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Abstract

Spectral functions of large matrices contain im-
portant structural information about the underly-
ing data, and are thus becoming increasingly im-
portant. Many times, large matrices represent-
ing real-world data are sparse or doubly sparse
(i.e., sparse in both rows and columns), and are
accessed as a stream of updates, typically orga-
nized in row-order. In this setting, where space
(memory) is the limiting resource, all known al-
gorithms require space that is polynomial in the
dimension of the matrix, even for sparse matri-
ces. We address this challenge by providing the
first algorithm whose space requirement is inde-
pendent of the matrix dimension, assuming the
matrix is doubly-sparse and presented in row-
order. Our algorithms approximate the Schatten
p-norms, which we use in turn to approximate
other spectral functions, such as logarithm of the
determinant, trace of matrix inverse, and Estrada
index. We validate these theoretical performance
bounds by numerical experiments on real-world
matrices representing social networks. We fur-
ther prove that multiple passes are unavoidable in
this setting, and show extensions of our primary
technique, including a trade-off between space
requirements and number of passes.

1. Introduction
Large matrices are often used to represent real-world data
sets like text documents, images and social networks, how-
ever analyzing them is increasingly challenging, as their
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sheer size renders many algorithms impractical. Fortu-
nately, in several application domains, input matrices are
often very sparse, meaning that only a small fraction of
their entries are non-zero. In fact, in applications related
to natural language processing, image recognition, medi-
cal imaging and computer vision (e.g. (Ganitkevitch et al.,
2013; Goyette et al., 2012; Liu et al., 2015)), the matri-
ces are often doubly sparse, i.e., sparse in both rows and
columns. Throughout, we say that a matrix is k-sparse if
every row and every column has at most k non-zero en-
tries. The current work devises new algorithms to analyze
the spectrum (singular values) of such sparse matrices, aim-
ing to achieve efficiency (storage requirement in streaming
model) that depends on matrix sparsity k instead of matrix
dimension n.

We focus on fundamental functions of the spectrum, called
Schatten norms. Formally, the Schatten p-norm of a matrix
A ∈ Rm×n,m ≥ n with singular values σ1 ≥ . . . ≥ σn ≥
0 is defined for every p ≥ 1 as

‖A‖Sp
:=
( n∑
i=1

σpi

)1/p

.

This definition extends also to p = 0,∞ by taking the
limit. Frequently used cases include p = 0, representing
the rank of A, and p = 1, 2,∞, commonly known as the
trace/nuclear norm, Frobenius norm, and spectral/operator
norm, respectively. Schatten norms are often used as sur-
rogates for the spectrum, as explained in (Zhang et al.,
2015; Kong and Valiant, 2016; Napoli et al., 2016; Khetan
and Oh, 2019), and some specific cases have applications
in optimization, image processing, and differential privacy
etc. (Xie et al., 2016; Musco et al., 2018). For simplicity,
we focus on the case m = n.

For a positive semidefinite (PSD) matrix A, the Schatten
norms can be easily used to approximate other important
spectral functions. One example is the trace of matrix in-
verse Tr(A−1), which is used for image restoration, for
counting triangles in graphs, to measure the uncertainty
in data collections, and to bound the total variance of un-
biased estimators (see e.g. (Wu et al., 2016; Chen, 2016;
Han et al., 2017; Braverman, 2019)). Another example
is the Estrada index, which has applications in chemistry,
physics, network theory and information theory (see the
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survey (Gutman et al., 2011)). A third example is the loga-
rithm of the determinant log det(A), used in many machine
learning tasks, such as Bayesian learning, kernel learning,
Gaussian processes, tree mixture models, spatial statistics
and Markov field models (see e.g. (Han et al., 2015; Ubaru
et al., 2017; Ubaru and Saad, 2017; Han et al., 2017)).
Thus, our results for Schatten norm have further applica-
tions.

As matrices in many real-world applications are often very
large, storing these entire matrices in working memory can
be impractical, and thus analyzing them has become in-
creasingly challenging. As a result, the data-stream model
has emerged as a convenient model for how these data-sets
are accessed in practice. In this model, the input matrix
A ∈ Rm×n is presented as a sequence of items/updates.
In one common setting, the turnstile model, each update
has the form (i, j, δ) for δ ∈ Z and represents an update
Aij ← Aij + δ. In another common setting, the row-
order model, items (i, j, Aij) arrive in lexicographic order
of their location (i, j), providing directly the entryAij ∈ Z
in that location. In both models, unspecified entries are 0
by convention, which is very effective for sparse matrices.

Row-order is a common access pattern for external memory
algorithms. When the data is too large to fit into working
memory and has be “streamed” into memory in some pat-
tern, it is useful to assume that algorithms can make multi-
ple, albeit few, passes over the input data. For a thorough
study of external memory algorithms, including motivation
for the row-order model and for multiple passes, see (Gib-
bons and Matias, 1999; Vitter, 2001; Liberty, 2013).

