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Abstract

We design coresets for ORDERED k-MEDIAN,
a generalization of classical clustering problems
such as k-MEDIAN and k-CENTER. Its objective
function is defined via the Ordered Weighted Av-
eraging (OWA) paradigm of Yager (1988), where
data points are weighted according to a predefined
weight vector, but in order of their contribution to
the objective (distance from the centers). A pow-
erful data-reduction technique, called a coreset,
is to summarize a point set X in Rd into a small
(weighted) point set X ′, such that for every set of
k potential centers, the objective value of the core-
set X ′ approximates that of X within factor 1± ε.
When there are multiple objectives (weights), the
above standard coreset might have limited useful-
ness, whereas in a simultaneous coreset, the above
approximation holds for all weights (in addition
to all centers). Our main result is a construction of
a simultaneous coreset of size Oε,d(k2 log2 |X|)
for ORDERED k-MEDIAN. We validate our al-
gorithm on a real geographical data set, and we
find our coreset leads to a massive speedup of
clustering computations, while maintaining high
accuracy for a range of weights.

1. Introduction
We study data reduction (namely, coresets) for a class of
clustering problems, called ordered weighted clustering,
which generalizes the classical k-CENTER and k-MEDIAN
problems. In these clustering problems, the objective func-
tion is computed by ordering the n data points by their
distance to their closest center, then taking a weighted sum
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of these distances, using predefined weights v1 ≥ · · · ≥
vn ≥ 0. These clustering problems can interpolate between
k-CENTER (the special case where v1 = 1 is the only non-
zero weight) and k-MEDIAN (unit weights vi = 1 for all
i), and therefore offer flexibility in prioritizing points with
large service cost, which may be important for applications
like Pareto (multi-objective) optimization and fair clustering.
In general, fairness in machine learning is seeing a surge
in interest, and is well-known to have many facets. In the
context of clustering, previous work such as the fairlets ap-
proach of Chierichetti et al. (2017), has addressed protected
classes, which must be identified in advance. In contrast,
ordered weighted clustering addresses fairness towards re-
mote points (which can be underprivileged communities),
without specifying them in advance. This is starkly different
from many application domains, where remote points are
considered as outliers (to be ignored) or anomalies (to be
detected), see e.g., the well-known survey by Chandola et al.
(2009).

Formally, we study two clustering problems in Euclidean
space Rd. In both of them, the input is n data points X ⊂
Rd (and k ∈ [n]), and the goal is to find k centers C ⊂ Rd
that minimize a certain objective cost(X,C). In ORDERED
k-MEDIAN, there is a predefined non-decreasing weight
vector v ∈ Rn+, and the data points X = {x1, . . . , xn} are
ordered by their distance to the centers, i.e., d(x1, C) ≥
· · · ≥ d(xn, C), to define the objective

costv(X,C) :=

n∑
i=1

vi · d(xi, C), (1)

where throughout d(·, ·) refers to `2 distance, ex-
tended to sets by the usual convention dist(x,C) :=
minc∈C dist(x, c). This objective follows the Ordered
Weighted Averaging (OWA) paradigm of Yager (1988), in
which data points are weighted according to a predefined
weight vector, but in order of their contribution to the objec-
tive. The p-CENTRUM problem is the special case where
the first p weights equal 1 and the rest are 0, denoting its ob-
jective function by costp(X,C). Observe that this problem
already includes both k-CENTER (as p = 1) and k-MEDIAN
(as p = n).

A powerful data-reduction technique, called a coreset, is to
summarize a large point set X into a (small) multiset X ′,
that approximates well a given cost function (our clustering
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objective) for every possible candidate solution (set of cen-
ters). More formally, X ′ is an ε-coreset of X for clustering
objective cost(·, ·) if it approximates the objective within
factor 1± ε, i.e.,

∀C ⊂ Rd, |C| = k, cost(X ′, C) ∈ (1± ε) cost(X,C).

The size of X ′ is the number of distinct points in it.1

The above notion, sometimes called a strong coreset, was
proposed by Har-Peled & Mazumdar (2004), following a
weaker notion of Agarwal et al. (2004). In recent years it has
found many applications, see the surveys of Agarwal et al.
(2005), Phillips (2016) and Munteanu & Schwiegelshohn
(2018), and references therein.

The above coreset definition readily applies to ordered
weighted clustering. However, a standard coreset is con-
structed for a specific clustering objective, i.e., a single
weight vector v ∈ Rn+, which might limit its usefulness.
The notion of a simultaneous coreset, introduced recently by
Bachem et al. (2018), requires that all clustering objectives
are preserved, i.e., the (1 + ε)-approximation holds for all
weight vectors in addition to all centers. This “simultaneous”
feature is valuable in data analysis, since the desired weight
vector might be application and/or data dependent, and thus
not known when the data reduction is applied. Moreover,
since ordered weighted clustering includes classical clus-
tering, e.g., k-MEDIAN and k-CENTER as special cases,
all these different analyses may be performed on a single
simultaneous coreset.

