
Lower Bounds for Pseudo-Deterministic Counting
in a Stream
Vladimir Braverman #

Rice University, Houston, TX, USA

Robert Krauthgamer #

Weizmann Institute of Science, Rehovot, Israel

Aditya Krishnan #

Pinecone, San Francisco, CA, USA

Shay Sapir # Ñ

Weizmann Institute of Science, Rehovot, Israel

Abstract
Many streaming algorithms provide only a high-probability relative approximation. These two
relaxations, of allowing approximation and randomization, seem necessary – for many streaming
problems, both relaxations must be employed simultaneously, to avoid an exponentially larger (and
often trivial) space complexity. A common drawback of these randomized approximate algorithms is
that independent executions on the same input have different outputs, that depend on their random
coins. Pseudo-deterministic algorithms combat this issue, and for every input, they output with
high probability the same “canonical” solution.

We consider perhaps the most basic problem in data streams, of counting the number of items
in a stream of length at most n. Morris’s counter [CACM, 1978] is a randomized approximation
algorithm for this problem that uses O(log log n) bits of space, for every fixed approximation factor
(greater than 1). Goldwasser, Grossman, Mohanty and Woodruff [ITCS 2020] asked whether pseudo-
deterministic approximation algorithms can match this space complexity. Our main result answers
their question negatively, and shows that such algorithms must use Ω(

√
log n/ log log n) bits of

space.
Our approach is based on a problem that we call Shift Finding, and may be of independent

interest. In this problem, one has query access to a shifted version of a known string F ∈ {0, 1}3n,
which is guaranteed to start with n zeros and end with n ones, and the goal is to find the unknown
shift using a small number of queries. We provide for this problem an algorithm that uses O(

√
n)

queries. It remains open whether poly(log n) queries suffice; if true, then our techniques immediately
imply a nearly-tight Ω(log n/ log log n) space bound for pseudo-deterministic approximate counting.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Lower bounds and information complexity; Theory of
computation → Pseudorandomness and derandomization

Keywords and phrases streaming algorithms, pseudo-deterministic, approximate counting

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.30

Category Track A: Algorithms, Complexity and Games

Related Version arXiv Version: https://arxiv.org/abs/2303.16287

Funding Vladimir Braverman: Work partially supported by ONR Award N00014-18-1-2364 and
NSF awards 1652257, 1813487 and 2107239.
Robert Krauthgamer : Work partially supported by ONR Award N00014-18-1-2364, by a Weizmann-
UK Making Connections Grant, by a Minerva Foundation grant, and the Weizmann Data Science
Research Center.
Aditya Krishnan: Work partially done while the author was at Johns Hopkins University and
supported by the MINDS Data Science Fellowship.

EA
T
C
S

© Vladimir Braverman, Robert Krauthgamer, Aditya Krishnan, and Shay Sapir;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 30; pp. 30:1–30:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vb21@rice.edu
mailto:robert.krauthgamer@weizmann.ac.il
https://orcid.org/0009-0003-8154-3735
mailto:aditya@pinecone.io
mailto:shay.sapir@weizmann.ac.il
https://sites.google.com/view/shaysapir
https://orcid.org/0000-0001-7531-685X
https://doi.org/10.4230/LIPIcs.ICALP.2023.30
https://arxiv.org/abs/2303.16287
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Lower Bounds for Pseudo-Deterministic Counting in a Stream

Shay Sapir : This research was partially supported by the Israeli Council for Higher Education (CHE)
via the Weizmann Data Science Research Center.

1 Introduction

Computing over data streams is a rich algorithmic area that has developed enormously, and
actually started with the simple-looking problem of approximate counting [28]. Let us first
recall the streaming model: The input is a stream, i.e., a sequence of items, and the goal is
to compute a pre-defined function of these items, such as the number of items (or number of
the distinct items), while making one sequential pass over the stream (or sometimes a few
passes). Many useful functions actually depend on the items as a multiset, i.e., ignoring their
order, or even only on their frequencies (like the famous ℓp-norm of the frequency vector).
Another possible goal is to produce a sample, rather than computing a function, e.g., to
produce a uniformly random item.

The primary measure of efficiency for streaming algorithms is their space complexity,
and for many problems, researchers have designed space-efficient algorithms, often with
space complexity that is even polylogarithmic in the input size. However, this comes at a
price – these algorithms are usually randomized (and not deterministic) and/or compute an
approximate solution (rather than exact one). In fact, oftentimes both relaxations are needed
in order to achieve low space complexity. For example, to count the number of items in a
stream of length at most n, there is a randomized approximation algorithm using O(loglog n)
bits of space, but algorithms that are exact or deterministic must use Ω(log n) bits [28].
Another example is the ℓ2-norm of the frequency vector of items from a ground set [d] (or
equivalently, of a d-dimensional vector under a sequence of additive updates) – there is a
randomized approximation algorithm that uses O(log d) bits of space, but algorithms that
are exact or deterministic must use Ω(d) bits of space [1].

Gat and Goldwasser [9] initiated the study of pseudo-deterministic algorithms, which
informally means that when run (again) on the same input, with high probability they
produce exactly the same output. This notion combats a potential issue with randomized
algorithms, that independent executions on the same input might return different outputs,
depending on the algorithm’s coin tosses. Many known streaming algorithms suffer from
this issue, which is a serious concern for some users and applications. Pseudo-deterministic
algorithms were later considered in the streaming model by Goldwasser, Grossman, Mohanty
and Woodruff [16], and these are formally defined as follows.

▶ Definition 1.1. A streaming algorithm A is pseudo-deterministic (PD) if there is a function
F (·) defined on inputs of A (streams), such that for every stream σ,

Pr[A(σ) = F (σ)] ≥ 9/10,

where the probability is over the random choices of the algorithm. We shall refer to F as the
canonical function of algorithm A.1

We focus on estimation problems, which ask to approximate a numerical value, and are
very popular in the streaming model. For such problems, the notion of PD relaxes the exact
setting and the deterministic one, since exact algorithms have one canonical output (the

1 The canonical function F depends on the order arrival of the stream items. In an alternative definition,
the canonical function depends on the items only as a multiset, i.e., ignoring their order in the stream.
These two definitions are equivalent in the setting of approximate counting, which is the focus of our
work.

