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Abstract
We study approximation algorithms for variants of the me-
dian string problem, which asks for a string that minimizes
the sum of edit distances from a given set of m strings
of length n. Only the straightforward 2-approximation is
known for this NP-hard problem. This problem is moti-
vated e.g. by computational biology, and belongs to the class
of median problems (over different metric spaces), which are
fundamental tasks in data analysis.

Our main result is for the Ulam metric, where all strings
are permutations over [n] and each edit operation moves a
symbol (deletion plus insertion). We devise for this problem
an algorithms that breaks the 2-approximation barrier, i.e.,
computes a (2 − δ)-approximate median permutation for

some constant δ > 0 in time Õ(nm2 + n3). We further use
these techniques to achieve a (2 − δ) approximation for the
median string problem in the special case where the median
is restricted to length n and the optimal objective is large
Ω(mn).

We also design an approximation algorithm for the
following probabilistic model of the Ulam median: the input
consists of m perturbations of an (unknown) permutation x,
each generated by moving every symbol to a random position
with probability (a parameter) ε > 0. Our algorithm
computes with high probability a (1 + o(1/ε))-approximate
median permutation in time O(mn2 + n3).

1 Introduction

One of the most common aggregation tasks in data
analysis is to find a representative for a given data set S,
often formulated as an optimization problem. Perhaps
the most popular version asks to minimize the sum of
distances from all the data points in S (in a metric space
relevant to the intended application). More formally,
the goal is to find y in the metric space (not necessarily
from S) that minimizes the objective function

Obj(S, y) :=
∑
x∈S

d(y, x),
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and an optimal y is called a median (or a geometric
median). For many applications, it suffices to find an
approximate median, i.e., a point in the metric space
whose objective value approximates the minimum (mul-
tiplicatively), see Section 2 for a formal definition. The
problem of finding an (approximate) median has been
studied extensively both in theory and applied domains,
over various metric spaces. The most well-studied
version is over a Euclidean space (called the Fermat-
Weber problem), for which currently the best algorithm
finds a (1 + ε)-approximate median (for any ε > 0)
in near-linear time [CLM+16] (see references therein
for an overview). Other metric spaces that have been
considered for the median problem include Hamming
(folklore), the edit metric [San75, Kru83, NR03], rank-
ings [DKNS01, ACN08], Jaccard distance [CKPV10],
and many more [FVJ08, Min15, CCGB+17].

The median problem over the edit metric (where
the edit distance between two strings is the minimum
number of character insertion, deletion and substitu-
tion operations required to transform one string to the
other) is called the median string problem [Koh85]
(an equivalent formulation is known as multiple se-
quence alignment [Gus97]). It finds numerous appli-
cations in many domains, including computational bi-
ology [Gus97, Pev00], DNA storage system [GBC+13,
RMR+17], speech recognition [Koh85], and classifica-
tion [MJC00].

Given a set of m strings each of length n, the me-
dian string problem can be solved using standard dy-
namic programming [San75, Kru83] in time O(2mnm),
and it is known to be NP-hard [dlHC00, NR03] (even
W[1]-hard [NR03]). There is a folklore algorithm that
easily computes a 2-approximate (actually, (2 − 1

m+1 )-
approximate) median — simply report the best in-
put string, i.e., y∗ ∈ S that minimizes the objective
(we call this algorithm BestFromInput, see Proce-
dure 1) — and in fact this argument holds in every
metric space. Although several heuristic algorithms ex-
ist [CA97, Kru99, FZ00, PB07, ARJ14, HK16, MAS19],
no polynomial-time algorithm is known to break be-
low 2-approximation (i.e., achieve factor 2− δ for fixed
δ > 0) for the median string problem. In contrast, over
the Hamming metric a median can be computed in lin-
ear time by simply taking a coordinate-wise plurality
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vote. One can also compute a (1 + ε)-approximation in
sublinear time using sampling (similarly to [FOR17]).

We focus mostly on approximating the median over
the Ulam metric, which is a close variant of the edit
metric. The Ulam metric of dimension n is the met-
ric space (Sn, d), where Sn is the set of all permuta-
tions over [n] and d(x, y) is the minimum number of
character moves needed to transform x into y [AD99].1

The importance of studying the Ulam metric is twofold.
First, it is an interesting measure of dissimilarity be-
tween rankings, which arise in application domains like
sports, databases, and statistics. Second, it captures
some of the inherent difficulties of the edit metric, and
thus, any progress in the Ulam metric may provide
insights to tackle the more general edit metric. The
Ulam metric has thus been studied from different al-
gorithmic perspectives [CMS01, CK06, AK10, AN10,
NSS17, BS19], but unfortunately, no polynomial-time
algorithm is currently known to break below the folklore
2-approximation (actually, (2− 1

m+1 )-approximation for
m input permutations) bound for Ulam median. In
contrast, for the median with respect to Kendall’s tau
distance over permutations, which is often used for
rank aggregation [Kem59, You88, YL78, DKNS01], a
PTAS [KMS07, Sch12] is known, improving upon a
polynomial-time 4/3-approximation [ACN08].