1.1. Our Contribution

Our main result is (informally) stated as follows. To sim-
plify some expressions, we use Oε,d(·) to suppress factors
depending only on ε and d. The precise dependence appears
in the technical sections.
Theorem 1.1 (informal version of Theorem 4.4). There
exists an algorithm that, given an n-point data set X ⊂ Rd
and k ∈ [n], computes a simultaneous ε-coreset of size
Oε,d(k

2 log2 n) for ORDERED k-MEDIAN.

Our main result is built on top of a coreset result for p-
CENTRUM (the special case of ORDERED k-MEDIAN in
which the weight vector is 1 in the first p components and 0
in the rest). For this special case, we have an improved size
bound, that avoids the O(log2 n) factor, stated as follows.
Note that this coreset is for a single value of p (and not
simultaneous).
Theorem 1.2 (informal version of Theorem 4.2). There
exists an algorithm that, given an n-point data set X ⊂ Rd

1A common alternative definition is that X ′ is as a set with
weights w : X ′ → R+, which represent multiplicities, and then
size is the number of non-zero weights. This would be more
general if weights are allowed to be fractional, but then one has to
extend the definition of cost(·, ·) accordingly.

and k, p ∈ [n], computes an ε-coreset of size Oε,d(k2) for
p-CENTRUM.

The size bounds in the two theorems are nearly tight. The
dependence on n in Theorem 1.1 is unavoidable, because we
can show that the coreset size has to be Ω(log n), even when
k = d = 1 (details can be found in the full version). For
both Theorem 1.1 and Theorem 1.2, the hidden dependence
on ε and d is ( 1

ε )d+O(1). This factor matches known lower
bounds [D. Feldman, private communication] and state-
of-the-art constructions of coresets for k-CENTER (which
is a special case of ORDERED k-MEDIAN) (Agarwal &
Procopiuc, 2002).

A main novelty of our coreset is that it preserves the ob-
jective for all weights (v ∈ Rn+ in the objective function)
simultaneously. It is usually easy to combine coresets for
two data sets, but in general it is not possible to combine
coresets for two different objectives. Moreover, even if
we manage to combine coresets for two objectives, it is
still nontrivial to achieve a small coreset size for infinitely
many objectives (all possible weight vectors v ∈ Rn+). See
the overview in Section 1.2 for more details on the new
technical ideas needed to overcome these obstacles.

We evaluate our algorithm on a real 2-dimensional geograph-
ical data set with about 1.5 million points. We experiment
with the different parameters for coresets of p-CENTRUM,
and we find out that the empirical error is always far lower
than our error guarantee ε. As expected, the coreset is much
smaller than the input data set, leading to a massive speedup
(more than 500 times) in the running time of computing
the objective function. Perhaps the most surprising finding
is that a single p-CENTRUM coreset (for one “typical” p)
empirically serves as a simultaneous coreset, which avoids
the more complicated construction and the dependence on n
in Theorem 1.1, with a coreset whose size is only 1% of the
data set. Overall, the experiments confirm that our coreset
is practically efficient, and moreover it is suitable for data
exploration, where different weight parameters are needed.

1.2. Overview of Techniques

We start with discussing Theorem 1.2 (which is a build-
ing block for Theorem 1.1). Its proof is inspired by Har-
Peled & Kushal (2007), who constructed coresets for k-
MEDIAN clustering in Rd by reducing the problem to its
one-dimensional case. We can apply a similar reduction, but
the one-dimensional case of p-CENTRUM is significantly
different from k-MEDIAN. One fundamental difference is
that the objective counts only the p largest distances, hence
the subset of “contributing” points depends on the center.
We deal with this issue by introducing a new bucketing
scheme and a charging argument that relates the error to the
p largest distances. See Section 3 for more details.
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The technical difficulty in Theorem 1.1 is two-fold: how
to combine coresets for two different weight vectors, and
how to handle infinitely many weight vectors. The key
observation is that every ORDERED k-MEDIAN objective
can be represented as a linear combination of p-CENTRUM
objectives (see Lemma 4.5). Thus, it suffices to compute a
simultaneous coreset for p-CENTRUM for all p ∈ [n]. We
achieve this by “combining” the individual coresets for all
p ∈ [n], while crucially utilizing the special structure of our
construction of a p-CENTRUM coreset, but unfortunately
losing an O(log n) factor in the coreset size. In the end, we
need to “combine” the n coresets for all p ∈ [n], but we can
avoid losing an O(n) factor by discretizing the values of p,
so that only O(log n) coresets are combined, The result is a
simultaneous coreset of size Oε,d(log2 n), see Section 4 for
more details.