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:3

Table 1 Known space bounds (in bits) for 2-approximate counting in a stream of length at most
n. Folklore bounds are stated without a reference.

Algorithms Upper bound Lower bound
Exact or deterministic O(log n) Ω(log n)
Randomized and approximate O(loglog n) [28] Ω(loglog n) [29]
Pseudo-deterministic O(log n) Ω(

√
log n/loglog n) [Thm. 1.2]

exact numerical value), and hence they are PD. Thus the known lower bounds for these
settings do not apply for PD algorithms, and a central question, identified in [16], remains
open:

Are there efficient PD streaming algorithms for estimation problems?

Currently, no lower bounds are known for natural estimation problems, although for
several search problems, like reporting an element from a stream with deletions (equivalently,
an index from the support of the frequency vector), it is known that lower bounds for
deterministic algorithms extend to PD algorithms [16].

1.1 Main Result: Approximate Counting
Perhaps the most basic problem in the streaming model is to count the number of stream
items. Exact counting, i.e., computing the number of items exactly, requires Θ(log n) bits of
space when the stream has length at most n, even for randomized algorithms with some error
probability. Work by Morris [28], later refined in [8, 18, 29], showed that the number of stream
items can be (1 + ϵ)-approximated with probability 9/10 using Oϵ(loglog n) bits of space,
where ϵ > 0 is arbitrary but fixed. Throughout, we refer to multiplicative approximation,
and use the notations Oc(·) and Ωc(·) to hide factors that are polynomial in c. Morris’s
algorithm has found many applications, both in theory and in practice [27, 29]. An open
question stated explicitly by Goldwasser, Grossman, Mohanty and Woodruff [16] is whether
there is a PD algorithm for this problem using O(loglog n) bits of space. We answer their
question negatively, by proving the following lower bound.

▶ Theorem 1.2 (Main Result). For every c, n > 1, every PD streaming algorithm that
c-approximates the number of items in a stream of length at most (c + 1)n must use
Ωc(

√
log n/loglog n) bits of space.

To be more precise, our lower bound is actually Ω
(log n√

log n loglog(cn)+log c

)
, which is still

Ω(
√

log n
loglog n) as long as c < 2

√
log n loglog n. Previously, there was a large gap for this

problem, between O(log n) bits (by a deterministic algorithm) and Ω(loglog n) bits (from
the randomized setting) [29]. See Table 1 for a summary of the known bounds.

Our proof analyzes the promise variant of c-approximate counting for streams of length at
most (c + 1)n, which we denote by ΠAC

c,n ; this variant asks to distinguish whether the number
of stream items is ≤ n or > cn (see Definition 2.1). A crucial property of PD algorithms is
that they have to be PD also for inputs in the range [n + 1, cn] (i.e., outside the promise).
We rely on this property of PD algorithms to prove the following result, which immediately
yields Theorem 1.2 as a corollary.

ICALP 2023

30:4 Lower Bounds for Pseudo-Deterministic Counting in a Stream

▶ Theorem 1.3 (Main Result). For every c, n > 1, every PD streaming algorithm for problem
ΠAC

c,n must use Ωc(
√

log n/loglog n) bits of space.

Our proof of Theorem 1.3 appears in Section 4. It is based on a problem that we call
Shift Finding, which may be of independent interest, as it is very natural and likely to
find connections to other problems. In addition, it can potentially lead to a near-tight
Ω(log n/ loglog n) lower bound for PD streaming, by simply improving our algorithmic result
for Shift Finding. A very recent independent work by Grossman, Gupta and Sellke [20]
shows a tight Ω(log n) bound for ΠAC

c,n , using a very different technique, which views the PD
streaming algorithm as a Markov chain with a limited number of states.

1.2 Main Technique: The Shift Finding Problem
Our main result relies on algorithms for the shift Finding problem ΠSF

c,n , which is defined
below. Let us first introduce some basic terminology. A function F : [m]→ {0, 1} can also be
viewed as a string F ∈ {0, 1}m, and vice versa, and we sometimes use these interchangeably.
Given s ∈ [0, n], let the shifted version of this F be the function Fs : x 7→ F (s + x), with a
properly restricted domain, see Section 2.

▶ Definition 1.4 (Shift Finding). Let c, n > 1. In problem ΠSF
c,n , the input is a string

P ∈ {0, 1}(c−1)n, and one has query access to a string Fs∗ that is the concatenation of n− s∗

zeros, then P , and finally s∗ ones, for an unknown s∗ ∈ [0, n]. Thus, a query for x ∈ [0, cn]
returns Fs∗(x). The goal is to output s∗.

The measure of complexity of an algorithm for this problem is the number of queries that
it makes to Fs∗ . A randomized algorithm is required to be correct (in its output s∗) with
probability 9/10.

This problem may be also of independent interest. In a different variant of shift finding,
the input is a random string c ∈ {0, 1}n and a vector x that is obtained from the string c by
a cyclic shift τ and some noise (random bit flips), and the goal is to compute the shift τ with
high probability. This problem is related to GPS synchronization, see [23, 2] for more details.
There is a sublinear time algorithm for this problem, running in time roughly O(n0.641) [2].
One main difference is that in our Definition 1.4, one string is completely known to the
algorithm, and the only concern is the number of queries to the second string.

1.2.1 Connection to PD Counting
We show that an algorithm for Shift Finding (ΠSF

c,n) implies a space lower bound for PD
streaming algorithm for counting (ΠAC

c,n).

▶ Theorem 1.5. Let c, n > 1, and suppose that the Shift Finding problem ΠSF
c,n admits a

randomized algorithm that makes at most q = q(c, n) queries (possibly adaptive). Then, every
PD streaming algorithm for the approximate counting problem ΠAC

c,n must use Ω(log n
log q) bits of

space.

It immediately follows that if the Shift Finding problem ΠSF
c,n can be solved using polylog(n)

queries (for fixed c > 1), then PD approximate counting requires Ω(log n
loglog n) bits of space.

However, our current upper bound for Shift Finding is q = O(
√

cn) queries (Theorem 1.8)
and is not strong enough to yield a nontrivial lower bound for PD approximate counting.

