5)

Since
⋃
i Vi = V , it suffices to define functions fx(·)

for c ∈ Vi for every i independently. Therefore, we fix
Vi ∈ Π throughout the proof. In the following, our proof
proceeds in three parts. The first defines functions fx(·)
on Vi, the second analyzes the distortion of fx’s, and the
final part analyzes the shattering dimension.

Part I: Definition of fx on Vi By Lemma 4.3 we
know |Vi∩X| = O(1). Hence, the “simple” case is when
x ∈ Vi ∩ T , for which we define fx(·) := d(x, ·).

Otherwise, x ∈ X \ Vi. Write Pi := {Pj}j . Since
Pj ’s are shortest paths in G, and removing Pi from G
disconnects Vi from V \ Vi, we have the following fact.

Fact 4.1. For c ∈ Vi and x ∈ X \ Vi, there exists
Pj ∈ Pi and c′, x′ ∈ Pj, such that d(c, x) = d(c, c′) +
d(c′, x′) + d(x′, x).

Let dj(c, x) be the length of the shortest path from c to
x that uses at least one point in Pj . For each Pj ∈ Pi,
we will define f jx : Vi → R+, such that f jx(c) is within
(1± ε) · dj(c, x), and let

fx(c) := min
Pj∈Pi

f jx(c), ∀c ∈ Vi.

Hence, by Fact 4.1, the guarantee that f jx(c) ∈ (1± ε) ·
dj(c, x) implies fx(c) ∈ (1±ε)·d(x, c), as desired. Hence
we focus on defining f jx in the following.

Defining f jx : Vi → R+ Suppose we fix some
Pj ∈ Pi, and we will define f jx(c), for c ∈ Vi. By Fact 4.1
and the optimality of shortest paths, we have

dj(x, c) = min
c′,x′∈Pj

{d(c, c′) + d(c′, x′) + d(x′, x)}.

For every y ∈ V , we will define ljy : Pj → R+ such that

ljy(y′) ∈ (1± ε) · d(y, y′) for every y′ ∈ Pj . Then, we let

f jx(c) := min
c′,x′∈Pj

{ljc(c′) + d(c′, x′) + ljx(x′)},

and this would imply f jx(c) ∈ (1 ± ε) · dj(x, c). So it
remains to define ljy : Pj → R+ for every y ∈ V .

Defining ljy : Pj → R+ Fix y ∈ V and we will

define ljy(y′) for every y′ ∈ Pj . Pick hy ∈ Pj that
satisfies d(y, hy) = d(y, Pj). Since Pj is a shortest
path, we interpret Pj as a segment in the real line. In
particular, we let the two end points of Pj be 0 and 1,
and Pj is a (discrete) subset of [0, 1].

Define a, b ∈ Pj such that a ≤ hy ≤ b are the
two furthest points on the two sides of h on Pj that

satisfy d(hy, a) ≤ d(y,hy)
ε and d(hy, b) ≤ d(y,hy)

ε . Then
construct a sequence of points a = q1 ≤ q2 . . . in
the following way. For t = 1, 2, . . ., if there exists
u ∈ (qt, 1] ∩ Pj such that d(qt, u) > ε · d(y, hy), then let
qt+1 be the smallest such u; if such u does not exist, then
let qt+1 := b and terminate. Essentially, this breaks
Pj into segments of length ε · d(y, hy), except that the
last one that ends with b may be shorter. Denote this
sequence as Qy := (q1 = a, . . . , qm = b).

Claim 4.1. For every y ∈ V , |Qy| = O(ε−2).

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. By the definition of Qy, for 1 ≤ t ≤ m − 2,
d(qt, qt+1) > ε · d(y, hy). On the other hand, by the

definition of a and b, d(q1, qm) = d(a, b) ≤ O(
d(y,hy)

ε).
Therefore, |Qy| ≤ O(ε−2), as desired.

Definition of fx on Vi: Recap Define

ljy(y′) :=

d(hy, y

′) if y′ < a = q1 or y′ > b = qm

d(y, qt) if qt ≤ y′ < qt+1, 1 ≤ t < m

d(y, qm) if y′ = b = qm

(4.6)

where hy ∈ Pj , Qy = {qt}t ⊂ Pj . To recap,

• if x ∈ X ∩ Vi, then fx(c) := d(x, c);

• otherwise x ∈ X \ Vi, fx(c) := minPj∈Pi f
j
x(c),

where

f jx(c) := min
c′,x′∈Pj

{ljc(c′) + d(c′, x′) + ljx(x′)}.(4.7)

Finally,

fx(c) := min
Pj∈Pi

f jx(c), ∀c ∈ Vi.(4.8)

Part II: Distortion Analysis The distortion of
l’s is analyzed in the following Lemma 4.4, and the
distortion for fx follows immediately from the above
definitions.