1.3. Related Work

The problem of constructing strong coresets for k-MEANS,
k-MEDIAN, and other objectives has received significant at-
tention from the research community (Feldman et al., 2010;
Feldman & Langberg, 2011; Langberg & Schulman, 2010;
Bādoiu et al., 2002; Chen, 2009). For example, Har-Peled
& Mazumdar (2004) designed the first strong coreset for
k-MEANS. Feldman et al. (2013) provided coresets for k-
MEANS, PCA and projective clustering that are independent
of the dimension. Recently, Sohler & Woodruff (2018) gen-
eralized the results of Feldman et al. (2013) and obtained
strong coresets for k-MEDIAN and for subspace approxima-
tion that are independent of the dimension d.

ORDERED k-MEDIAN and its special case p-CENTRUM
generalize k-CENTER and are thus APX-hard even in R2

(Megiddo & Supowit, 1984). However, p-CENTRUM may
be solved optimally in polynomial time for special cases
such as lines and trees (Tamir, 2001). The first provable
approximation algorithm for ORDERED k-MEDIAN was
proposed by Aouad & Segev (2018), and they gave 2-
approximation for trees and O(log n)-approximation for
general metrics. The approximation ratio for general met-
rics was drastically improved to 38 by Byrka et al. (2018),
improved to 18 + ε by Chakrabarty & Swamy (2018a), and
finally a (5 + ε)-approximation was obtained very recently
by Chakrabarty & Swamy (2018b).

Previous work on fairness in clustering has followed the
disparate impact doctrine of Feldman et al. (2015), and ad-
dressed fairness with respect to protected classes, where
each cluster in the solution should fairly represent every
class. Chierichetti et al. (2017) have designed approxima-
tion algorithms for k-CENTER and k-MEDIAN, and their
results were refined and extended by Rösner & Schmidt
(2018) and Bera et al. (2019). Recent work by Schmidt et al.
(2018) designs coresets for fair k-MEANS clustering. How-

ever, these results are not applicable to ordered weighted
clustering.

2. Preliminaries
Throughout this paper we use capital letters other than I
and J to denote finite subsets of Rd. We recall some basic
terminology from (Har-Peled & Kushal, 2007). For a set
Y ⊂ R, define its mean point to be

µ(Y ) :=
1

|Y |
∑
y∈Y

y, (2)

and its cumulative error to be

δ(Y ) :=
∑
y∈Y
|y − µ(Y )|. (3)

Let I(Y ) := [inf Y, supY ] denote the smallest closed inter-
val containing Y . The following facts from (Har-Peled &
Kushal, 2007) will be useful in our analysis.

Lemma 2.1. For every Y ⊂ R and z ∈ R,

•
∑
y∈Y

∣∣∣|z − y| − |z − µ(Y )|
∣∣∣ ≤ δ(Y ); and

• if z /∈ I(Y ) then
∑
y∈Y |y − z| = |Y | · |µ(Y )− z|.

It will be technically more convenient to treat a core-
set as a point set X ′ ⊂ Rd associated with integer
weights w : X ′ → N, which is equivalent to a multi-
set (with weights representing multiplicity), and thus the
notation of costv(X

′, C) in (1) is well-defined. (These
weights w are unrelated to the predefined weights {vi}.)
While our algorithm always produces X ′ with integral
weights w, our proof requires fractional weights dur-
ing the analysis, and thus we extend (2) and (3) to a
point set Y with weights w : Y → R+ by defin-
ing µw(Y ) := 1∑

y∈Y w(y)

∑
y∈Y w(y) · y, δw(Y ) :=∑

y∈Y w(y) · |y − µ(Y )|.

We will use the fact that in one-dimensional Euclidean space,
p-CENTRUM can be solved (exactly) in polynomial time by
dynamic programming, as shown by Tamir (2001).

Lemma 2.2 ((Tamir, 2001)). There is a polynomial-time
algoritm that, given a set of one-dimensional points X =
{x1, . . . , xn} ⊂ R and parameters k, p ∈ [n], computes a
set of k centers C ⊂ Rd that minimizes costp(X,C).

3. The Basic Case: p-CENTRUM for k = d = 1
(one facility in one-dimensional data)

In this section we illustrate our main ideas by constructing a
coreset for p-CENTRUM in the special case of one facility in
one-dimensional Euclidean space (i.e., k = d = 1). This is
not a simultaneous coreset, but rather for a single p. The key
steps of our construction described below will be repeated,
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with additional technical complications, also in the general
case of p-CENTRUM, i.e., k facilities in dimension d.

We will need two technical lemmas (proofs can be found in
the full version). The first lemma bounds δ(Y ) by the cost
of connecting Y to an arbitrary point outside I(Y ) (which
in turn is part of the objective in certain circumstances).