Therefore, to prove our main lower bound (Theorem 1.3), we revert to a generalization of
Theorem 1.5 where the Shift Finding algorithm is still given an instance of problem ΠSF

c,n

(namely, a string F and query access to Fs∗), but reports a small set R ⊂ [0, n] (say of size

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:5

|R| ≤ t) that contains the unknown shift (i.e., s∗ ∈ R). This algorithm may be randomized
provided that it is PD, and its canonical function maps each instance of problem ΠSF

c,n to a
set R of size t that contains s∗.

▶ Theorem 1.6. Let c, n > 1, and suppose there is a PD algorithm Q that, given an instance
of problem ΠSF

c,n , makes at most q = q(c, n) queries (possibly adaptive) to Fs∗ and its canonical
function M maps the input to a set R ⊂ [0, n] of size t = tc(n) that contains s∗. Then every
PD streaming algorithm for problem ΠAC

c,n must use Ω(log(n/t)
log q) bits of space.

We use Theorem 1.6, (more precisely its proof arguments rather than its statement) to
prove our main result (Theorem 1.3), see Section 4. At a high level, the proof of Theorem 1.3
proceeds by splitting into two cases, depending on the canonical function F . Roughly speaking,
in one case we show a Shift Finding algorithm that returns a set of size t = n/2

√
log n using

q = O(log n) queries by binary search, and in the other case an algorithm to find the shift
(i.e., t = 1) with probability 9/10 using q = 2

√
log n uniformly random queries.

As a corollary of Theorem 1.5, we get that the tracking version of approximate counting
must use Ω(log n) bits of space, which is tight with a straightforward deterministic counting.
Tracking means that the algorithm produces an output after every stream item rather than at
the end of the stream, and with probability 9/10, all the outputs are simultaneously correct
(i.e., approximate the number of items seen so far).

▶ Corollary 1.7 (Tracking). For every c, n > 1, every PD tracking algorithm that c-
approximates the number of items in a stream of length (c + 1)n must use Ω(log n) bits
of space.

In contrast, for standard randomized algorithms, there is a tracking algorithm for (1 +
ϵ)-approximate counting that uses Oϵ(loglog n) bits of space, for any fixed ϵ > 0 [29].
Corollary 1.7 follows by an easy modification of the proof of Theorem 1.5. That proof uses
O(log q) repetitions of a PD streaming algorithm, and then employs a union bound on q

input streams, which is not necessary for tracking algorithms and thus the bound follows.
A more direct argument is essentially by equivalence to exact counting. For a stream with

s < n items, the state of a PD tracking algorithm with canonical function F can be used to
compute s, as follows. Simulate insertion of more items to the stream until the output of
the algorithm changes to 1 (which corresponds to the first 1 in Fs), from which s can be
computed.

1.2.2 An Algorithm for Shift Finding
Consider a special case of the Shift Finding problem ΠSF

c,n , where the input string P is a
run of zeros followed by a run of ones (viewed as a function, it is a step function); then the
algorithm can perform a binary search using O(log(cn)) queries, and find the unique location
where Fs∗ switches from value 0 to 1, and hence recover s∗. At the other extreme, suppose
the input string P is random; then with high probability every set of O(log n) queries from P

(and thus from Fs∗) will be answered differently (viewed as a string in {0, 1}O(log n)). Based
on these observations, one may hope that problem ΠSF

c,n admits an algorithm that makes
polylog(cn) queries. We leave this as an open question and prove a weaker bound of O(

√
cn)

queries.

▶ Theorem 1.8 (Shift Finding Algorithm). There is a deterministic algorithm for problem
ΠSF

c,n that makes O(
√

cn) queries.

ICALP 2023

30:6 Lower Bounds for Pseudo-Deterministic Counting in a Stream

A key observation in our result, that may be useful in future work, is that for every shift
s∗ there is a “short witness” that uses exactly 2 queries. We formalize this as verifying a
given guess s for the shift s∗.

▶ Lemma 1.9 (Short Witness). There is a deterministic algorithm that, given as input an
instance of problem ΠSF

c,n and s < n, makes 2 queries to Fs∗ and returns “yes” if s = s∗ and
“no” otherwise.

The proofs of Theorem 1.8 and Lemma 1.9 appear in Section 5. At a high level, the Shift
Finding algorithm in Theorem 1.8 queries the set {Fs∗(0), Fs∗(

√
cn), Fs∗(2

√
cn), ..., Fs∗(cn)},

and then uses the short witness (Lemma 1.9) to check every feasible s ∈ [n] (i.e., that agrees
with the query answers). Following an observation by Peter Kiss, we are able to improve our
Shift Finding algorithm to use only O((cn)1/3 log n) queries; details omitted.

1.3 Related Work
Pseudo-deterministic algorithms

The notion of pseudo-deterministic algorithms was introduced by [9] (they originally called
them Bellagio algorithms), followed by a long sequence of works that studied it in different
models [13, 19, 14, 30, 24, 15, 5, 31, 11, 21, 12, 16, 26, 6, 17, 10, 7]. In the streaming and
sketching models, [16] proved strong lower bounds for finding a non-zero entry in a vector
(given in a stream with deletions), and for sketching ℓ2-norms. Another related setting is that
of sublinear time computation. Under certain assumptions, PD algorithms (in the sublinear
time region) were shown to admit the following relation with deterministic algorithms – if
for a certain problem there is a PD algorithm using q queries, then there is a deterministic
algorithm using O(q4) queries [13]. The techniques of [13] do not seem to extend to streaming
algorithms.

Adaptive adversarial streams

In this setting, the stream items are chosen adversarially and depend on past outputs of the
streaming algorithm (i.e., the stream is adaptive) [3]. This model is considered to be between
PD algorithms and the standard randomized setting, in the sense that for streams of length
m, amplifying a PD algorithm to success probability 1− 1

10m (by O(log m) repetitions and
taking the median) guarantees (by a union bound) that the algorithm outputs the canonical
solution after every stream item with probability 9/10, thus the adversary acts as an oblivious
one (the adversary knows in advance the output of the streaming algorithm, which is the
canonical function). For approximate counting, adaptive streams and standard (oblivious)
streams are equivalent (since the stream items are identical) and thus admit an algorithm
using O(loglog n) bits of space.