Our main result is a deterministic polynomial-time
algorithm that breaks below 2-approximation for Ulam
median (see Section 3).

Theorem 1.1. There is a constant δ > 0 and a de-
terministic algorithm that, given as input a set of m
permutations S ⊆ Sn, computes a (2 − δ)-approximate
median in time O(nm2 log n+ n2m+ n3).

The running time’s quadratic dependence on m
comes from a naive subroutine to find the best median
among the data set S. We can replace this subroutine
with a randomized (1+ε)-approximation algorithm, due
to [Ind99], to obtain linear dependence on m.

Furthermore, one of our key algorithmic ingredients
for the Ulam metric extends to the more general edit
metric, albeit with some restrictions on the length
of the median string and on the optimal objective
value. Specifically, we refer to the following problem:
Given a set of strings over Σn (for an alphabet Σ),
find a string in Σn, called a length-n edit-median,
that attains the minimum objective value under the
edit metric. In fact, the improvement is achieved
using the folklore algorithm mentioned earlier, i.e., in

1One may also consider one deletion and one insertion opera-

tion instead of a character move, and define the distance accord-
ingly [CMS01].

our restricted setting this algorithm actually beats 2-
approximation! (See Section 3.3.)

Theorem 1.2. Given a set of strings S ⊆ Σn whose
optimal median objective value is at least |S|n/c for
some c > 1, Procedure BestFromInput reports a
(2 − 1

50c2 )-approximate length-n edit-median in time
O(nm2 log n).2

Restrictions on the median string’s length and on
the optimum objective value may be justified in cer-
tain applications. For example, in DNA storage sys-
tem [GBC+13, RMR+17], stored data is retrieved us-
ing next-generation sequencing, and as a result several
noisy copies of the stored data are generated. (Note,
here the noises are in the form of insertions, dele-
tions and substitutions.) Currently, researchers use
median-finding heuristics to recover the stored data
from these noisy copies. Since third-generation sequenc-
ing technology like single molecule real time sequencing
(SMRT) [RCS13] involves 12 − 18% errors, the opti-
mum median objective value is quite large (and matches
our restriction). Moreover, since the noise is randomly
added at each location during sequencing, it follows
from standard concentration inequalities that with high
probability the lengths of the noisy strings are “close” to
that of the originally stored data (or the median). Thus,
a length-restricted median, as in our result, should be a
good approximation of the original one.

Motivated by the above application we further
investigate a probabilistic model for the Ulam metric,
as follows. The input consists of m perturbations of an
(unknown) permutation x, each generated by moving
every symbol to a random position with probability (a
parameter) ε > 0. See Section 4 for a formal definition
of this input distribution, which we denote by S(x, ε,m).
We then provide a (1 + δ)-approximate median for this
model.

Theorem 1.3. Fix a parameter ε ∈ (0, 1/40), a permu-
tation x ∈ Sn, and 40 ≤ m ≤ n. There is an O(n3)-time
deterministic algorithm that, given input S drawn from
S(x, ε,m), outputs a (1 + δ)-approximate median of S,

for δ = 20
m + 3

log(n/ε) + 2e−m/40

ε , with probability at least

1− 5/m.

Our analysis is based on a novel encoding-decoding
(information-theoretic) argument, which we hope could
also be applied to the more general edit metric (left open
for future work).

Even though the Ulam distance is a special case of
the edit distance, for the problem of finding an exact

2We make no attempt to optimize the constants.
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median over the Ulam metric, no algorithm faster than
exhaustive search (over the n! permutations) is known.
In contrast, for the edit metric, at least with constantly
many input strings, one can find an exact median in
polynomial time using dynamic programming [San75,
Kru83]. The lack of a polynomial-time algorithm for
the Ulam metric, even with constantly many inputs,
is perhaps not very surprising, because the related
problem of rank aggregation, which is the same median
problem over permutations (rankings) but with respect
to Kendall’s tau distance, is NP-hard even for m =
4 permutations [DKNS01]. And even for m = 3
permutations, the current polynomial-time algorithm
achieves only 1.2-approximation [ACN08].

Nevertheless (and in contrast to rank aggregation),
we show a polynomial-time algorithm that solves the
Ulam median problem for m = 3 permutations (see
the full version). We further extend this result to
show that for m inputs there is an O(2m+1nm+1)-time
algorithm computing a 1.5-approximate median. We
refer interested readers to the full version for the details.