Designing small-space algorithms for estimating Schatten
norms of an input matrix in the data-stream model was in-
vestigated recently for various matrix classes and stream
types (Clarkson and Woodruff, 2009; Andoni and Nguyen,
2013; Li et al., 2014; Li and Woodruff, 2016a;b; 2017;
Braverman et al., 2018). However, all known algorithms
require space that is polynomial in n, the matrix dimen-
sion, even if the matrix is highly sparse and the stream type
is favorable, say row-order. A natural question then is:

Q: Does any streaming model admit algorithms for com-
puting Schatten norms of a matrix, using storage re-
quirement independent of the matrix dimension?

We answer this question in the affirmative for k-sparse ma-
trices presented in row-order and all even integers p. Our
algorithms extend to all integers p ≥ 1 if the input matrix
is PSD.

1.1. Main Results

Upper and Lower Bounds for Row-Order Streams.
Our main result is a new algorithm for approximating the

Schatten p-norm (for even p) of a k-sparse matrix streamed
in row-order, using O(p) passes and poly(kp/ε) space (in-
dependent of the matrix dimension). We exploit the matrix
sparsity in a series of novel algebraic lemmas to reduce the
exponent in the space bound and achieve the following the-
orem, whose proof appears in Section 4 in the full version.

Theorem 1.1. There exists an algorithm that, given p ∈
2Z≥2, ε > 0 and a k-sparse matrix A ∈ Rn×n streamed in
row-order, makes bp/4c + 1 passes over the stream using
Op(ε

−2k3p/2−3) words of space, and outputs Ȳ (A) that
(1± ε)-approximates ‖A‖pSp

with probability at least 2/3.

Here and throughout, we write Õ(f) as a shorthand for
O(f · logO(1) n) where n is the dimension of the matrix,
and write Od(f) when the hidden constant might depend
on the parameter d. We assume the matrix entries are in-
tegers bounded by poly(n), and thus often count space in
words, each having O(log n) bits. We denote by dpe4 the
smallest multiple of 4 that is greater than or equal to p, and
similarly by bpc4 the largest multiple of 4 that is smaller
than or equal to p.

Theorem 1.1 provides a multi-pass algorithm whose space
complexity depends only on the sparsity of the input ma-
trix. A natural question is whether one can achieve a sim-
ilar dependence also for one-pass algorithms, but our next
theorem (proved in Section 6 in the full version) shows
that such algorithms require poly(n) bits of space, even
for O(1)-sparse matrices. Thus, multiple passes are neces-
sary to achieve storage requirement that is independent of
the matrix dimensions, even for sparse matrices.

Theorem 1.2. For every p ∈ 2Z≥2 there is ε(p) > 0 such
that every algorithm that makes one pass over an Op(1)-
sparse matrix A ∈ Rn×n streamed in row-order, and then
(1 ± ε(p))-approximates ‖A‖pSp

with probability at least
2/3, must use Ω(n1−4/bpc4) bits of space.

We further extend our primary algorithmic technique (from
Theorem 1.1) in several different ways, and obtain im-
proved algorithms for special families of matrices, algo-
rithms in the more general turnstile model, and algorithms
with a trade-off between the number of passes and the space
requirement, as explained later in this section. Table 1 sum-
marizes our bounds for row-order streams, and compares
them to those derived from previous work (when applica-
ble).

Applications for Approximating Schatten Norms. We
show in Section 8 two settings where, under certain sim-
plifying conditions, our algorithms can be used to approxi-
mate other functions of the spectrum, and even weakly re-
cover the entire spectrum. The basic idea is that it suffices
to compute only a few Schatten norms, in which case our
algorithms for k-sparse matrices in row-order streams can
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Table 1: Space bounds for Schatten norms (for even p) of k-sparse matrices in row-order streams. Upper bounds are
counted in words. Lower bounds are in bits, for a suitable ε(p) > 0.

Which p Space Bound Ref. Comments

p > 4

Õp,ε(kO(p)n1−4/dpe4) (Braverman et al., 2018) one-pass
Op,ε(k3p/2−3) Thm. 1.1 bp/4c+ 1 passes
Op,ε(k2psn1−1/s) Thm. 5.3 in full version b p

2(s+1)
c+ 1 passes

Ω(n1−4/bpc4) Thm. 1.2 one-pass, k = Op(1)

Ωt(k
p/2−2) (Braverman et al., 2018) t passes, k ≤ n2/p

p = 4
Õp,ε(k) (Braverman et al., 2018) one-pass
Op(ε−2) Thm. 7.2 in full version one-pass, for all k ≤ n

be used, and then the overall algorithm requires only small
space (depending on k).