There is a vast body of work designing algorithms for adaptive streams, but not much is
known in terms of lower bounds. Lower bounds are known for some search problems, like
finding a spanning forest in a graph undergoing edge insertions and deletions, but also for
graph coloring [4]. Regarding estimation problems, the only lower bound we are aware of is
for some artificial problem [25]. Recently, Stoeckl [32] showed a lower bound on streaming
algorithms that use a bounded amount of randomness, conditioned on a lower bound for PD
algorithms. In the related model of linear sketching, Hardt and Woodruff [22] showed lower
bounds on the dimensions of sketching algorithms, which applies to many classical problems,
like ℓp-norm estimation and heavy hitters.

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:7

2 Preliminaries

▶ Definition 2.1 (Approximate counting). Let c, n > 1. In problem ΠAC
c,n , the input is a

stream of l ≤ (c + 1)n identical items. The goal is to output 0 if l ≤ n and 1 if l > cn (and
otherwise the output can be either 0 or 1).

Let A be a PD algorithm for problem ΠAC
c,n , and let F : [0, (c + 1)n] → {0, 1} be the

canonical function of A. Thus, there is a fixed string P ∈ {0, 1}(c−1)n such that

F (x) =


0 if x ∈ [0, n];
1 if x ∈ [cn + 1, (c + 1)n];
P (x− n) otherwise.

For s∗ ∈ [0, n], let Fs∗ : [0, (c + 1)n − s∗] → {0, 1} be a shifted version of F , namely the
function Fs∗ : x 7→ F (s∗ + x). We use these notations throughout the paper.

Our proofs are based on a reduction from a simple one-way communication problem,
called MESSAGE and denoted ΠMSG

Σ , where Alice’s input x is from an alphabet Σ that is
fixed in advance, Bob has no input, and the goal is that Bob outputs x with probability at
least 2/3. It is well known that this problem requires Ω(log |Σ|) bits of communication, even
for randomized protocols using shared randomness. We provide a proof for completeness.

▶ Lemma 2.2. For every alphabet Σ, every one-way communication protocol (even with
shared randomness) for problem ΠMSG

Σ must use Ω(log |Σ|) bits of communication.

Proof. Let A be a protocol for problem ΠMSG
Σ . For a random string r representing the

randomness of A, let Σr ⊂ Σ be the set of all s ∈ Σ for which Bob correctly recovers s. Let r∗

be a string maximizing |Σr|, then by averaging, |Σr∗ | ≥ 2
3 |Σ|. Consider an instance of A that

uses r∗ as its random string. Assume by contradiction that the number of communication
bits is less than log |Σr∗ |, then by the pigeonhole principle there are two distinct inputs
s, s′ ∈ Σr∗ such that A(s) and A(s′) result in the same message. Bob then cannot distinguish
between (i.e., has the same output distribution for) s and s′, a contradiction. Hence, the
number of bits of communication is at least log |Σr∗ | = Ω(log |Σ|). ◀

3 Lower Bounds for PD Approximate Counting via Shift Finding

In this section, we prove Theorem 1.5. The proof involves three problems from different
settings: (a) PD approximate counting in the streaming model; (b) Shift Finding in the
query-access model; and (c) MESSAGE in one-way communication with shared randomness.
The proof essentially shows that if there is an algorithm for Shift Finding that makes only
q queries and also a streaming algorithm for PD approximate counting that uses b bits of
space, then MESSAGE can be solved using O(b log q) bits of communication. Combining
this bound with the well-known lower bound for MESSAGE in Lemma 2.2 yields a lower
bound for b.

A core idea in the proof is that an execution of a PD streaming algorithm A for the
approximate counting problem ΠAC

c,n on a stream with s∗ insertions, can be used (even without
knowing s∗, by making additional insertions and then querying the streaming algorithm A)
to provide query access to the shifted function Fs∗ : x 7→ F (s∗ + x). This query access, along
with a query-efficient algorithm for the Shift Finding problem ΠSF

c,n , is then used to solve an
instance of the MESSAGE problem ΠMSG

Σ .

ICALP 2023

30:8 Lower Bounds for Pseudo-Deterministic Counting in a Stream

In fact, we prove the following theorem, which holds for each string F separately (rather
than a bound that depends on the worst-case F), and yields Theorem 1.5 as an immediate
corollary.

▶ Theorem 3.1. Let A be a PD streaming algorithm for problem ΠAC
c,n , where c, n > 1, and

let F : [0, (c + 1)n]→ {0, 1} be the canonical function of A. Suppose that Shift Finding with
respect to this specific F (the problem of finding an unknown shift s∗ ∈ [n] with probability
at least 9/10 given query access to Fs∗) admits a randomized algorithm that makes at most
q = q(F) (possibly adaptive) queries. Then the streaming algorithm A must use Ω(log n

log q) bits
of space.

Proof. Define algorithm A′ to be an amplification of A to success probability 1− 1/(10q), by
running O(log q) independent repetitions and reporting their majority. Assume there exists
an algorithm Q that for every s∗ ∈ [n], makes at most q = q(F) queries to Fs∗ (possibly
adaptive) and outputs s∗ with probability at least 9/10.

Consider an instance of problem ΠMSG
Σ with alphabet Σ = [0, n], and consider the

following protocol for it. Alice starts an execution of the streaming algorithm A′ using the
shared randomness, then takes her input s∗ ∈ Σ and makes s∗ stream insertions to algorithm
A′, and finally sends the state (memory contents) of A′ to Bob.

Bob continues the execution of the streaming algorithm A′ (using the shared randomness),
and uses it to provide query access to Fs∗ , as follows. In order to query Fs∗ at any index x,
Bob makes a fresh copy A0 of the streaming algorithm A′, insert x stream items to algorithm
A0 and then reads its output. With probability at least 1− 1/(10q), the answer that Bob
gets is indeed Fs∗(x) (because the number of items inserted to this instance of the algorithm
is x + s∗). Bob uses this query access and his knowledge of F to simulate algorithm Q (with
the goal of recovering s∗).