Lemma 3.1. Let Y ⊂ R be a set with (possibly fractional)
weights w : Y → R+. Then for every z ∈ R such that z 6∈
I(Y ) or z is an endpoint of I(Y ), δw(Y ) ≤ 2

∑
y∈Y w(y) ·

|y − z|.

Recall that k = 1, hence the cost in an instance of p-
CENTRUM is the sum of the p largest distances to the center.
In the analysis of our coreset it will be useful to replace
some points of the input set X with another set Y . The
second lemma will be used to bound the resulting increase
in the cost; it considers two sequences, denoted X and Y ,
of the connection costs, and bounds the difference between
the sum of the p largest values in X and that in Y by a
combination of `∞ and `1 norms.

Lemma 3.2. Let X = (x1, . . . , xn) and Y = (y1, . . . , yn)
be two sequences of real numbers. Then for all S ⊆
[n], | topp(X) − topp(Y )| ≤ pmaxi∈S |xi − yi| +∑
i∈[n]\S |xi−yi|,where topp(Z) is the sum of the p largest

numbers in Z.

Outline of the Coreset Construction In the context of a
one-dimensional point set X ⊂ R, the term interval will
mean a subset of X that spans a contiguous subsequence un-
der a fixed ordering of the points, i.e., a subset {xi, . . . , xj}
when the points in X are ordered as x1 ≤ . . . ≤ xn. Infor-
mally, our coreset construction works as follows. First, use
Lemma 2.2 to find an optimal center y∗, its corresponding
optimal cost OPT, and a subset P ⊂ X of size |P | = p
that contributes to the optimal cost. Then partition the data
into three intervals, namely X = L ∪ R ∪ Q, as follows.
Points from P that are ≤ y∗ are placed in L, points from P
that are > y∗ are placed inR, and all other points are placed
in Q = X \ P . Now split L, Q and R into sub-intervals, in
a greedy manner that we describe below, and represent the
data points in each sub-interval by adding to the coreset a
single point, whose weight is equal to the number of data
points it replaces. See Figure 1 for illustration.

To splitL into sub-intervals, scan its points from the smallest
to the largest and pack them into the same sub-interval J as
long as their cumulative error δ(J) is below a threshold set
to Θ(ε ·OPT). This ensures, by Lemma 3.1, a lower bound
on their total connection cost to the optimal center y∗, which
we use to upper bound the number of such intervals (which
immediately affects the size of the coreset) by O

(
1
ε

)
. The

split ofR is done similarly. To splitQ = X\P , observe that
the distance from every q ∈ Q to the center y∗ is less than
OPT
p , hence the diameter of Q is less than 2OPT

p , and Q can

be partitioned into O( 1
ε ) sub-intervals of length O( εOPT

p ).
Observe that the construction for Q differs from that of L
and R.

Let D denote the coreset resulting from the above construc-
tion. To prove that the resulting coreset has the desired
error bound for every potential center y ∈ R, we define an
intermediate set Z that contains a mix of points from X
and D. We stress that Z depends on the potential center
y ∈ R, which is possible because Z is used only in the
analysis. The desired error bound follows by bounding both
| cost(Z, y) − cost(X, y)| and | cost(Z, y) − cost(D, y)|,
(here we use Lemma 3.2), and by the triangle inequality.

Detailed Construction and Coreset Size We now give
a formal description of our coreset construction. Let
X = {x1, . . . , xn} ⊂ R be the input data set, and recall
that costp(X, y) for a point y ∈ R is the sum of the p
largest numbers in {|x1 − y|, . . . , |xn − y|}. Denote the
optimal center by y∗ := argminy∈R costp(X, y), and the
corresponding optimal cost by OPT := costp(X, y

∗). By
Lemma 2.2, y∗ and OPT can be computed in polynomial
time. Next, sort X by distances to y∗. For simplicity, we
shall assume the above notation for X is already in this
sorted order, i.e., |x1 − y∗| ≥ · · · ≥ |xn − y∗|. Thus,
costp(X, y

∗) =
∑p
i=1 |xi − y∗|. Let P := {x1, . . . , xp},

L := {xi ≤ y∗ : xi ∈ P}, R := {xi > y∗ : xi ∈ P} and
Q := X \ P . By definition, X is partitioned into L, Q and
R, which form three intervals located from left to right. We
now wish to split L, Q and R into sub-intervals, and then
we will add to D the mean of the points in each sub-interval,
with weight equal to the number of such points.

Split L into sub-intervals from left to right greedily, such
that the cumulative error of each interval J does not exceed
2ε·OPT

21 , and each sub-intervals is maximal, i.e., the next
point cannot be added to it. Split R into sub-intervals simi-
larly but from right to left. We need to bound the number of
sub-intervals produced in this procedure. For sake of analy-
sis, we consider an alternative split of L that is fractional,
i.e., allows assigning a point fractionally to multiple sub-
intervals, say 1/3 to the sub-interval to its left and 2/3 to
the sub-interval to its right. The advantage of this fractional
split is that all but the last sub-interval have cumulative er-
ror exactly 2ε·OPT

21 . We show in Lemma 3.3 (proof can be
found in the full version) that the number of sub-intervals
produced in the original integral split is at most twice that
of the fractional split, and thus it would suffice to bound the
latter by O( 1

ε ).