Lemma 4.4. For every Pj ∈ Pi, y ∈ V , y′ ∈ Pj,
ljy(y′) ∈ (1± ε) · d(y, y′).

Proof. If y′ = qm = b, by definition ljy(y′) = d(y, qm) =
d(y, y′). Then consider the case when y′ < a = q1 or
y′ > b = qm.

ljy(y′) = d(hy, y
′)

∈ d(y′, y)± d(y, hy)

∈ d(y′, y)± ε · d(y′, hy),

where the last inequality follows from d(y′, hy) >
d(y,hy)

ε . This implies d(y, y′) ∈ (1± ε) · ljy(y′).
Otherwise, qt ≤ y′ < qt+1 for some 1 ≤ t < m. By

the definition of qt’s and the definition of hy,

d(y, y′) ∈ d(y, qt)± d(qt, y
′)

∈ d(y, qt)± ε · d(y, hy)

∈ d(y, qt)± ε · d(y, y′)

∈ ljy(y′)± ε · d(y, y′),

which implies ljy(y′) ∈ (1± ε) · d(y, y′). This finishes the
proof of Lemma 4.4.

Part III: Shattering Dimension Analysis Re-
call that we fixed v : X → R+ andH ⊆ Fv with |H| ≥ 2.
Now we show∣∣{σHc : c ∈ Vi}

∣∣ ≤ |H|Õ(ε−2) log ‖X‖0 .(4.9)

Let H := {x : v(x) · fx ∈ H}, so |H| = |H|. Recall
that |Vi∩X| = O(1) by Lemma 4.3, so |Vi∩H| = O(1).
Hence, if we could show∣∣{σHc : c ∈ Vi}

∣∣ ≤ N(|H|)

for H such that H ∩ Vi = ∅, then for general H,∣∣{σHc : c ∈ Vi}
∣∣ ≤ N(|H| − |Vi ∩H|) · |H|O(|Vi∩H|)

≤ N(|H|) · |H|O(1)

Therefore, it suffices to show (4.9) under the assumption
that H ∩ Vi = ∅.

In the following, we will further break Vi into

|H|Õ(ε−2) parts, such that for each part V ′, fx on V ′ may
be alternatively represented as a min-linear function.

Lemma 4.5. Let u = |Pi|. There exists a partition Γ of
Vi, such that the following holds.

1. |Γ| ≤ |H|Õ(ε−2)·u.

2. ∀V ′ ∈ Γ, ∀x ∈ H, there exists gx : Rs → R+ where
s = O(ε−2), such that gx is a minimum of O(ε−4u)
linear functions on Rs, and for every c ∈ V ′, there
exists y ∈ Rs that satisfies fx(c) = gx(y).

Proof. Before we actually prove the lemma, we need
to examine f jx(c) and ljy more closely. Suppose some
Pj ∈ Pi is fixed. Recall that for y ∈ V, y′ ∈ Pj (defined
in (4.6)),

ljy(y′) :=

d(hy, y

′) if y′ < a = q1 or y′ > b = qm

d(y, qt) if qt ≤ y′ < qt+1, 1 ≤ t < m

d(y, qm) if y′ = b = qm

where hy ∈ Pj , Qy = {qt}t ⊂ Pj . Hence, for every y, ljy
is a piece-wise linear function with O(|Qy|) = O(ε−2)
(by Claim 4.1) pieces, where the transition points of
ljy are Qy ∪ {0, 1} (noting that d(hy, y

′) is linear since
hy, y

′ ∈ Pj).
Using that l’s are piece-wise linear, we know for

c ∈ Vi, x ∈ X \ Vi,

f jx(c) = min
c′,x′∈Pj

{ljc(c′) + d(c′, x′) + ljx(x′)}

= min
c′,x′∈Qc∪Qx∪{0,1}

{ljc(c′) + d(c′, x′) + ljx(x′)}.

where the first equality is by definition in (4.7) and
the second equality is because l’s are piece-wise linear.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Hence, to evaluate f jx(c) we only need to evaluate ljc(c
′)

and ljx(x′) at c′, x′ ∈ Qc ∪Qx ∪ {0, 1}, and in particular
we need to find the piece in ljc and ljx that every c′, x′ ∈
Qc ∪ Qx ∪ {0, 1} belong to, and then evaluate a linear
function. Precisely, the piece that every c′, x′ belongs to
is determined by the relative ordering of points Qx∪Qc
(recalling that they are from Pj). Thus, the pieces are
not only determined by x, but also by c which is the
variable, and this means without the information about
the pieces, fx cannot be represented as a min-linear
function gx. Therefore, the idea is to find a partition Γ
of Vi, such that for c in each part V ′ ∈ Γ, the relative
ordering of Qc with respect to {Qx : x ∈ H} is the
same. We note that we need to consider the ordering of
Qc with respect to all Qx’s, because we care about the
relative orderings of all fx’s.