Consider Bob’s simulation of algorithm Q. If Q was executed with true query access to
Fs∗ , then it would have had success probability 9/10, and would have made a sequence of
queries XQ to Fs∗ . This sequence XQ depends only on Fs∗ and the coin tosses of algorithm
Q. In particular, revealing XQ (i.e., conditioned on XQ) does not affect the coins of the
streaming algorithm A′, and it still succeeds with probability at least 1− 1/(10q). We can
thus apply a union bound to conclude that algorithm A′ succeeds on all queries x ∈ XQ (i.e.,
outputs the corresponding Fs∗(x)) with probability at least 1− q · 1

10q = 9/10. Hence, when
Bob simulates algorithm Q using the streaming algorithm A′, with probability 9/10 (over
the coins of A′) the execution is identical to running algorithm Q with true access to Fs∗ ,
which itself succeeds with probability 9/10. By a union bound, with probability 8/10 both
algorithm Q and the streaming algorithm A′ succeed, in which case Bob recovers s∗, and
therefore this communication protocol solves problem ΠMSG

Σ with alphabet Σ = [0, n].
By Lemma 2.2, the message Alice sends must contain Ω(log n) bits, and thus the streaming

algorithm A′ must use Ω(log n) bits of space. Recall that algorithm A′ consists of O(log q)
copies of the streaming algorithm A and thus algorithm A must use Ω(log n

log q) bits of space. ◀

4 Lower Bound for PD Approximate Counting

In this section, we prove Theorem 1.3, i.e., for every c, n > 1, we prove that every PD
streaming algorithm for the approximate counting problem ΠAC

c,n must use Ωc(
√

log n
loglog n) bits

of space.

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:9

Let F be the canonical function of a PD streaming algorithm for problem ΠAC
c,n . Our

analysis is split into two cases depending on F , which informally correspond to whether a
fixed pattern (like “01”) appears in the string F at most t times or not. These cases are
analyzed using Theorems 1.6 and 3.1. The overall bound will be derived by optimizing the
threshold t between the two cases to roughly t = n/2

√
log n.

4.1 Scenario One
In this scenario, there is a specific pattern in F that appears at most t times, where t = tc(n)
will be set at the end of our proof. We first consider the pattern “01” in F , which corresponds
to x ∈ [0, (c + 1)n− 1] such that F (x) = 0 and F (x + 1) = 1, and later generalize this pattern
to a broader family.

▶ Lemma 4.1. If the pattern “01” appears at most t times in F , then every PD streaming
algorithm for problem ΠAC

c,n whose canonical function is F must use Ω(log(n/t)
loglog(cn)) bits of space.

Proof. The proof is by a reduction from problem MESSAGE, similarly to the proof of
Theorem 3.1. Perhaps the most delicate part is the definition of an alphabet Σ for the
MESSAGE problem ΠMSG

Σ , and it proceeds as follows.
Given s ∈ [n], consider the following execution of Binary Search on the function Fs.

Initialize l = 0 and r = cn + 1, and at every iteration query Fs(⌊ l+r
2 ⌋); if Fs(⌊ l+r

2 ⌋) = 0,
then l← ⌊ l+r

2 ⌋, otherwise r ← ⌊ l+r
2 ⌋. These iterations maintain the invariant that Fs(l) = 0

and Fs(r) = 1, and after at most log(cn) iterations arrive at r = l + 1 with the pattern “01”.
Define a mapping M : [n] → [cn] such that M(s) is the location where the binary search
finds a “01” in Fs, i.e., the final index l; thus F (s + M(s)) = 0 and F (s + M(s) + 1) = 1.

In order to define an alphabet Σ, consider a partitioning of [n] to buckets, defined such
that items s, s′ are from the same bucket B if and only if they are mapped to the same
value M(s) = M(s′). For every bucket B and every s, s′ ∈ B, we know from above that
F (s′ + M(s)) = 0 and F (s′ + M(s) + 1) = 1, so there are at most t possibilities for s′

(one of which is s′ = s), and thus the size of the bucket |B| ≤ t. Define Σ ⊂ [n] by taking
one representative from each bucket. Thus, every s1 ̸= s2 ∈ Σ satisfy M(s1) ̸= M(s2) and
|Σ| ≥ n/t.

Let A be a streaming algorithm whose canonical function is F and let algorithm A′

be an amplification of algorithm A that succeeds with probability 1 − 1/(10 log(cn)) (by
making O(loglog(cn)) repetitions and taking the majority). Consider an instance of the
MESSAGE problem ΠMSG

Σ , and proceed similarly to the proof of Theorem 3.1. We provide
a self-contained analysis for completeness. Alice and Bob perform the following protocol.
Alice starts an execution of algorithm A′ using the shared randomness. For input s∗ ∈ Σ,
she inserts s∗ stream items to algorithm A′ and sends the state (memory contents) of this
algorithm A′ to Bob. In order to get query access to Fs∗ at index x, Bob makes a fresh
copy A0 of algorithm A′, continues the algorithm’s execution (using the shared randomness),
inserts x stream items to algorithm A0 and finally reads its output. Bob uses this query
access to simulate the Binary Search algorithm on Fs∗ (with the goal of recovering M(s∗)).
He then infers which bucket corresponds to his result, and outputs the representative of that
bucket (which is s∗ if he recovers M(s∗)).

If the Binary Search algorithm were executed with true query access to Fs∗ , then it would
have output M(s∗) and would have made a sequence of queries XBS to Fs∗ . This sequence
depends only on Fs∗ , and in particular independent of the random coins of algorithm A′.
Thus by a union bound, algorithm A′ succeeds on all queries x ∈ XBS (i.e. outputs the
corresponding Fs∗(x)) with probability at least 1− log(cn) · 1/(10 log(cn)) = 9/10. Hence,

ICALP 2023

30:10 Lower Bounds for Pseudo-Deterministic Counting in a Stream

when Bob simulates the Binary Search algorithm using the streaming algorithm A′, then
with probability 9/10 the execution is identical to running the Binary Search algorithm with
true query access to Fs∗ . Thus with this probability 9/10, Bob recovers M(s∗), and hence
outputs s∗, which concludes the correctness analysis of the communication protocol.