The first setting considers spectral sums (i.e.,
∑
i f(σi) for

some f ) of PSD matrices. We use an idea from (Bout-
sidis et al., 2017) to show that for a PSD input A ∈
Rn×n whose eigenvalues lie in an interval [θ, 1), one can
(1 ± 2ε)-approximate log det(A) and Tr(A−1) using the
first d 1

θ log
(

1
ε

)
e (integer) Schatten norms. We further show

that given a Laplacian matrix whose eigenvalues lie in an
interval [0, θ], one can (1 ± 2ε)-approximate the Estrada
index using the first d(eθ + 1) log 1

εe (integer) Schatten
norms.

The second setting considers recovering the spectrum of
PSD matrices. We use an idea from (Kong and Valiant,
2016) to approximate the spectrum of a PSD matrix with
eigenvalues in the interval [0, 1] to within L1-distance εn,
using the first O(1/ε) Schatten norms.

Experiments. We validated our row-order algorithm on
real-world matrices representing academic collaboration
network graphs. The experiments show that the space
needed to approximate the Schatten 6-norm of these ma-
trices is much smaller than the theoretical bound, and that
the algorithm is efficient also for larger values of p. In fact,
the matrices in our experiments obey the sparsity require-
ment in every row, but their columns are sparse only on
average. Finally, we also experimented whether the algo-
rithm is robust to noise, and found that it is indeed effective
also for nearly-sparse matrices. Finally, our experiments
validate that the storage requirement is independent of the
matrix dimensions. See Section 9 for details.

1.2. Extensions of Main Results

We give a number of extensions to our main result, all of
the details of which we defer to the full version.

Extension I: Fewer Passes. We show how to general-
ize our algorithmic technique to use fewer passes over

the stream, albeit requiring more space. Our method
uses a novel variant of importance sampling which we
refer to as set-sampling, and attains the following pass-
space trade-off. For any integer s ≥ 2, our algorithm
makes t(s) = b p

2(s+1)c + 1 passes over the stream using

Op
(
ε−3k2psn1−1/s

)
words of space, and outputs a (1±ε)-

approximation to ‖A‖pSp
for p ∈ 2Z≥2.

Extension II: Turnstile Streams. We design an
algorithm for turnstile streams with an additional
Õ(ε−O(p)k3p/2−3n1−2/p) factor in their space complexity
compared to our algorithm for row-order streams. The
term O(n1−2/p) is quite expected here, since the space
complexity for estimating `p-norms of vectors in turnstile
streams using t passes is Ω(n

1−2/p

t ), and our turnstile
algorithm makes p+ 1 passes over the stream.

Extension III: Special Matrix Families. We give im-
proved bounds for special families of k-sparse matri-
ces that may be of potential interest. For Laplacians
of undirected graphs with degree at most k ∈ N, we
show (1 ± ε)-approximation of the Schatten p-norm us-
ing space Op(ε−2kp/2−1) in p/2 passes over a row-order
stream. Additionally, for matrices whose non-zero en-
tries lie in an interval [α, β] for α, β ∈ R+, we can
get nearly-tight upper bounds – our algorithm uses space
Op(ε

−2kp/2−1(β/α)p/2−2), which for α = β = 1 (i.e.,
0− 1 entries) is nearly tight with the Ω(kp/2−2) multi-pass
lower bound of (Braverman et al., 2018).

Schatten 4-norm. We show a simple one-pass algorithm
for (1± ε)-approximating the Schatten 4-norm of any ma-
trix (not necessarily sparse) given in a row-order stream,
using only Õp(ε−2) words of space. This improves a pre-
vious Õp(ε−2k) bound from (Braverman et al., 2018).
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1.3. Technical Overview

Our algorithms are based on the principle of importance
sampling. The basic version outlined below easily achieves
storage requirement poly(kp/ε) (independent of the matrix
dimension), and our full analysis, which specifies the hid-
den constants in the exponents, including some non-trivial
optimizations. When describing our algorithms, it will be
convenient to first design an unbiased estimator for ‖A‖pSp

,
and then implement this estimator by a streaming algorithm
with few passes. To the best of the our knowledge, these are
the first streaming algorithms for Schatten norms that use
adaptive sampling, i.e., the sampling probabilities in every
pass depend on observations at the preceding pass.

For an integer p ∈ 2Z≥1 and q := p/2, the Schatten p-norm
of a matrix A ∈ Rn×n can be expressed as

‖A‖pSp
= Tr((AA>)q) (1.1)

=
∑

i1,...,iq∈[n]

〈ai1 , ai2〉〈ai2 , ai3〉 . . . 〈aiq , ai1〉 (1.2)

where ai is the ith row of matrix A. We can interpret (1.2)
as a sum over cycles of q inner-products between rows of
A. We refer to these informally as cycles, and assign each
cycle to one of the rows participating in that cycle. Hence,
we can write the Schatten p-norm as a sum

∑n
i=1 zi, where

zi is the cumulative weight of all cycles assigned to row i.