Lemma 3.3. The number of sub-intervals in the integral
split is at most twice than that of the fractional split.

To see that the number of sub-intervals produced by a
fractional partitioning of L is O( 1

ε ), we use Lemma 3.1.
Suppose there are m such sub-intervals J1, ..., Jm. We
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Figure 1: Coreset construction for p-CENTRUM with k = 1 facilities in dimension d = 1. The left figure depicts the partition of the data
into X = (L ∪R) ∪Q, where P = L ∪R contains the p furthest points from an optimal center y∗. The right figure shows the different
manners of splitting L and Q into intervals.

can assume that the first m − 4 of them do not contain
y∗ and have cumulative error at least 2ε·OPT

21 , because
at most two sub-intervals can contain y∗, and at most
one sub-interval from each of L and R may have cumu-
lative error less than 2ε·OPT

21 . By Lemma 3.1 and the
fact that y∗ is not in the first i ≤ m − 4 sub-intervals,
OPT ≥

∑m−4
i=1

∑
x:x∈Ji |x − y∗| ≥ 1

2

∑m−4
i=1 δw(Ji) =

(m − 4) ε·OPT
21 . Thus m = O( 1

ε ), and by Lemma 3.3 a
similar bound holds also for the number of sub-intervals
in the integral split of L and of R. Now split Q greed-
ily into maximal sub-intervals of length ≤ ε·OPT

3p . Since
maxq∈Q |q−y∗| ≤ |xp−y∗| ≤ OPT

p , the length of I(Q) is
≤ 2OPT

p , and we conclude that Q is split into at most 3
ε + 1

sub-intervals.

Finally, construct the coreset D from the sub-intervals, by
adding toD the mean of each sub-interval inD, with weight
that is the number of points in this sub-interval. Since the
total number of sub-intervals is O( 1

ε ), the size of the coreset
D is also bounded by O( 1

ε ).

Coreset Accuracy To prove that D is an ε-coreset for
X , fix a potential center y ∈ R and let us prove that
| costp(D, y) − costp(X, y)| ≤ ε · OPT, where we inter-
pret D as a multi-set. Let P1 ⊆ X denote the set of p
points inX that are farthest from y. Now define an auxiliary
set Z := {z1, . . . , zn}, as follows. For each i ∈ [n], let
Xi ⊂ X be the sub-interval containing xi in the construc-
tion of the coreset (recall it uses the optimal center y∗ and
not y), and let π(xi) = µ(Xi) be its representative in the
coreset D. Now if (a) i ≤ p; (b) y 6∈ Xi; and (c) P1 ∩Xi is
either empty or all of Xi; then let zi := π(xi). Otherwise,
let zi := xi.

We now aim to bound | costp(Z, y) − costp(D, y)| using
Lemma 3.2 with S = {p + 1, ..., n}. Consider first some
i ∈ S (i.e., i > p). Then
|d(zi, y)− d(π(xi), y)| ≤ |zi − π(xi)|

= |xi − π(xi)| ≤
ε ·OPT

3p
. (4)

Consider next i /∈ S (i.e., i ≤ p). We can have zi 6= π(xi)
only if y ∈ Xi or if P1 ∩ Xi is neither empty nor all of
Xi. This can happen for at most 7 distinct sub-intervals

Xi, because the former case can happen for at most 3 sub-
intervals Xi (by a simple case analysis of how many sub-
intervals might have an endpoint at y, e.g., two from L, or
one from each of L,R,Q) and because P1 is contained in
2 intervals (to the left and right of y), and each of them
can intersect at most 2 distinct sub-intervals Xi without
containing all of Xi. We obtain

p∑
i=1

|d(zi, y)− d(π(xi), y)|

=
∑

i∈[p]:zi 6=π(xi)

|d(xi, y)− d(π(xi), y)| (5)

≤
∑

Xi:i∈[p],(y∈Xi)∨(P1∩Xi 6=∅,Xi)

δ(Xi) (6)

≤ 7 · 2ε ·OPT

21
=

2ε ·OPT

3
, (7)

where (6) is by Lemma 2.1, and (7) is by the fact that these
Xi are from L or R (recall i ≤ p) and thus have a bounded
cumulative error. Applying Lemma 3.2 to our S = {p +
1, ..., n} together with (4) and (7), we obtain | costp(Z, y)−
costp(D, y)| ≤ p · ε·OPT

3p + 2ε·OPT
3 = ε ·OPT.