By Lemma 2.2, the message Alice sends must contain Ω(log |Σ|) ≥ Ω(log(n/t)) bits, and
thus algorithm A′ must use Ω(log(n/t)) bits of space. Recall that algorithm A′ is made
of O(loglog(cn)) copies of algorithm A and thus algorithm A must use Ω(log(n/t)

loglog(cn)) bits of
space. ◀

▶ Remark 4.2. This proof can be easily generalized to prove Theorem 1.6. The first exten-
sion is by replacing the Binary Search algorithm and the corresponding buckets with any
deterministic algorithm Q that returns a subset containing s∗. In order to generalize Q to
any PD algorithm Y , consider the canonical function of Y instead of the mapping M , and
apply the same proof. It holds because the crucial property of the Binary Search algorithm
was the existence of the mapping M . Then by an additional union bound, both algorithms
Q and A′ succeed with probability 8/10 (as in the proof of Theorem 3.1).

We now generalize Lemma 4.1 to a larger family of patterns in F , where each pattern is
characterized by a parameter k ∈ [n], and appears at index x ∈ [0, (c + 1)n− k] such that
F (x) = 0 and F (x + k) = 1. These patterns are allowed to overlap with each other (for
different values of k). Denote such a pattern by “0?k−11”, where each question mark can
represent either 0 or 1, and the number of question marks is k−1 < n. A copy of this pattern
can be found in O(log n

k) queries to Fs∗ by a binary search on the grid (0, k, ..., ⌈ cn
k ⌉k), since

Fs∗(0) = 0 and Fs∗(⌈ cn
k ⌉k) = 1. Hence, if there exists k for which this pattern appears at

most t times in F , then the communication protocol above can be adjusted to imply that
algorithm A must use at least Ω(log(n/t)

loglog(cn/k)) ≥ Ω(log(n/t)
loglog(cn)) bits of space. The only change in

the proof is in the number of queries that Bob makes, which affects the number of repetitions
in algorithm A′, and thus only affects the loglog term.

▶ Corollary 4.3. If for some k ≤ n the pattern “0?k−11” appears at most t times in F , then
every PD streaming algorithm for problem ΠAC

c,n whose canonical function is F , must use
Ω(log(n/t)

loglog(cn)) bits of space.

4.2 Scenario Two
In this scenario, for every k ≤ n the pattern “0?k−11” appears at least t times in F .

▶ Lemma 4.4. If for all k ∈ [n], the pattern “0?k−11” appear at least t times in F , then
every PD streaming algorithm for problem ΠAC

c,n whose canonical function is F , must use
Ω(log n

log(cn/t)+loglog n) bits of space.

Proof. In this case, there is an algorithm for the Shift Finding problem ΠSF
c,n using q =

O(cn log n
t) queries to Fs∗ , as follows.

1. let S = [0, n]
2. repeat the following 10cn log n

t times:
a. pick r ∈ [cn] uniformly at random and query Fs∗(r)
b. let S ← {s ∈ S : F (s + r) = Fs∗(r)}

3. if |S| = 1, return s ∈ S; else return FAIL

The final set S clearly contains the shift s∗. It remains to show that all s ̸= s∗ are
removed from the set S with high probability.

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:11

Fix s ∈ [n], s ̸= s∗. There are t values for r ∈ [cn] for which F (s∗ + r) ̸= F (s + r),
as follows. Assume without loss of generality that s∗ < s and denote k = s − s∗ ∈ [n].
Let l be a location that corresponds to the pattern “0?k−11” in F , i.e. F (l) = 0 and
F (l + k) = 1. If l ∈ [s∗ + 1, s∗ + cn], then there is r ∈ [cn] such that s∗ + r = l, for which
F (s∗ + r) = 0 ̸= F (l + k) = F (s + r). There are at least t locations for this pattern (i.e.
possible values for l), thus it remains to show that indeed l ∈ [s∗ + 1, s∗ + cn]. It must be
that l + k > n since F (x) = 0 for all x ≤ n, and similarly l ≤ cn since F (x) = 1 for all
x > cn. Hence l ∈ [n− k + 1, cn] ⊂ [s∗ + 1, s∗ + cn], and thus there are t values for r ∈ [cn]
for which F (s∗ + r) ̸= F (s + r) (each value for r corresponds to a possible value for l).

Thus, in each repetition, s is removed from the set S with probability at least t
cn . The

probability s is not removed after 10cn log n
t repetitions is (1 − t

cn)(10cn log n)/t < 1
n2 . By a

union bound, all s ̸= s∗ are removed with probability 1− 1
n , which concludes the correctness

analysis of the algorithm for problem ΠSF
c,n .

By Theorem 3.1, every PD streaming algorithm for the approximate counting problem
ΠAC

c,n with a canonical function F must use Ω(log n
log((cn log n)/t)) bits of space. ◀

4.3 Concluding the Proof of Theorem 1.3

Concluding the two scenarios, set t = n/2
√

log n·log log(cn) and get by Corollary 4.3 and
Lemma 4.4 that every PD streaming algorithm for the approximate counting problem ΠAC

c,n

must use

Ω(min{ log(n/t)
loglog(cn) , log n

log((cn/t) log n)}) = Ω(log n√
log n loglog(cn)+log c

)

bits of space, which boils down to Ω(
√

log n
loglog n) for c < 2

√
log n loglog n.

5 Shift Finding Algorithm

One can hope to prove tighter lower bounds for PD streaming algorithms for the approximate
counting problem ΠAC

c,n , and a possible approach is by solving the Shift Finding problem ΠSF
c,n

using polylog n queries. Recall that in problem ΠSF
c,n , the input is a string P ∈ {0, 1}(c−1)n,

which can be represented by a string F which is a concatenation of n zeros, P and then n

ones; and query access to a shifted version of F with shift s∗, denoted Fs∗ . As stated in
Theorem 1.8, we show a deterministic algorithm for problem ΠSF

c,n using O(
√

cn) queries
(Algorithm 1), and we leave open the question whether it is the right bound. The proof relies
on an efficient verification algorithm that for input s, uses 2 queries and returns “yes” if and
only if s = s∗, as stated in Lemma 1.9 and described next.

Proof of Lemma 1.9. Denote by l ∈ [n + 1, cn + 1] the smallest number such that F (l) = 1,
and by r ∈ [n, cn] the largest number such that F (r) = 0. For input s ∈ [0, n], the verification
algorithm returns “no” if Fs∗(l − s) = 0 or Fs∗(r − s) = 1, and otherwise returns “yes”.