Our estimator starts by sampling a row i ∈ [n] with prob-
ability proportional to the heaviest cycle assigned to row i
(i.e., largest contribution to zi). It then sample one cycle
assigned to i with probability proportional to the weight
of the cycle (actually performed by an iterative process
with q/2 = p/4 stages). Since the rows and columns
are sparse, each row cannot participate in too many cycles
(because it is orthogonal to every row with a disjoint sup-
port), and thus the number of cycles assigned to each row
i is roughly kO(p). It follows that sampling the first row
with probability proportional to the heaviest contributing
cycle is a good approximation (within factor kO(p)) to sam-
pling proportionally to zi, the actual contribution of row i
to
∑
i∈[n] zi = ‖A‖pSp

.

Sampling a row with probability proportional to its heavi-
est contributing cycle depends on the assigning process. A
natural assignment is to assign every cycle to the row with
largest l2-norm participating in that cycle (breaking ties ar-
bitrarily), because then by the Cauchy-Schwarz inequality,
the heaviest contributing cycle to row i is simply ‖ai‖p2.

The above algorithm is based on two technical ideas.
The first one is to use importance sampling to sample
the first (“seed”) row, which already suffices to achieve a
dimension-independent space bound poly(kp/ε). Indeed,
a streaming algorithm with O(p) passes can easily com-
pute the contribution zi of this row (the total weight of all

cycles that contain this row). The second idea is to use im-
portance sampling repeatedly (after picking a seed row) in
order to sample a single cycle that contains the seed row.
Indeed, a streaming algorithm with O(p) passes can iter-
atively “grow” (randomly) a single cycle around the seed
row. Our analysis bounds the variance of this estimator by
O(k3p/2−4), which gives our desired result.

In the row-order model, this estimator can be implemented
easily using weighted reservoir sampling (Vitter, 1985;
Braverman et al., 2015), as discussed in Section 4. How-
ever, implementing it in turnstile streams is more challeng-
ing. Using approximate Lp-samplers presented in (Mon-
emizadeh and Woodruff, 2010), we build an approximate
cascaded Lp,2-norm sampler,1 to sample each row i with
probability proportional to ‖ai‖p2. Additionally, we use the
Count-Sketch data structure to recover rows and sample cy-
cles once we have sampled the “seed” row. This allows us
to implement the estimator in turnstile data streams with an
additional Õ(ε−O(p)n1−2/p) factor in the space complex-
ity attributed to the cascaded norm sampler, and an addi-
tional Op(k3p/2−3) factor that comes from approximating
the sampling probabilities (compared to row-order in which
the sampling probabilities can be recovered exactly).

In Section 5 we generalize the design of the importance
sampling estimator. Instead of assigning every cycle to a
single row that participates in it, every cycle is mapped to
s rows participating in it, for a parameter s ∈ N. These
s rows are used to split the cycle into roughly s segments,
such that in each segment, the heaviest row (by l2 norm) is
one of the s assigned rows. The algorithm samples s “seed”
rows and then computes the total weight of all the cycles
assigned to these s rows (or alternatively samples one such
cycle). The length of these segment is shown to decrease
linearly with s, hence they can computed with fewer passes.
However, the algorithm needs to sample more indices in or-
der to ensure that each cycle has a sufficiently large proba-
bility of being “hit” s times. This tension leads to a trade-
off between passes and space.

1.4. Previous and Related Work

The bilinear sketching algorithm in (Li et al., 2014) was
the first non-trivial algorithm for Schatten p-norm estima-
tion in turnstile streams. It requires only one-pass over the
data and uses O(ε−2n2−4/p) words of space.2 Their algo-
rithm uses O(ε−2) independent G1AG

>
2 sketches, where

G1, G2 ∈ Rt×n are matrices with i.i.d. Gaussian entries
and t = O(n1−2/p).

1The cascaded Lp,2-norm of a matrix A ∈ Rn×m for p ≥ 0

is
(∑n

i=1 ‖ai‖
p
2

)1/p.
2They also showed an Ω(n2−4/p) lower bound for the dimen-

sion of bilinear sketching for approximating ‖A‖pSp
for all p ≥ 2.
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Inspired by this sketch, (Braverman et al., 2018) gave an
almost quadratic improvement in the space complexity if
the algorithm is allowed to make multiple passes over the
data. Their estimator uses matrices G2, . . . , Gp ∈ Rt×n
with i.i.d. Gaussian entries and Gaussian vector g1 ∈ Rn
to output g>1 AG

>
2 G2A . . .GpAg1. This estimate can be

constructed in p/2 passes of the data and requires O(ε−2)

independent copies each using only t = O(n1− 1
p−1 ) space.