Lastly, we need to prove that costp(Z, y) = costp(X, y).
We think of Z as if it is obtained from X by replacing each
xi with its corresponding zi = π(xi) = µ(Xi). We can of
course restrict attention to indices where zi 6= xi, which
happens only if all three requirements (a)-(c) hold. More-
over, whenever this happens for point xi, it must happen
also for all points in the same sub-interval Xi, i.e., every
xj ∈ Xi is replaced by zj = π(xj) = µ(Xi). By re-
quirement (c), Xi is either disjoint from P1 or contained in
P1. In the former case, points xj ∈ Xi do not contribute
to costP (X, y) because they are not among the p farthest
points, and then replacing all xj ∈ Xi with zj = µ(Xi)
would maintain this, i.e., the corresponding points zj do not
contribute to costp(Z, y). In the latter case, the points in Xi

contribute to costP (X, y) because they are among the p far-
thest points, and replacing every xj ∈ Xi with zj = µ(Xi)
would maintain this, i.e., the corresponding points zj con-
tribute to costp(Z, y). Moreover, their total contribution
is the same because using requirement (b) that y /∈ Xi,
we can write their total contribution as

∑
xj∈Xi d(xj , y) =
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|Xi| · d(µ(Xi), y) =
∑
xj∈Xi d(π(xj), y).

4. Simultaneous Coreset for ORDERED
k-MEDIAN

In this section we give the construction of a simultaneous
coreset for ORDERED k-MEDIAN on data set X ⊂ Rd
(Theorem 4.4), which in turn is based on a coreset for p-
CENTRUM (Theorem 4.2). In both constructions, we reduce
the general instance in Rd to an instance X ′ that lies on
a small number of lines in Rd. The reduction is inspired
by a projection procedure of Har-Peled & Kushal (2007),
that goes as follows. We start with an initial centers set
C, and then for each center c ∈ C, we shoot O( 1

ε )d lines
from center c to different directions, and every point in X is
projected to its closest line. The projection cost is bounded
because the number of lines shot from each center is large
enough to accurately discretize all possible directions. The
details appear in Section 4.2.

For the projected instance X ′, we construct a coreset for
each line in X ′ using ideas similar to the case d = k = 1,
which was explained in Section 3. However, the error of
the coreset cannot be bounded line by line, and instead, we
need to address the cost globally for all lines altogether, see
Lemma 4.1 for the formal analysis. Finally, to construct a
coreset for p-CENTRUM in Rd, the initial centers set C for
the projection procedure is picked using some polynomial-
timeO(1)-approximation algorithm, such as by Chakrabarty
& Swamy (2018b). A coreset of size Oε,d(k2) is obtained
by combining the projection procedure with Lemma 4.1.

To deal with the infinitely many potential weights in the
simultaneous coreset for ORDERED k-MEDIAN, the key ob-
servation is that it suffices to construct a simultaneous core-
set for p-CENTRUM for O( logn

ε ) different value of p, and
then “combine” the corresponding p-CENTRUM coresets.
An important structural property of the p-CENTRUM coreset
is that it is formed by mean points of some sub-intervals.
This enables us to “combine” coresets for p-CENTRUM by
“intersecting” all their sub-intervals into even smaller inter-
vals. However, this idea works only when the sub-intervals
are defined on the same set of lines, which were generated
by the projection procedure. To resolve this issue, we set
the centers set C in the projection procedure to be the union
of all centers needed for p-CENTRUM in all the O(log n)
values of p. Since the combination of the coresets for p-
CENTRUM yields even smaller sub-intervals, the error anal-
ysis for the individual coreset for p-CENTRUM still carries
on. The size of the simultaneous coreset is O(log2 n)-factor
larger than that for (a single) p-CENTRUM, because we
combine O(log n) coresets for p-CENTRUM, and we use
O(log n) times more centers in the projection procedure.
The detailed analysis appears in Section 4.3. Due to space
limit, the omitted proofs can be found in the full version.

4.1. Coreset for p-CENTRUM on Lines in Rd

Below, we prove the key lemma that bounds the error of the
coreset for p-CENTRUM for a data set that may be repre-
sented by lines. The proof uses the idea introduced for the
k = d = 1 case in Section 3. In particular, we define an in-
termediate (point) set Z to help compare the costs between
the coreset and the true objective. The key difference from
Section 3 in defining Z is that the potential centers might not
be on the lines, so extra care should be taken. Moreover, we
use a global cost argument to deal with multiple lines in X .
We also introduce parameters s and tl in the lemma. These
parameters are to be determined with respect to the initial
center set C in the projection procedure, and eventually we
want (s +

∑
l∈L tl) to be O(OPTp) where OPTp is the

optimal for p-CENTRUM. We introduce these parameters to
have flexibility in picking s and tl, which we will need later
when we construct a simultaneous coreset that uses a more
elaborate set of initial centers C.