Remark 1.4. Some literature slightly extend the notion
of a permutation, and call a string x ∈ Σn a permuta-
tion if it consists of distinct characters [CMS01, Cor03].
Then the Ulam metric of dimension n is defined over all
these permutations, and distances are according to the
standard edit distance. All our results hold also for this
variant of the Ulam metric as long as the goal is to find
(as median) a permutation of length n. However, for
the sake of simplicity we present our results only for
the standard definitions of a permutation and the Ulam
metric (as in [AD99]).

1.1 Technical Overview
Breaking below 2-approximation (in worst-

case) We start with an overview of our main result,
a (2 − δ)-approximation for the median under Ulam
(Theorem 1.1). It is instructive to understand if and
when does the well-known 2-approximation algorithm
fail to achieve approximation better than 2. Recall that
this algorithm reports the best input permutation y ∈ S
(see BestFromInput in Procedure 1). To analyze it,
let xmed be an optimal median for S, and let y∗ ∈ S
be an input permutation that is closest to xmed, i.e.,
d(y∗, xmed) = minx∈S d(x, xmed). Then by the triangle
inequality∑

x∈S
d(y∗, x) ≤

∑
x∈S

[d(y∗, xmed) + d(xmed, x)](1.1)

≤ 2
∑
x∈S

d(xmed, x),

and the objective value of the reported y ∈ S is only
better.

Now consider a scenario where this analysis is tight;
suppose every input permutation is at the same distance
` > 0 from xmed, and the distance between every two
input permutations is 2`. Then the objective value for
xmed is `m, but for every input permutation y ∈ S it
is 2`m. In this scenario, a better approximation must
exploit the structure of the input permutations.

Somewhat surprisingly, we show that if the optimal
objective value is large, say Ω(mn), then the above
scenario cannot occur. To gain intuition, start with
a favorable case where all input permutations are at
distance at least n/c from xmed (for some constant
c > 1). Then in an optimal alignment of an input x ∈ S
with xmed, at least ` = n/c symbols are not aligned
(i.e., are moved). Now a combinatorial bound (based
on the inclusion–exclusion principle), implies that every
2c input permutations must include a pair x′, x′′ ∈ S
whose sets of non-aligned symbols (with xmed) have
a large intersection, specifically of size Ω(n/c2). This
yields a non-trivial distance bound d(x′, x′′) ≤ 2n/c −
Ω(n/c2) < 2` that contradicts our assumption. Our
full argument (in Section 3.1), employs this idea more
generally than just the favorable case (i.e., whenever
the optimal objective value is large). We use additional
steps, like averaging arguments to exclude permutations
that are too close or too far from xmed, and an iterative
“clustering” of the input permutations around at most
2c so-called candidate permutations, to infer that for
at least one candidate y∗ ∈ S, the cluster around it is
large. We use this to bound the objective value for this
candidate y∗, but with a gain compared to (1.1), due
to the cluster around y∗ that has many permutations,
all within distance 2n/c−Ω(n/c2) from y. We conclude
that reporting the best permutation among the input
S is at least as good as y∗ and thus breaks below
2-approximation. This argument about large optimal
objective value extends to the edit metric, i.e., over
general strings (see Section 3.3).

The general case of the Ulam metric (without
assuming that the optimal objective value is large) is
more difficult and involved, but perhaps surprisingly,
reuses the main technical idea from above, although not
in a black-box manner. We split this analysis into two
cases by considering the contribution of each symbol to
the optimal objective value. To be more precise, fix
an optimal alignment of each input permutation x ∈ S
with xmed, and let the cost of a symbol count in how
many alignments (equivalently, for how many x ∈ S)
this symbol is not aligned.

Informally, one case (called Case 2 in Section 3.2) is
when the cost is distributed over a few symbols. Here,
by restricting these optimal alignments to these costly
symbols we can employ a strategy similar to our first
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case above (optimal objective value is large). Intuitively,
for the costly symbols we obtain approximation bet-
ter than 2, and approximation factor 2 for the other
symbols, and altogether conclude that reporting the
best permutation among the input S breaks below 2-
approximation. While this plan is quite intuitive, com-
bining these two analyses into one argument is techni-
cally challenging because we cannot really analyze these
two sets of symbols (denoted therein G and G) sep-
arately. We defer the detailed proof of Case 2 (i.e.,
Lemma 3.13) to the full version.