Restricting the input matrix to be O(1)-sparse allows for
quadratic improvement in the space complexity of one-pass
algorithms as shown in (Li and Woodruff, 2016a). They
show that sampling O(n1−2/p) rows and storing them ap-
proximately using small space (since each row is sparse)
is sufficient to (1 + ε)-approximate the Schatten p-norm
by exploiting the fact that rows cannot “interact” with one
another “too much” because of the sparsity restriction.

If we restrict the data stream to be row-order, then we can
reduce the dependence on p in all the above algorithms by
a factor of 2. As noted in (Braverman et al., 2018), since
A>A =

∑
i aia

>
i (where ai is the ith row of A) one can

apply the above algorithms to A>A instead of A by updat-
ing it with the outer product of every row with itself. Since
‖A>A‖p/2Sp/2

= ‖A‖pSp
(for even p values), the output is as

desired and the dependence on p reduces by a factor of 2.

Lower Bounds. Every t-pass algorithm designed for
turnstile streams requires Ω(n1−2/p/t) bits, which follows
by injecting the Fp-moment problem (see (Gronemeier,
2009; Jayram, 2009)) into the diagonal elements. Li and
Woodruff (Li and Woodruff, 2016a) showed that restrict-
ing the algorithm to a single pass over the turnstile stream,
leads to a lower bound Ω(n1−ε) bits for every fixed ε > 0
and p /∈ 2Z≥2, even if the input matrix is O(1)-sparse.3

Later (Braverman et al., 2018) proved that Ω(n1−ε) bits
are required for p /∈ 2Z≥2 even in row-order streams. In
addition, they showed (Theorem 5.4 in Arxiv version) that t
passes over row-order streams require space Ω(n1−4/p/t)
bits, however these matrices are actually Ω(n2/p)-sparse
(and not O(1)-sparse as may be understood from Table
2 therein). A simple adaptation of that result yields an
Ω(kp/2−2/t) space lower bound for k-sparse input matri-
ces (k ≤ n2/p).

2. Preliminaries
Importance Sampling. Our main algorithmic technique
is inspired by the importance sampling framework, as for-
mulated by the following theorem, proved in the full ver-
sion.

3 They also showed that for p ∈ 2Z≥2, single-pass algorithms
require Ω(n1−2/p) bits even if all non-zeros in the input matrix
are constants.

Theorem 2.1 (Importance Sampling). Let z =∑
i∈[n] zi ≥ 0 be a sum of n reals. Let the random variable

Ẑ be an estimator computed by sampling a single index
i ∈ [n] according to the probability distribution given by
{τi}ni=1 and setting Ẑ ← zi

τi
. If for some parameter λ ≥ 1,

each τi ≥ |zi|λ·z , then E
[
Ẑ
]

= z and Var(Ẑ) ≤ (λz)2.

3. An Estimator for Schatten p-Norm for
p ∈ 2Z≥2

This section introduces our importance sampling estimator
for Schatten p-norms.

3.1. Preliminaries

Fix a matrix A ∈ Rn×n and p ∈ 2Z≥2. For a row ai, we
define the set of its neighboring rows N(i) := {l ∈ [n] :
supp(ai) ∩ supp(al) 6= ∅}. In addition, we denote the set
of neighboring rows of aj that have smaller length than row
ai by N i

S(j) := {l ∈ N(j) : ‖al‖2 ≤ ‖ai‖2}.

Building on this, we introduce notation for certain
“paths” of rows. Fixing some row indices i, i1 ∈ [n]
and an integer t ≥ 2, we then define ΓiS(i1, t) :={

(i1, . . . , it) : i2 ∈ N i
S(i1), . . . , it ∈ N i

S(it−1)
}

.

We further define the weights of “paths” of inner products:
given an integer t ≥ 2 and indices i1, . . . , it ∈ [n], let
σ(i1, . . . , it) := 〈ai1 , ai2〉〈ai2 , ai3〉 . . . 〈ait−1

, ait〉.

Recall from (1.2) that the Schatten p-norm of A ∈ Rn×n
can be expressed in terms of the product of inner products
of the rows of A. Using the above notation we manipulate
it as follows.

‖A‖pSp
= Tr

(
(AA>)q

)
=

∑
i1,...,iq∈[n]

σ(i1, . . . , iq, i1)

=
∑
i1

∑
(i1,...,iq−1)

∈Γ
i1
S (i1,q−1)

∑
iq∈N

i1
S (i1)

c(i1, . . . , iq)σ(i1, . . . , iq, i1)

(3.1)

where 1 ≤ c(i1, . . . , iq) ≤ q is the number of times the
sequence (i1, . . . , iq, i1) or a cyclic shift of the sequence
appears in the first equation.