Defining Γ For 1 ≤ j ≤ u, c ∈ Vi, let τ jc be the
ordering of Qc with respect to

⋃
y∈H Qy on Pj . Here, an

ordering of Qc with respect to
(⋃

y∈H Qy

)
is defined by

their ordering on Pj which is interpreted as the real line.
In our definition of Γ, we will require each part V ′ ∈ Γ to
satisfy that ∀c ∈ V ′, the tuple of orderings (τ1

c , . . . , τ
u
c)

remains the same. That is, Vi is partitioned according
to the joint relative ordering τ jc ’s on all shortest paths
Pj ∈ Pi.

Formally, for 1 ≤ j ≤ u, let Λj := {τ jc : c ∈ Vi} be
the collection of distinct ordering τ jc on Pj over points
c ∈ Vi. Define

Λ := Λ1 × . . .× Λu

as the tuples of τj ’s for 1 ≤ j ≤ u (here, the × operator
is the Cartesian product). For (τ1, . . . , τu) ∈ Λ, define

V
(τ1,...,τu)
i := {c ∈ Vi : (τ1

c = τ1) ∧ . . . ∧ (τuc = τu)}

as the subset of Vi such that the ordering τ jc for each
1 ≤ j ≤ u agrees with the given tuple. Finally, we define
the partition as

Γ := {V (τ1,...,τu)
i : (τ1, . . . , τu) ∈ Λ}.

Bounding |Γ| By Claim 4.1, we know |Qy| =

O(ε−2) for every y ∈ V . Hence,
∣∣∣⋃y∈H Qy∣∣∣ =

O
(
ε−2|H|

)
. Therefore, for every j ∈ [u],

|Λj | ≤
(
O(ε−2|H|)
O(ε−2)

)
= O

(
ε−1|H|

)O(ε−2)
.

Therefore,

|Γ| ≤ Π1≤j≤u|Λj | ≤ O
(
ε−1|H|

)O(ε−2u) ≤ |H|Õ(ε−2)·u,

as desired.

Defining gx By our definition of Γ, we need to
define gx for each V ′ ∈ Γ. Now, fix tuple (τ1, . . . , τu) ∈
Λ, so the part corresponds to this tuple is V ′ =

V
(τ1,...,τu)
i , and we will define gx with respect to such
V ′. Similar to the definition of fx’s (see (4.8)), we define
gx : Rs → R+ to have the form

gx(y) := min
Pj∈Pi

gjx(y).

Then, for 1 ≤ j ≤ u, x ∈ H, define gjx : Rs → R of s :=
O(ε−2) variables (q1, . . . , qm, d(c, q1), . . . , d(c, qm), hc)
for qi ∈ Qc, such that

gjx(q1, . . . , qm, d(c, q1), . . . , d(c, qm), hc)

= min
c′,x′∈Qc∪Qx∪{0,1}

{ljc(c′) + d(c′, x′) + ljx(x′)}.

We argue that for every 1 ≤ j ≤ u, gjx may be viewed as
a minimum of O(ε−4) linear functions whose variables
are the same with that of gjx.

• Linearity. Suppose c ∈ V ′, and fix c′, x′ ∈ Qc∪Qx∪
{0, 1}. By the above discussions, ljc(c

′) could take
values only from {d(c, qi) : qi ∈ Qc} ∪ {d(hc, c

′)}.
Since ∀qi ∈ Qc, d(c, qi) is a variable of gjx, and
d(hc, c

′) = |hc − c′| is linear and that hc is also
a variable of gjx, we conclude that ljc(c

′) may be
written as a linear function of the same set of
variables of gjx. By a similar argument, we have
the same conclusion for ljx. Therefore, ljc(c

′) +
d(c′, x′)+ ljx(x′) may be written as a linear function
of (q1, . . . , qm, d(c, q1), . . . , d(c, qm), hc).

• Number of linear functions. By Claim 4.1, we have

∀y ∈ V, |Qy| = O(ε−2),

hence |Qc∪Qx∪{0, 1}| = O(ε−2). Therefore, there
are O(ε−4) pairs of c′, x′ ∈ Qc ∪Qx ∪ {0, 1}.