Lemma 4.1. Suppose k ∈ Z+, ε ∈ (0, 1), X ⊂ Rd is a
data set, and L is a collection of lines in Rd. Furthermore,

• X is partitioned into {Xl | l ∈ L}, where Xl ⊆ l for
l ∈ L, and

• ∀l ∈ L, Xl is partitioned into a set of disjoint sub-
intervals Yl, such that ∀Y ∈ Yl, either len(I(Y )) ≤
O( εp · s) or δ(Y ) ≤ O( εk · tl) for some s, tl > 0.

Then for all sets C ⊂ Rd of k centers, the weighted set
D := {µ(Y ) | Y ∈ Yl, l ∈ L} with weight |Y | for element
µ(Y ) satisfies | costp(D,C)− costp(X,C)| ≤ O(ε) · (s+∑
l∈L tl).

4.2. Coreset for p-CENTRUM in Rd

We now prove the theorem about a coreset for p-CENTRUM.
As discussed above, we use a projection procedure inspired
by Har-Peled & Kushal (2007) to reduce to line cases, and
then apply Lemma 4.1 to get the coreset.

Theorem 4.2. Given k ∈ Z+, ε ∈ (0, 1), an n-point data
set X ⊂ Rd, and p ∈ [n], there exists an ε-coreset D ⊂
Rd of size O( k2

εd+1 ) for p-CENTRUM. Moreover, it can be
computed in polynomial time.

We start with a description of how we reduce to the line
case, which will be used again in the simultaneous coreset.

Reducing to Lines: Projection Procedure Consider an
m-point set C := {c1, . . . , cm} ⊂ R which we call projec-
tion centers. We will define a new data set X ′ by projecting
points in X to some lines defined with respect to C. The
lines are defined as follows. For each ci ∈ C, construct an
ε-net Ni for the unit sphere centered at ci, and for u ∈ Ni,
define liu as the line that passes through ci and u. Let
L := {liu | i ∈ [m], u ∈ Ni} be the set of projection lines.
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Then X ′ is defined by projecting each data point x ∈ X to
the nearest line in L. SinceNi’s are ε-nets on unit spheres in
Rd, we have |L| ≤ O( 1

ε )d · |C|. The cost of this projection
is analyzed below in Lemma 4.3.

Lemma 4.3 (projection cost). For all C ′ ⊂ Rd and p ∈ [n],
| costp(X

′, C ′)− costp(X,C
′)| ≤ O(ε) · costp(X,C).

We remark that both the projection center and the candidate
center C ′ in Lemma 4.3 are not necessarily k-subsets. This
property is not useful for the coreset for p-CENTRUM, but it
is crucially used in the simultaneous coreset in Section 4.3.
The remaining details of the proof for Theorem 4.2 can be
found in the full version.

4.3. Simultaneous Coreset for ORDERED k-MEDIAN in
Rd

In this section we prove our main theorem that is stated
below as Theorem 4.4. As discussed before, we first show
it suffices to give simultaneous coreset for p-CENTRUM for
O(log n) values of p. Then we show how to combine these
coresets to obtain a simultaneous coreset.

Theorem 4.4. Given k ∈ Z+, ε ∈ (0, 1) and an n-point
data set X ⊂ Rd, there exists a simultaneous ε-coreset of
size O(k

2 log2 n
εd

) for ORDERED k-MEDIAN. Moreover, it
can be computed in polynomial time.

We start with the following lemma, which reduces simulta-
neous coresets for ORDERED k-MEDIAN to simultaneous
coresets for p-CENTRUM.

Lemma 4.5. Suppose k ∈ Z+, ε ∈ (0, 1), X ⊂ Rd and D
is a simultaneous ε-coreset for the k-facility p-CENTRUM
problem for all p ∈ [n]. Then D is a simultaneous ε-coreset
for ORDERED k-MEDIAN.

With the help of the following lemma, we only need to
preserve the objective for p’s taking powers of (1 + ε). In
other words, it suffices to construct simultaneous coresets
to preserve the objective for only O( logn

ε ) distinct values of
p’s.

Lemma 4.6. Let X,C ⊂ Rd and p1, p2 ∈ [n] such
that p1 ≤ p2 ≤ (1 + ε) · p1. Then costp1(X,C) ≤
costp2(X,C) ≤ (1 + ε) · costp1(X,C).

The remaining details of the proof for Theorem 4.4 can be
found in the full version.

5. Experiments
We evaluate our coreset algorithm experimentally on real
2D geographical data. Our data set is the whole Hong Kong
region extracted from OpenStreetMap (OpenStreetMap con-
tributors, 2017), with complex objects such as roads re-
placed with their geometric means. The data set consists of

about 1.5 million 2D points and is illustrated in Figure 2.
Thus, d = 2 and n ≈ 1.5 · 106 throughout our experiments.