If s = s∗, then Fs∗(x− s) = F (x) and the verification algorithm outputs “yes”. If s > s∗,
then s∗ − s + l < l and thus Fs∗(l − s) = F (s∗ − s + l) = 0 and the verification algorithm
outputs “no”. Similarly, if s < s∗ then Fs∗(r − s) = 1 and the verification algorithm outputs
“no”. ◀

▶ Remark 5.1. There is a randomized algorithm for problem ΠSF
c,n using Õc(

√
n) queries that

is similar to the proof of Theorem 1.3 in Section 4. It proceeds by considering those two
scenarios. In scenario one, instead of constructing the set Σ, query witnesses for all the t

ICALP 2023

30:12 Lower Bounds for Pseudo-Deterministic Counting in a Stream

possible shifts using 2t queries and hence recover the unknown shift s∗. In scenario two, the
proof of Theorem 1.3 shows how to find the unknown shift s∗ in O(cn

t log n) queries with
high probability. Hence, by setting t =

√
cn log n, this algorithm finds the unknown shift in

O(max{t + log(cn), cn
t log n}) ≤ O(

√
cn log n) queries with high probability.

Next is a slight improvement, a deterministic algorithm in O(
√

cn) queries, proving
Theorem 1.8.

Algorithm 1 Deterministic Shift Finding in O(
√

cn) queries.

Input: n, c, F and query access to Fs∗

Output: s∗

1: Q← (Fs∗(0), Fs∗(
√

cn), Fs∗(2
√

cn), ..., Fs∗(cn))
2: let S ←

{
s ∈ [0, n] : ∀i ∈ [0,

√
cn], Fs(i

√
cn) = Q(i)

}
▷ i.e. the set of all shifts that could

have produced Q

3: for s ∈ S do
4: check the witness of s

5: if s = s∗ then return s

▶ Lemma 5.2. The set S in Algorithm 1 is of size O(
√

cn).

Proof. Assume by contradiction that |S| ≥
√

cn + 1. Hence by the pigeonhole principle,
there exists s1 < s2 ∈ S such that s1 = s2 mod

√
cn. Hence for all i ∈ [0,

√
cn− s2−s1√

cn
],

Q(i) = Fs2(i
√

cn) = Fs1(s2 − s1 + i
√

cn) = Q(s2−s1√
cn

+ i),

where the first and last transitions hold since s1, s2 ∈ S and s2−s1√
cn

is an integer number,
and the second transition is by definition. Thus Q has a period of length s2−s1√

cn
≤ ⌊ s2√

cn
⌋.

However, for i ∈ [
√

cn − ⌊ s2√
cn
⌋ + 1,

√
cn] the values that Q get are Q(i) = Fs2(i

√
cn) = 1

since s2 + i
√

cn ≥ cn; thus all entries in Q are equal 1, which contradicts the fact that
Q(0) = 0, and thus completes the proof. ◀

Algorithm 1 returns the shift s∗ since s∗ ∈ S and by the correctness of the verifier in
Lemma 1.9. The number of queries Algorithm 1 makes is O(|S| + |Q|) = O(

√
cn), which

proves Theorem 1.8.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, pages 20–29, 1996. doi:10.1145/237814.237823.

2 Alexandr Andoni, Piotr Indyk, Dina Katabi, and Haitham Hassanieh. Shift finding in sub-
linear time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 457–465, 2013. doi:10.1137/1.9781611973105.33.

3 Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. J. ACM, 69(2):17:1–17:33, 2022. doi:10.1145/
3498334.

4 Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring for graph
streams. In 13th Innovations in Theoretical Computer Science Conference, ITCS, volume
215 of LIPIcs, pages 37:1–37:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ITCS.2022.37.

https://doi.org/10.1145/237814.237823
https://doi.org/10.1137/1.9781611973105.33
https://doi.org/10.1145/3498334
https://doi.org/10.1145/3498334
https://doi.org/10.4230/LIPIcs.ITCS.2022.37

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:13

5 Peter Dixon, A. Pavan, and N. V. Vinodchandran. On pseudodeterministic approximation
algorithms. In 43rd International Symposium on Mathematical Foundations of Computer
Science, MFCS, volume 117 of LIPIcs, pages 61:1–61:11. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.61.

6 Peter Dixon, A. Pavan, and N. V. Vinodchandran. Complete problems for multi-
pseudodeterministic computations. In 12th Innovations in Theoretical Computer Science
Conference, ITCS, volume 185 of LIPIcs, pages 66:1–66:16. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.ITCS.2021.66.

7 Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran. Pseudodeterminism:
promises and lowerbounds. In STOC ’22: 54th Annual ACM Symposium on Theory of
Computing, pages 1552–1565, 2022. doi:10.1145/3519935.3520043.

8 Philippe Flajolet. Approximate counting: A detailed analysis. BIT, 25(1):113–134, 1985.
doi:10.1007/BF01934993.

9 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. Electron. Colloquium Comput. Complex., TR11-136, 2011.
URL: https://eccc.weizmann.ac.il/report/2011/136, arXiv:TR11-136.

10 Sumanta Ghosh and Rohit Gurjar. Matroid intersection: A pseudo-deterministic paral-
lel reduction from search to weighted-decision. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, volume 207
of LIPIcs, pages 41:1–41:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.APPROX/RANDOM.2021.41.

11 Michel X. Goemans, Shafi Goldwasser, and Dhiraj Holden. Doubly-efficient pseudo-
deterministic proofs. CoRR, abs/1910.00994, 2019. arXiv:1910.00994.

12 Oded Goldreich. Multi-pseudodeterministic algorithms. Electron. Colloquium Comput.
Complex., TR19-012, 2019. URL: https://eccc.weizmann.ac.il/report/2019/012, arXiv:
TR19-012.

13 Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations of
pseudodeterministic algorithms. In Innovations in Theoretical Computer Science, ITCS, pages
127–138. ACM, 2013. doi:10.1145/2422436.2422453.

14 Shafi Goldwasser and Ofer Grossman. Perfect bipartite matching in pseudo-deterministic RNC.
Electron. Colloquium Comput. Complex., TR15-208, 2015. URL: https://eccc.weizmann.ac.
il/report/2015/208, arXiv:TR15-208.