3.2. The Estimator

Our estimator is an importance sampling estimator for the
quantity in (3.1). To define it, we need the following quan-
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tities:

S :=
⋃
i∈[n]

ΓiS(i, q − 1)

∀(i1, . . . , iq−1) ∈ S,

z(i1,...,iq−1) :=
∑

iq∈N
i1
S (i1)

c(i1, . . . , iq)σ(i1, . . . , iq)〈aiq , ai1〉

z :=
∑

(i1,...,iq−1)∈S

z(i1,...,iq−1) = ‖A‖pSp

Our importance sampling estimator, for the sum z, samples
quantities z(i1,...,iq−1) indexed by (i1, . . . , iq−1) ∈ S in q−
1 steps. In the first step, it samples row i1 ∈ [n] with proba-
bility ‖ai1‖

p
2∑

j ‖aj‖
p
2

. In each step 2 ≤ t ≤ q−1, conditioned on

sampling it−1 in step t − 1 it samples row it ∈ N i1
S (it−1)

with probability pi1it−1
(it) :=

|〈ait−1
,ait 〉|∑

l∈Ni1
S

(it−1)
|〈ait−1

,al〉| .

Overall, a sequence (i1, . . . , iq−1) ∈ S is sampled with
probability τ(i1,...,iq−1) =

‖ai1‖
p
2∑

j ‖aj‖
p
2

∏q−1
t=2 p

i1
it−1

(it), and

the output estimator is Y (A) := 1
τ(i1,...,iq−1)

· z(i1,...,iq−1).

We prove in the below theorem (using new technical lem-
mas that we call “projection lemmas”), that the importance
sampling estimator Y (A) is an unbiased estimator with a
small variance. We provide an improved version of the
theorem below for two special families of k-sparse n × n
matrices: (i) Laplacians of undirected graphs, denoted by
Ln and (ii) matrices whose non-zero entries lie in an inter-
val [α, β] for parameters 0 < α ≤ β which we denote by
Cn×nα,β .
Theorem 3.1. For every p ∈ 2Z≥2 and a k-sparse
matrix A ∈ Rn×n, the estimator Y (A) given in Sec-
tion 3.2 satisfies E [Y (A)] = ‖A‖pSp

and Var(Y (A)) ≤
Op(k

3p
2 −4)‖A‖2pSp

.

4. Implementing the Estimator: Row-Order
and Turnstile Streams

In this section we show how to implement the importance
sampling estimator defined in Section 3.2 in two differ-
ent streaming models, row-order and turnstile streams. We
start by stating two theorems that bound the space com-
plexity of implementing the estimator in row-order streams.
The first one is our main result from the Introduction, and
applies to all k-sparse matrices. The second theorem con-
siders special families of k-sparse matrices.
Theorem 1.1. There exists an algorithm that, given p ∈
2Z≥2, ε > 0 and a k-sparse matrix A ∈ Rn×n streamed in
row-order, makes bp/4c + 1 passes over the stream using
Op(ε

−2k3p/2−3) words of space, and outputs Ȳ (A) that
(1± ε)-approximates ‖A‖pSp

with probability at least 2/3.

Theorem 4.1. There exists an algorithm that, given p ∈
2Z≥2, ε > 0, and a k-sparse matrix A ∈ Ln streamed
in row-order, makes bp/4c + 1 passes over the stream us-
ing Op(ε−2kp/2) words of space, and outputs Ȳ (A) that
(1± ε)-approximates ‖A‖pSp

with probability at least 2/3.
If instead the k-sparse matrix A is from Cn×nα,β for 0 < α ≤
β, then the space bound is Op(ε−2kp/2−1 (β/α)

p/2−2
)

words.

We also show that the estimator defined in Section 3.2 can
be implemented in turnstile streams in p/2 + 3 passes over
the stream.

Theorem 4.2. There exists an algorithm that, given p ∈
2Z≥2, ε > 0 and a k-sparse matrix A ∈ Rn×n streamed in
a turnstile fashion, makes p/2 + 3 passes over the stream
using Op(k3p−6n1− 2

p (ε−1 log n)O(p)) words of space, and
outputs Ȳ (A) that (1± ε)-approximates ‖A‖pSp

with prob-
ability at least 2/3.

Outline. At a high level, the algorithms in all three the-
orems are similar, and compute multiple copies of the es-
timator defined in Section 3.2 in parallel and output their
average (to reduce the variance). The algorithms differ in
the number of copies. The first stage samples and stores a
“seed” row which we will denote by ai1 . Each subsequent
stage 1 < t < q stores two values: a row index it (and
row ait itself) and an interim estimate Yt := σ(i1, . . . , it).
The final stage q computes and outputs

∑
iq∈N

i1
S (i1)

Yq−1 ·
〈aiq , ai1〉c(i1, . . . , iq), where 1 ≤ c(i1, . . . , iq) ≤ q is as
defined in (3.1).