Therefore, item 2 of Lemma 4.5 follows by combining
this with the definition of gx. We completed the proof
of Lemma 4.5.

Now suppose Γ is the one that is guaranteed by
Lemma 4.5. Since∣∣{σHc : c ∈ Vi}

∣∣ ≤ ∑
V ′∈Γ

∣∣{σHc : c ∈ V ′}
∣∣

and

|Γ| ≤ |H|Õ(ε−2)·u ≤ |H|Õ(ε−2),(4.10)

where the last inequality is by Lemma 4.3 (recalling
u = |Pi|), it suffices to show for every V ′ ∈ Γ,∣∣{σHc : c ∈ V ′}

∣∣ ≤ |H|Õ(ε−2) log ‖X‖0 .(4.11)

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Fix some V ′ ∈ Γ. By Lemma 4.5, for every
x ∈ H there exists a min-linear function gx : Rs → R+

(s = O(ε−2))), such that for every c ∈ V ′, there exists
y ∈ Rs that satisfies fx(c) = gx(y). For y ∈ Rs define
πHy as a permutation of H that is ordered by gx(y) in
non-increasing order and ties are broken in a way that
is consistent with σ. Then∣∣{σHvc : c ∈ V ′}

∣∣ ≤ ∣∣{πHy : y ∈ Rs}
∣∣ .(4.12)

We make use of the following lemma to bound the
number of permutations πHy . The lemma relates the
number of relative orderings of gx’s to the arrangement
number in computational geometry.

Lemma 4.6. ([5]) Suppose there are m functions
g1, . . . , gm from Rs to R, such that ∀i ∈ [m], gi is of
the form

gi(x) := min
j∈[t]
{gij(x)},

where gij is a linear function. For x ∈ Rs, let πx be the
permutation of [m] ordered by gi(x). Then,

|{πx : x ∈ Rs}| ≤ (mt)O(s).

Applying Lemma 4.6 on gx’s for x ∈ H with parameters
s = O(ε−2), t = O(ε−4u) = O

(
ε−4 log ‖X‖0

)
and

m = |H|, we obtain∣∣{πHy : y ∈ Rs}
∣∣ ≤ |H|Õ(ε−2)·log ‖X‖0 .(4.13)

Thus, (4.11) is implied by combining (4.13) with (4.12).
Finally, we complete the proof of Lemma 4.2 by com-
bining the above three parts of the arguments.

4.2.1 From Planar to Minor-excluded Graphs
The strategy for proving the minor-excluded case is
similar to the planar case. Due to the space limit, we
only present the structural lemma (Lemma 4.7) that
replaces Lemma 4.3 which we used for planar graphs,
and highlight the differences.

Lemma 4.7. Given edge-weighted graph G = (V,E)
that excludes a fixed minor, and a subset S ⊆ V , there
is a collection Π := {Vi}i of V with |Π| = poly(|S|)
and

⋃
i Vi = V such that for every Vi ∈ Π the following

holds.

1. |S ∩ Vi| = O(1).

2. There exists an integer ti and ti groups of paths
Pi1, . . . ,Piti in G, such that

(a) |
⋃ti
j=1 Pij | = O(log |S|)

(b) removing the vertices of all paths in
⋃ti
j=1 Pij

disconnects Vi from V \ Vi in G (possibly
removing points in Vi)

(c) for 1 ≤ j ≤ ti, let Gij be the sub-graph of G

formed by removing all paths in Pi1, . . . ,Pij−1

(define Gi1 = G), then every path in Pij is a

shortest path in Gij.

The lemma follows from a recursive application of the
balanced shortest path separator theorem in [3, The-
orem 1]. Compared with Lemma 4.3, the separating
shortest paths in Lemma 4.7 are not from the origi-
nal graph G, but is inside some sub-graph generated
by removing various other separating shortest paths.
Also, the number of shortest paths in the separator is
increased from O(1) to O(log ‖X‖0). The remaining
proof for the excluded-minor case can be found in the
full version.

4.3 High-Dimensional Euclidean Spaces We
present a terminal embedding for Euclidean spaces, with
a guarantee that is similar to that of excluded-minor
graphs. For these results, the ambient metric space
(V, d) of all possible centers is replaced by a Euclidean
space.8

Lemma 4.8. For every ε ∈ (0, 1/2) and finite weighted
set X ⊂ Rm, there exists F = {fx : Rm → R+ | x ∈ X}
such that

∀x ∈ X, c ∈ Rm, ‖x−c‖2 ≤ fx(c) ≤ (1+ ε)‖x−c‖2,

and sdimmax(F) = O(ε−2 log ‖X‖0).