15 Shafi Goldwasser, Ofer Grossman, and Dhiraj Holden. Pseudo-deterministic proofs. In 9th
Innovations in Theoretical Computer Science Conference, ITCS, volume 94 of LIPIcs, pages
17:1–17:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
ITCS.2018.17.

16 Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-
deterministic streaming. In 11th Innovations in Theoretical Computer Science Conference,
ITCS, volume 151 of LIPIcs, pages 79:1–79:25, 2020. doi:10.4230/LIPIcs.ITCS.2020.79.

17 Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam. On the pseudo-
deterministic query complexity of NP search problems. In 36th Computational Complexity
Conference, CCC, volume 200 of LIPIcs, pages 36:1–36:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.CCC.2021.36.

18 André Gronemeier and Martin Sauerhoff. Applying approximate counting for computing
the frequency moments of long data streams. Theory Comput. Syst., 44(3):332–348, 2009.
doi:10.1007/s00224-007-9048-z.

19 Ofer Grossman. Finding primitive roots pseudo-deterministically. Electron. Colloquium
Comput. Complex., TR15-207, 2015. URL: https://eccc.weizmann.ac.il/report/2015/207,
arXiv:TR15-207.

20 Ofer Grossman, Meghal Gupta, and Mark Sellke. Tight space lower bound for pseudo-
deterministic approximate counting. arXiv preprint, 2023. arXiv:2304.01438.

ICALP 2023

https://doi.org/10.4230/LIPIcs.MFCS.2018.61
https://doi.org/10.4230/LIPIcs.ITCS.2021.66
https://doi.org/10.1145/3519935.3520043
https://doi.org/10.1007/BF01934993
https://eccc.weizmann.ac.il/report/2011/136
https://arxiv.org/abs/TR11-136
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.41
https://arxiv.org/abs/1910.00994
https://eccc.weizmann.ac.il/report/2019/012
https://arxiv.org/abs/TR19-012
https://arxiv.org/abs/TR19-012
https://doi.org/10.1145/2422436.2422453
https://eccc.weizmann.ac.il/report/2015/208
https://eccc.weizmann.ac.il/report/2015/208
https://arxiv.org/abs/TR15-208
https://doi.org/10.4230/LIPIcs.ITCS.2018.17
https://doi.org/10.4230/LIPIcs.ITCS.2018.17
https://doi.org/10.4230/LIPIcs.ITCS.2020.79
https://doi.org/10.4230/LIPIcs.CCC.2021.36
https://doi.org/10.1007/s00224-007-9048-z
https://eccc.weizmann.ac.il/report/2015/207
https://arxiv.org/abs/TR15-207
https://arxiv.org/abs/2304.01438

30:14 Lower Bounds for Pseudo-Deterministic Counting in a Stream

21 Ofer Grossman and Yang P. Liu. Reproducibility and pseudo-determinism in log-space. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 606–620. SIAM, 2019. doi:10.1137/1.9781611975482.38.

22 Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive inputs?
In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pages
121–130, 2013. doi:10.1145/2488608.2488624.

23 Haitham Hassanieh, Fadel Adib, Dina Katabi, and Piotr Indyk. Faster GPS via the sparse
fourier transform. In The 18th Annual International Conference on Mobile Computing and
Networking, Mobicom, pages 353–364. ACM, 2012. doi:10.1145/2348543.2348587.

24 Dhiraj Holden. A note on unconditional subexponential-time pseudo-deterministic algorithms
for BPP search problems. CoRR, abs/1707.05808, 2017. arXiv:1707.05808.

25 Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive streaming
from oblivious streaming using the bounded storage model. In Advances in Cryptology –
CRYPTO, volume 12827 of Lecture Notes in Computer Science, pages 94–121. Springer, 2021.
doi:10.1007/978-3-030-84252-9_4.

26 Zhenjian Lu, Igor Carboni Oliveira, and Rahul Santhanam. Pseudodeterministic algorithms
and the structure of probabilistic time. In STOC ’21: 53rd Annual ACM Symposium on
Theory of Computing, pages 303–316, 2021. doi:10.1145/3406325.3451085.

27 Jérémie O. Lumbroso. How Flajolet processed streams with coin flips. CoRR, abs/1805.00612,
2018. arXiv:1805.00612.

28 Robert Morris. Counting large numbers of events in small registers. Commun. ACM, 21(10):840–
842, 1978. doi:10.1145/359619.359627.

29 Jelani Nelson and Huacheng Yu. Optimal bounds for approximate counting. In Proceedings of
the 41st ACM Symposium on Principles of Database Systems, PODS, pages 119–127, 2022.
doi:10.1145/3517804.3526225.

30 Igor Carboni Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexpo-
nential time. In Proceedings of the 49th Annual ACM Symposium on Theory of Computing,
STOC, pages 665–677, 2017. doi:10.1145/3055399.3055500.

31 Igor Carboni Oliveira and Rahul Santhanam. Pseudo-derandomizing learning and approxima-
tion. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM, volume 116 of LIPIcs, pages 55:1–55:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.55.

32 Manuel Stoeckl. Streaming algorithms for the missing item finding problem. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 793–818, 2023.
doi:10.1137/1.9781611977554.ch32.

https://doi.org/10.1137/1.9781611975482.38
https://doi.org/10.1145/2488608.2488624
https://doi.org/10.1145/2348543.2348587
https://arxiv.org/abs/1707.05808
https://doi.org/10.1007/978-3-030-84252-9_4
https://doi.org/10.1145/3406325.3451085
https://arxiv.org/abs/1805.00612
https://doi.org/10.1145/359619.359627
https://doi.org/10.1145/3517804.3526225
https://doi.org/10.1145/3055399.3055500
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.55
https://doi.org/10.1137/1.9781611977554.ch32

	1 Introduction
	1.1 Main Result: Approximate Counting
	1.2 Main Technique: The Shift Finding Problem
	1.2.1 Connection to PD Counting
	1.2.2 An Algorithm for Shift Finding

	1.3 Related Work

	2 Preliminaries
	3 Lower Bounds for PD Approximate Counting via Shift Finding
	4 Lower Bound for PD Approximate Counting
	4.1 Scenario One
	4.2 Scenario Two
	4.3 Concluding the Proof of Theorem 1.3

	5 Shift Finding Algorithm