The estimator is relatively easy to implement in row-order
streams using bp/4c+1 passes andOp(ε−2k3p/2−3) words
of space. In turnstile streams however, the estimator is
more difficult to implement. The first technical roadblock
is sampling the first, “seed” row i1 ∈ [n] with probabil-
ity proportional to ‖ai1‖

p
2∑

j ‖aj‖
p
2

. We use approximate samplers
for turnstile streams to get around this roadblock. Approx-
imate samplers introduce a multiplicative (relative) error
and an additive error in the sampling probability, which
need to be accounted for when analyzing the algorithm
that uses the sampler. The second technical roadblock is
computing inner-products between sampled rows which we
solve by using a Count-Sketch data-structure to recover the
relevant information of the rows.

Using the two subroutines we can implement the esti-
mator in Section 3.2 in p + 1 passes of the stream in
space Op(k

3p−6n1−2/p(ε−1 log n)O(p)). The additional
Õ(n1−2/p) space complexity factor is introduced by the
approximate Lp,2-sampler.
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5. Pass-Space Trade-off
In the full version, we show a trade-off in the number of
passes and required space to compute the Schatten p-norm
of k sparse matrices streamed in row-order.

6. Lower Bound for One-Pass Algorithms in
the Row-Order Model

In the full version, we show a space lower bound of
Ω(n1−4/bpc4) bits for one-pass algorithms and even p val-
ues in the row-order model. This lower bound holds even if
the matrix is promised to be O(1)-sparse. Our main tech-
nical contribution is the analysis of even p values in a re-
duction presented in (Li and Woodruff, 2016a), based on
the Boolean Hidden Hypermatching (Verbin and Yu, 2011;
Bury and Schwiegelshohn, 2015). Our bound is closely re-
lated to the Ω(n1−1/ε) bits lower bound for p /∈ 2Z, proved
in (Braverman et al., 2018), and is also nearly tight with the
upper bound from the same paper.

7. Oε(1)-Space Algorithm for Schatten
4-Norm of General Matrices

In the full version, we present an O(1/ε2)-space algorithm
for (1 + ε)-approximation of the Schatten 4-norm in the
row-order model.

8. Applications
In this section we present two applications of our Schatten-
norm algorithms to compute other functions of the spec-
trum by approximating these functions using low-degree
polynomials and spectrum recovery.

8.1. Approximating Spectral Sums of Positive Definite
Matrices

We demonstrate how our Schatten-norm estimators can be
used to approximate commonly used spectral functions of
sparse matrices presented as a data stream. We consider
three different spectral functions, log-determinant, trace of
matrix inverse and Estrada index of a Laplacian matrix, that
all belong to the class of spectral sums, as defined below.
These results apply to sparse matrices that are either posi-
tive definite (PD), positive semidefinite (PSD).

Definition 8.1 (Spectral Sums (Han et al., 2017)). Given
a function f : R → R and a matrix A ∈ Rn×n with
real eigenvalues λ1, . . . , λn, a spectral sum is defined as
Sf (A) = Tr(f(A)) =

∑n
i=1 f(λi). When f(x) = log x,

the sum is known as log-determinant, when f(x) = 1/x
it is known as the trace of the matrix inverse, and when
f(x) = exp(x) it is known as Estrada index.

Theorem 8.2. For every spectral function Sf from Table 2,

Table 2: Table listing results of Theorem 8.2.

Sf If mf Wf

Log-Det [θ, 2) d 1
θ · log 1

εe
1
ε2 k

3mf
2 −3

Trace of Inv. [θ, 2) d 1
θ · log 1

εe
1
ε2 k

3mf
2 −3

Estrada Index [0, θ] 4 d(eθ + 1) log 1
εe

1
ε2 k

mf/2

there is an algorithm with the following guarantee. Given
as input ε, θ > 0, and a k-sparse matrix A ∈ Rn×n
presented as a row-order stream and whose eigenvalues
all lie in the interval If given in the table, the algorithm
makes bmf/4c+1 passes over the stream usingOmf

(Wf )
words of space and outputs an estimate ρ(A) such that
Pr
[
ρ(A) ∈ (1± 2ε)Sf (A)

]
≥ 2/3.

At a high level, the proof follows that of (Boutsidis et al.,
2017), who present a time-efficient algorithm for approxi-
mating the log-determinant of PD matrices. Our algorithm
approximates each of the terms in the truncated Taylor ex-
pansion (of each function) separately, and thus we need all
the Taylor expansion coefficients to be non-negative, which
indeed applies for these three spectral functions.

8.2. Approximating the Spectrum of PSD matrices

We present an application of our algorithm to (weakly) es-
timate the spectrum of a matrix, with eigenvalues bounded
in [0, 1] using approximations of a “few” Schatten norms
of the matrix. This is based on the work of Cohen-Steiner
et al. (2018) on approximating the spectrum of a graph
which is in turn based on insightful work by Kong and
Valiant (2016) on approximately recovering a distribution
from its moments using the Moment Inverse method.