Implementation Recall that our coreset construction re-
quires an initial center set C that is an O(1)-approximation
for the p-CENTRUM problem. However, p-CENTRUM is
NP-hard as it includes k-CENTER (which is NP-hard even
for points in R2), and polynomial-time O(1)-approximation
algorithms known for it (Byrka et al., 2018; Chakrabarty &
Swamy, 2018a) are either not efficient enough for our large
data set or too complicated to implement. Our experiments
deal with an easier problem (small k and points in R2), but
since we are not aware of a good algorithm for it, our imple-
mentation employs instead the following simple heuristic:
sample random centers from the data points multiple times,
and take the sample with the best (smallest) objective value.

Our first experiment evaluates the performance of this
heuristic. The results in Figure 3 show that 30 samples suf-
fice to obtain a good solution for our data set. The rest the
algorithm is implemented following the description in Sec-
tion 4, while relying on the above heuristic as if it achieves
O(1)-approximation. Thus, the experiments in this section
for various ε, p and k, all evaluate a version of the algorithm
that uses the heuristic.

Performance Evaluation To examine the performance of
our coreset algorithm for p-CENTRUM (using the heuristic
for the initial centers), we execute it with parameters p =
0.1n and k = 2, and let the error guarantee ε vary, to see
how it affects the empirical size and error of the coreset. To
evaluate the empirical error, we sample 100 random centers
(each consisting of k = 2 points) from inside the bounding
box of the data set, and take the maximum relative error,
where the relative error of coresetX ′ on centersC is defined
as
∣∣∣ cost(X′,C)
cost(X,C) − 1

∣∣∣ (similarly to how we measure ε). We
report also the total running time for computing the objective
for the above mentioned 100 random centers, comparing
between the original data set X and on the coreset X’,
denoted by TX and T ′X , respectively. All our experiments
were conducted on a laptop computer with an Intel 4-core
2.8 GHz CPU and 64 GB memory. The algorithms are
written in Java programming language and are implemented
single threaded. These experiments are reported in Table 1.
It is easily seen that the empirical error is far lower than the
error guarantee ε (around half), even though we used the
simple heuristic for the initial centers. Halving ε typically
doubles the coreset size, but overall the coreset size is rather
small, and translates to a massive speedup (more than 500x)
in the time it takes to compute the objective value. Such
small coresets open the door to running on the data set less
efficient but more accurate clustering algorithms.

In Theorem 4.4, making the coreset work for all p values
incurs anO(log2 n) factor in the coreset size (see Section 4).
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Figure 2: Demonstration of the data set. The 2D points extracted from (OpenStreetMap contributors, 2017) are plotted on the left, next to
a map of Hong Kong (Wikipedia contributors, 2019) on the right.
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(b) p = 0.1n, k = 2

Figure 3: Performance of our p-CENTRUM heuristic, which takes the best of multiple randomly sampled centers.

Table 1: Comparing coresets constructed for varying ε (and the
same p = 0.1n and k = 2).

ε emp. err. coreset size TX (ms) TX’ (ms)

50% 17.9% 122 143910 16
30% 14.3% 256 147216 15
20% 10.6% 475 131718 16
10% 7.0% 1603 134512 63
5% 2.8% 5385 130633 203

We thus experimented whether a single coreset X ′, that is
constructed for parameters p = 0.1n, ε = 10%, and k = 2,
is effective for a wide range of values of p′ 6= p. As seen in
Table 2a, this single coreset achieves low empirical errors
(without increasing the size). We further evaluate this same
coreset X ′ (with p = 0.1n) for weight vectors w that satisfy
a power law (instead of 0/1 vectors). In particular, we let
wi = 1

iα for α > 0, and experiment with varying α. The
empirical errors of this coreset, reported in Table 2b, are
worse than that in Table 2a but it is still well under control.
We present experiments for different α ≤ 1, because for
larger α the weights decay so fast that the empirical error

Table 2: Evaluating a single coreset (constructed for ε = 10%,
p = 0.1n, k = 2) for varying p′ and for varying power-law
weights.

(a) varying p′

p′ emp. err.

0.01n 4.0%
0.05n 6.6%
0.2n 5.0%
0.3n 4.1%
0.4n 3.6%
0.5n 3.3%
n 4.5%

(b) power-law weights

α emp. err.

0.1 3.2%
0.2 3.0%
0.3 2.7%
0.4 2.9%
0.5 3.2%
0.7 4.7%
1.0 9.1%

is (as expected) similar to that of α = 1. Note that in these
experiments, the smallest empirical error is achieved around
α = 0.3, which indicates that this value of α essentially
corresponds to our chosen p = 0.1n. In conclusion, X ′

serves as a simultaneous coreset for various weight vectors,
and can be particularly useful in the important scenario
of data exploration, where different weight parameters are
experimented with.
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