Proof. The lemma follows immediately from the fol-
lowing terminal version of the Johnson-Lindenstrauss
Lemma [36], proved recently by Narayanan and Nel-
son [46].

Theorem 4.1. ([46]) For every ε ∈ (0, 1/2) and finite
S ⊂ Rm, there is an embedding g : S → Rt for
t = O(ε−2 log |S|), such that ∀x ∈ S, y ∈ Rm,

‖x− y‖2 ≤ ‖g(x)− g(y)‖2 ≤ (1 + ε)‖x− y‖2.

Given X ⊂ Rm, apply Theorem 4.1 with S = X (as
an unweighted set), and define for every x ∈ X the func-
tion fx(c) := ‖g(x) − g(c)‖2. Then F = {fx | x ∈ X}
clearly satisfies the distortion bound. The dimension
bound follows by plugging t = O(ε−2 log ‖X‖0) into

8It is easily verified that as long as X is finite, our entire
framework from Section 3 extends to V = Rm with `2 norm.

For example, all maximums (e.g., in Lemma 3.1) are well-defined
by using compactness arguments on a bounding box.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

the bound sdimmax(F) = O(t) known from [20, Lemma
16.3].9

Corollary 4.2. For every 0 < ε, δ < 1/2, z ≥ 1,
and integers k,m ≥ 1, Euclidean (k, z)-Clustering of
every weighted set X ⊂ Rm admits an ε-coreset of size
Õ(ε−422zk2 log 1

δ). Furthermore, such a coreset can be

computed10 in time Õ(k‖X‖0m) with success probability
1− δ.

Remark 4.2. (Comparison to [33]) For (k, z)-
Clustering in Euclidean spaces, our algorithms can
also compute an ε-coreset of size Õ(ε−O(z)k), which of-
fers a different parameters tradeoff than Corollary 4.2.
This alternative bound is obtained by simply replac-
ing the application of Lemma 3.1 (which is actually
from [22]) with [33, Lemma 3.1] (which itself is a result
from [20], extended to weighted inputs).

Our two coreset size bounds are identical to the
state-of-the-art bounds proved by Huang and Vish-
noi [33] (in the asymptotic sense). Their analysis is
different, and bounds sdimmax independently of X us-
ing a dimensionality-reduction argument for clustering
objectives. In contrast, we require only a loose bound
sdimmax(F) = O(poly(ε−1) · log ‖X‖0), which follows
immediately from [46], and the coreset size is then re-
duced iteratively using Theorem 3.1, which simplifies the
analysis greatly.

4.4 Graphs with Bounded Highway Dimension
The notion of highway dimension was proposed by
Abraham, Fiat, Goldberg, and Werneck [2] to measure
the complexity of road networks. Motivated by the
empirical observation that a shortest path between two
far-away cities always passes through a small number
of hub cities, the highway dimension is defined, roughly
speaking, as the maximum size of a hub set that meets
every long shortest path, where the maximum is over
all localities of all distance scale. Several slightly
different definitions of highway dimension appear in the
literature, and we use the one proposed in [23].

Definition 4.1. (Highway Dimension [23]) Fix
some universal constant ρ ≥ 4. The highway dimen-
sion of an edge-weighted graph G = (V,E), denoted
hdim(G), is the smallest integer t such that for every
r ≥ 0 and x ∈ V , there is a subset S ⊆ B(x, ρr) with
|S| ≤ t, such that S intersects every shortest path of
length at least r all of whose vertices lie in B(x, ρr).

9The following is proved in [20, Lemma 16.3]. For every S ⊂
Rt, the function set H := {hx | x ∈ S} given by hx(y) = ‖x−y‖2,

has shattering dimension sdimmax(H) = O(t).
10We assume that evaluating ‖x− y‖2 for x, y ∈ Rm takes time

O(m).

Remark 4.3. This version generalizes the original one
from [2] (and also the subsequent journal version [1]),
and it was shown to capture a broader range of real-
world transportation networks [23]. We also note that
the version in [1] is stronger than the notion of dou-
bling dimension [26], however, the version that we use
(from [23]) is not. In particular, it means that the pre-
vious coreset result for doubling metrics [31] does not
apply to our case.

Unlike the excluded-minor and Euclidean cases
mentioned in earlier sections, our coresets for graphs
with bounded highway dimension are obtained using
terminal embeddings with an additive distortion.

Lemma 4.9. Let G = (V,E) be an edge-weighted graph
and denote its shortest-path metric by M(V, d). Then
for every 0 < ε < 1/2, weighted set X ⊆ V and an
(unweighted) subset S ⊆ V , there exists FS = {fx :
V → R+ | x ∈ X} such that ∀x ∈ X, c ∈ V ,

d(x, c) ≤ fx(c) ≤ (1 + ε) · d(x, c) + ε · d(x, S),

and sdimmax(FS) = (|S|+ hdim(G))
O(log(1/ε))

.