Fix a PSD matrix A ∈ Rn×n with eigenvalues 1 ≥ λ1 ≥
. . . ≥ λn and define the l-th moment of the spectrum to
be 1

n‖A‖
l
Sl

= 1
n

∑
i∈[n] λ

l
i. Cohen-Steiner et al. show that

estimating O(1/ε) moments of A up to multiplicative er-
ror O(ε) is sufficient to estimate the spectrum of A within
earth-mover distanceO(ε). It is well-known that the the L1

distance between two sorted vectors of length n is exactly
n times the earth-mover distance between the correspond-
ing point-mass distributions. Hence, for an error parameter
ε > 0 and parameter s = C

ε (where C > 0 is an abso-
lute constant), given a k-sparse PSD matrix A ∈ Rn×n
that is streamed in row-order and whose eigenvalues are
in the range [0, 1], one can use our row-order algorithm
and the recovery scheme of Cohen-Steiner et al. to recover
the spectrum of A within L1 distance O(εn) using space
O(k3s/2−3 exp(−C ′ε)) for some absolute constant C ′ > 0
and using bs/4c+ 1 passes over the stream.

4If the underlying graph is unweighted then the largest eigen-
value is bounded by the degree, i.e. θ ≤ 2k.
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Figure 1: Relative error of Row-Order Algorithm for Schatten 6-norm of arXiv General Relativity and Quantum Cosmol-
ogy Collaboration Network: Vary number of walks and plot relative error of the mean of the walks.

9. Experiments
In this section we present numerical experiments illustrat-
ing the performance of the row-order Schatten p-norm esti-
mator described in Section 3.2. We simulate the row-order
stream by reading the input matrix row by row.

The inputs used are {0, 1}n×n matrices, representing col-
laboration network graphs (nodes represent scientists and
edges represent co-authoring a paper) from the e-print
arXiv for scientific collaborations in five different areas in
Physics. The data was obtained from the Stanford Large
Network Dataset Collection (Leskovec and Krevl, 2014)
which was in-turn obtained from (Leskovec et al., 2007).
In order to study the effect of sparsity, we “sparsify” each
(of five) matrix by sampling 10 nonzero entries in each row
uniformly at random (note that max column-sparsity can be
larger than 10).

In the first experiment, we use the arXiv General Relativity
and Quantum Cosmology collaboration network which has
n = 5242 rows and columns; after “sparsifying” the ma-
trix as mentioned, the max column-sparsity is 37 and the
average sparsity is 6.1. We fix the value of p to be 6, and
using our algorithm from Section 3.2, we vary number of
estimators (walks) t and compute the relative error of the
average of the t walks. We repeat this process 10 times for
every value of t and plot the mean and standard deviation
in Figure 1. In addition, we show in this figure the results
of running the same experiment on a “noisy” version of the
matrix, by adding to it an error matrix where 1/5 of the
entries are drawn independently from N (0, 0.12)5.

In the second experiment, we use all five collaboration net-
works – General Relativity and Quantum Cosmology (n =
5242), High Energy Physics - Phenomenology (n = 9877),
High Energy Physics - Theory (n = 12008), Astro Physics
(n = 18772) and Condensed Matter (n = 23133). For each
matrix we compute walks (estimator from Section 3.2) un-

5This value assures the l2-norm of the error in a row is “com-
parable” to the l2-norm of the data: (0.1)2× 5242× 0.2 ≈ 10 =
max row-sparsity.

til the mean of the walks is within 10% of the true Schatten
6-norm of the matrix. We repeat this process 10 times for
each matrix and plot the median, the first and third quartile
of the number of walks for the 10 trials in Figure 2. Since
in the second and third experiments, most of the outputs
of the 10 trials are concentrated around the median except
for very few trials (one or two) which are very large out-
liers. Hence, we chose to output the first and third quartiles
indicating the output of the majority of the trials.
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Figure 2: Number of walks to (1±0.1)-approximate Schat-
ten 6-norm of 5 different matrices from arXiv Physics Col-
laboration Network.

In our third experiment we compute the number of walks
needed for the mean of the walks to be within 10% of the
true Schatten p-Norm of the GR-QC matrix for different
values of p. We vary the value of p and, for each value of
p, compute the number of walks needed for 10 trials and
plot the median, first and third quartile of the 10 trials in
Figure 3.

Our results show that the number of walks, which is a proxy
for the amount of space and time required to compute our
estimator, is much smaller (on the order of 102) than the
dimension of the matrix (on the order of 103). We see that
this is indeed true for larger matrices and values of p too.



Schatten Norms in Matrix Streams: Hello Sparsity, Goodbye Dimension

10 15 20
Schatten p-Norm computed

0

50

100

150

200

N
u

m
.

of
w

al
ks

n
ee

d
ed

fo
r

10
%

er
ro

r

Figure 3: Number of walks to (1±0.1)-approximate Schat-
ten p-norm for arXiv GR-QC Matrix for different values of
p ∈ 2Z+.
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