Proof. We rely on an embedding of graphs with
bounded highway dimension into graphs with bounded
treewidth, as follows.

Lemma 4.10. ([7]) For every 0 < ε < 1/2, edge-
weighted graph G = (V,E) of highway dimension h, and
S ⊆ V , there exists a graph G′ = (V ′, E′) of treewidth
tw(G′) = (|S|+h)O(log(1/ε)), and a mapping φ : V → V ′

such that ∀x, y ∈ V ,

dG(x, y)

≤ dG′(φ(x), φ(y))

≤ (1 + ε) · dG(x, y) + ε ·min{d(x, S), d(y, S)}.

We now apply on G′ (the graph produced by
Lemma 4.10), the following result from [5, Lemma 3.5],
which produces the function set FS we need for our
proof.

Lemma 4.11. ([5]) Let G = (V,E) be an edge-weighted
graph, and denote its shortest-path metric by M(V, d).
Then for every weighted set X ⊆ V , the function set
F = {d(x, ·) | x ∈ X} has sdimmax(F) = O(tw(G)),
where tw(G) is the treewidth of G.

Notice that we could also apply on G′ our own
Lemma 4.1, because bounded-treewidth graphs are also
excluded-minor graphs, however Lemma 4.11 has better
dependence on tw(G) and also saves a poly(1/ε) factor.
This concludes the proof of Lemma 4.9.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Corollary 4.3. For every edge-weighted graph G =
(V,E), 0 < ε, δ < 1/2, and integer k ≥ 1, k-Median
of every weighted set X ⊆ V (with respect to the
shortest path metric of G) admits an ε-coreset of size
Õ((k + hdim(G))O(log(1/ε))) log 1

δ). Furthermore, it can

be computed in time Õ(|E|) with success probability 1−δ.

References

[1] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg,
and R. F. Werneck. Highway dimension and provably
efficient shortest path algorithms. J. ACM, 63(5):41:1–
41:26, 2016.

[2] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. F.
Werneck. Highway dimension, shortest paths, and
provably efficient algorithms. In SODA, pages 782–
793. SIAM, 2010.

[3] I. Abraham and C. Gavoille. Object location using
path separators. In PODC, pages 188–197. ACM, 2006.

[4] S. Arora, P. Raghavan, and S. Rao. Approximation
schemes for Euclidean k-medians and related problems.
In Proceedings of the 30th Annual ACM Symposium on
Theory of computing, pages 106–113, 1998.

[5] D. Baker, V. Braverman, L. Huang, S. H. Jiang,
R. Krauthgamer, and X. Wu. Coresets for clustering
in graphs of bounded treewidth. In ICML, Proceedings
of Machine Learning Research, 2020. To appear.

[6] L. Becchetti, M. Bury, V. Cohen-Addad, F. Grandoni,
and C. Schwiegelshohn. Oblivious dimension reduction
for k-means: beyond subspaces and the Johnson-
Lindenstrauss lemma. In Proceedings of the 51st
Annual Symposium on Theory of Computing, pages
1039–1050, 2019.

[7] A. Becker, P. N. Klein, and D. Saulpic. Polynomial-
time approximation schemes for k-center, k-median,
and capacitated vehicle routing in bounded highway
dimension. In ESA, volume 112 of LIPIcs, pages 8:1–
8:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2018. https://arxiv.org/abs/1707.08270.

[8] N. Bousquet and S. Thomassé. VC-dimension and
Erdős–Pósa property. Discret. Math., 338(12):2302–
2317, 2015.

[9] V. Braverman, D. Feldman, and H. Lang. New frame-
works for offline and streaming coreset constructions.
CoRR, abs/1612.00889, 2016.

[10] V. Braverman, S. H. Jiang, R. Krauthgamer, and
X. Wu. Coresets for ordered weighted clustering. In
ICML, volume 97 of Proceedings of Machine Learning
Research, pages 744–753. PMLR, 2019.

[11] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and
K. Trinh. An improved approximation for k-median,
and positive correlation in budgeted optimization. In
Proceedings of the 26th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 737–756. SIAM,
2014.

[12] K. Chen. On coresets for k-Median and k-Means
clustering in metric and Euclidean spaces and their
applications. SIAM Journal on Computing, 39(3):923–
947, 2009.

[13] K. L. Clarkson and D. P. Woodruff. Sketching for M -
estimators: A unified approach to robust regression. In
SODA, pages 921–939. SIAM, 2015.

[14] M. B. Cohen, S. Elder, C. Musco, C. Musco, and
M. Persu. Dimensionality reduction for k-means clus-
tering and low rank approximation. In Proceedings of
the 47th Annual ACM Symposium on Theory of Com-
puting, pages 163–172, 2015.

[15] V. Cohen-Addad, P. N. Klein, and C. Mathieu. Local
search yields approximation schemes for k-means and
k-median in Euclidean and minor-free metrics. SIAM
Journal on Computing, 48(2):644–667, 2019.

[16] V. Cohen-Addad, M. Pilipczuk, and M. Pilipczuk. Ef-
ficient approximation schemes for uniform-cost cluster-
ing problems in planar graphs. In ESA, volume 144 of
LIPIcs, pages 33:1–33:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[17] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li.
Geometry-based edge clustering for graph visualiza-
tion. IEEE Trans. Vis. Comput. Graph., 14(6):1277–
1284, 2008.

[18] D. Eisenstat, P. N. Klein, and C. Mathieu. Approx-
imating k-center in planar graphs. In SODA, pages
617–627. SIAM, 2014.

[19] D. Feldman, A. Fiat, and M. Sharir. Coresets for
weighted facilities and their applications. In Proceed-
ings of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS ’06, page 315–324.
IEEE Computer Society, 2006.

[20] D. Feldman and M. Langberg. A unified framework for
approximating and clustering data. In STOC, pages
569–578. ACM, 2011. https://arxiv.org/abs/1106.

1379.
[21] D. Feldman, M. Monemizadeh, C. Sohler, and D. P.

Woodruff. Coresets and sketches for high dimensional
subspace approximation problems. In Proceedings of
the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’10, page 630–649. SIAM, 2010.

[22] D. Feldman, M. Schmidt, and C. Sohler. Turning
big data into tiny data: Constant-size coresets for k-
means, PCA, and projective clustering. SIAM Journal
on Computing, 49(3):601–657, 2020.

[23] A. E. Feldmann, W. S. Fung, J. Könemann, and I. Post.
A (1 + ε)-embedding of low highway dimension graphs
into bounded treewidth graphs. SIAM Journal on
Computing, 47(4):1667–1704, 2018.

[24] Z. Feng, P. Kacham, and D. P. Woodruff. Strong
coresets for subspace approximation and k-median in
nearly linear time. CoRR, abs/1912.12003, 2019.

[25] Z. Friggstad, M. Rezapour, and M. R. Salavatipour.
Local search yields a PTAS for k-means in doubling
metrics. SIAM J. Comput., 48(2):452–480, 2019.

[26] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded
geometries, fractals, and low-distortion embeddings. In

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/1707.08270
https://arxiv.org/abs/1106.1379
https://arxiv.org/abs/1106.1379

FOCS, pages 534–543. IEEE Computer Society, 2003.
[27] V. Guruswami and P. Indyk. Embeddings and non-

approximability of geometric problems. In SODA,
volume 3, pages 537–538, 2003.

[28] S. Har-Peled. On complexity, sampling, and ε-nets and
ε-samples. In Geometric approximation algorithms,
volume 173. American Mathematical Soc., 2011.

[29] S. Har-Peled and A. Kushal. Smaller coresets for
k-median and k-means clustering. Discret. Comput.
Geom., 37(1):3–19, 2007.

[30] S. Har-Peled and S. Mazumdar. On coresets for
k-means and k-median clustering. In Proceedings
of the 36th Annual ACM Symposium on Theory of
Computing, STOC ’04, page 291–300. ACM, 2004.

[31] L. Huang, S. H. Jiang, J. Li, and X. Wu. Epsilon-
coresets for clustering (with outliers) in doubling met-
rics. In FOCS, pages 814–825. IEEE Computer Society,
2018.

[32] L. Huang, S. H. Jiang, and N. K. Vishnoi. Coresets for
clustering with fairness constraints. In NeurIPS, pages
7587–7598, 2019.

[33] L. Huang and N. K. Vishnoi. Coresets for clustering
in Euclidean spaces: Importance sampling is nearly
optimal. In STOC, pages 1416–1429. ACM, 2020.

[34] K. Jain, M. Mahdian, and A. Saberi. A new greedy
approach for facility location problems. In Proceedings
of the 34th Annual ACM Symposium on Theory of
Computing, pages 731–740, 2002.

[35] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. On the placement of internet instrumenta-
tion. In INFOCOM, pages 295–304. IEEE Computer
Society, 2000.

[36] W. B. Johnson and J. Lindenstrauss. Extensions of
Lipschitz mappings into a Hilbert space. In Conference
in modern analysis and probability (New Haven, Conn.,
1982), pages 189–206. Amer. Math. Soc., 1984.

[37] Z. S. Karnin and E. Liberty. Discrepancy, coresets, and
sketches in machine learning. In COLT, volume 99
of Proceedings of Machine Learning Research, pages
1975–1993. PMLR, 2019.

[38] M. Langberg and L. J. Schulman. Universal epsilon-
approximators for integrals. In SODA, pages 598–607.
SIAM, 2010.

[39] B. Li, M. J. Golin, G. F. Italiano, X. Deng, and
K. Sohraby. On the optimal placement of web proxies
in the internet. In INFOCOM, pages 1282–1290. IEEE
Computer Society, 1999.

[40] M. Li, G. L. Miller, and R. Peng. Iterative row
sampling. In FOCS, pages 127–136. IEEE Computer
Society, 2013.

[41] Y. Liang, M.-F. Balcan, and V. Kanchanapally. Dis-
tributed PCA and k-means clustering. In The Big
Learning Workshop at NIPS, volume 2013. Citeseer,
2013.

[42] M. Lucic, M. Faulkner, A. Krause, and D. Feldman.
Training gaussian mixture models at scale via core-
sets. The Journal of Machine Learning Research,
18(1):5885–5909, 2017.

[43] A. Maalouf, I. Jubran, and D. Feldman. Fast and
accurate least-mean-squares solvers. In Advances in
Neural Information Processing Systems, pages 8305–
8316, 2019.

[44] K. Makarychev, Y. Makarychev, and I. Razenshteyn.
Performance of Johnson-Lindenstrauss transform for
k-means and k-medians clustering. In Proceedings of
the 51st Annual Symposium on Theory of Computing,
pages 1027–1038, 2019.

[45] A. Munteanu, C. Schwiegelshohn, C. Sohler, and D. P.
Woodruff. On coresets for logistic regression. In
NeurIPS, pages 6562–6571, 2018.

[46] S. Narayanan and J. Nelson. Optimal terminal dimen-
sionality reduction in Euclidean space. In STOC, pages
1064–1069. ACM, 2019.

[47] J. M. Phillips and W. M. Tai. Near-optimal coresets
of kernel density estimates. Discrete & Computational
Geometry, pages 1–21, 2019.

[48] M. J. Rattigan, M. E. Maier, and D. D. Jensen.
Graph clustering with network structure indices. In
ICML, volume 227 of ACM International Conference
Proceeding Series, pages 783–790. ACM, 2007.

[49] M. Schmidt, C. Schwiegelshohn, and C. Sohler. Fair
coresets and streaming algorithms for fair k-means. In
WAOA, volume 11926 of Lecture Notes in Computer
Science, pages 232–251. Springer, 2019.

[50] S. Shekhar and D. Liu. CCAM: A connectivity-
clustered access method for networks and network com-
putations. IEEE Trans. Knowl. Data Eng., 9(1):102–
119, 1997.

[51] C. Sohler and D. P. Woodruff. Strong coresets for k-
median and subspace approximation: Goodbye dimen-
sion. In FOCS, pages 802–813. IEEE Computer Soci-
ety, 2018.

[52] B. C. Tansel, R. L. Francis, and T. J. Lowe. State of
the art—location on networks: a survey, part i and ii.
Management Science, 29(4):482–497, 1983.

[53] M. Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. J. ACM,
51(6):993–1024, 2004.

[54] M. Thorup. Quick k-Median, k-Center, and facil-
ity location for sparse graphs. SIAM J. Comput.,
34(2):405–432, 2005.

[55] V. N. Vapnik and A. Y. Chervonenkis. On the
uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its
Applications, 16(2):264–280, 1971.

[56] K. R. Varadarajan and X. Xiao. On the sensitivity
of shape fitting problems. In FSTTCS, volume 18
of LIPIcs, pages 486–497. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2012.

[57] M. L. Yiu and N. Mamoulis. Clustering objects on a
spatial network. In SIGMOD Conference, pages 443–
454. ACM, 2004.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Our Results
	Technical Contributions
	Related Work

	Preliminaries
	Framework
	Iterative Size Reduction
	Importance Sampling
	Coresets via Terminal Embedding with Multiplicative Distortion
	Coresets via Terminal Embedding with Additive Distortion

	Coresets
	Excluded-minor Graphs
	Proof of lemma:mfsdim
	From Planar to Minor-excluded Graphs

	High-Dimensional Euclidean Spaces
	Graphs with Bounded Highway Dimension