In the remaining case (called Case 1 in Section 3.2),
the cost is distributed over many symbols; this is a
completely different situation and we devise for it an
interesting new algorithm (RelativeOrder in Proce-
dure 2). The main idea is that now most of the symbols
in [n] must be aligned in many optimal alignments (i.e.,
for many x ∈ S), and thus for every two such symbols,
their relative order in xmed can be easily deduced from
the input (by taking majority over all x ∈ S). More
precisely, call a symbol good if it is aligned in at least
0.9-fraction of the input permutations. Observe that ev-
ery two good symbols must be aligned simultaneously
in at least 0.8-fraction of the input permutations, hence
their relative order in xmed can be computed by check-
ing their order in each x ∈ S and taking a majority
vote. This observation is very useful because in this case
most symbols are good, however the challenge is that we
cannot identify the good symbols reliably. Instead, our
algorithm finds all pairs of symbols with a qualified ma-
jority (say, above 0.8 threshold); which is a superset of
the aforementioned pairs, and might contains spurious
pairs (involving bad symbols) that contradict the rel-
ative order between good symbols. We overcome this
by iteratively removing symbols that participate in a
contradiction: our algorithm builds a directed graph H,
whose vertices represent symbols and whose edges rep-
resent qualified majority, and then iteratively removes a
(shortest) cycle, where removal of a cycle means remov-
ing all its vertices (not only edges). We prove that every
such cycle consists mostly of bad vertices/symbols, and
straightforward counting shows that the final graph H
contains almost all the good symbols. Moreover, this
final H contains no cycles, and thus topological sort re-
trieves the order (according to xmed) of almost all good
symbols. We then obtain a permutation that is pretty
close to xmed by simply adding all the missing symbols
at the end. We point out that the approximation factor
that we get here (Case 1) can in principle be close to
1 (it depends on some parameters). We indeed exploit
this in our algorithm for the probabilistic model (as dis-
cussed next), however the balance with Case 2 is quite
poor, and thus our overall approximation factor is quite

close to 2.
Finding median in a probabilistic model. Our

next result (in Section 4) deals with a probabilistic
model over the Ulam metric, and is motivated by the
application to DNA storage system. In this model,
the input S consists of m permutations, each generated
from an unknown permutation x by moving each symbol
independently with probability ε > 0 to a randomly
chosen location. Let S(x, ε,m) denote the distribution
generated in this model. Given an input S drawn
from this distribution, the objective is to find a median
of S (not the unknown x). We show a polynomial-
time algorithm that finds (with high probability) a
(1 + o(1/ε))-approximate median of S (see Theorem 1.3
for the precise factor). Our argument consists of two
parts. First, we show that the unknown x is itself a
(1 + o(1))-approximate median. Second, we provide an
algorithm that computes a permutation x̃ that is “very
close” to the unknown x. It then follows by the triangle
inequality that x̃ is an approximate median of S.

The first part goes via an information-theoretic
(encoding-decoding based) argument. We show that
if x is not an approximate median of S, then we
can encode the set of (random) move operations used
to generate S, using fewer number of bits than that
required by the information-theoretic bound. It is
evident from the generation process of each permutation
xi ∈ S, that the (Shannon) entropy of this set of random
move operations has total entropy about

∑
xi∈S d(x, xi),

which is the median objective value for x. Let xmed

be an optimal median of S, and denote the optimal
median objective value by OPT(S) =

∑
xi∈S d(xi, xmed).

To encode all the xi’s (given x), one can first specify
a set of move operations to transform x into xmed,
and then specify the move operations to transform
xmed to each xi. The length of this encoding is about
d(x, xmed) +

∑
xi∈S d(xi, xmed) = d(x, xmed) + OPT(S).

If the above encoding could be used to recover all the
random move operations, then we could conclude, by
Shannon’s source coding theorem, that the objective
value with respect to x is almost equal to OPT(S), and
thus x is an approximate median. We do not know if
this encoding is indeed sufficient for the said decoding,
but we can add to it a little extra information, that
suffices to decode the set of random operations; let us
elaborate how works.

From the above encoding we know all the xi’s. We
show that almost none of the symbols (except about
O(log n) many) that were moved from x to generate
xi, appears in every longest common subsequence (lcs)
between xi and x. Therefore by computing an lcs
between xi and x, all but O(log n) moved symbols can
be identified. Note that a random move operation
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consists of two pieces of information, the moved symbol
and the location where it is moved. From the lcs we
get back the information about the moved symbols. So
the only task remains is to identify the locations where
they are moved. Suppose a symbol a is moved to a
location right next to another symbol b to generate xi
from x. (Note, since we are dealing with permutations
we can identify a location by its preceding symbol).
Observe that the symbol b might also be moved, but
only with probability ε, and so with the remaining
probability b just precedes a in xi. Therefore for each
of the moved symbols (except for about an ε-fraction)
for xi, just by looking into its preceding symbol in xi
we can identify its moved location. For the remaining ε-
faction we could encode the moved locations explicitly,
but that would worsen the approximation factor. To
handle this, we argue that for each of these ε-fraction
of moved symbols we can identify a O(log n)-sized “set
of candidate locations”, and thus it suffices to encode
the exact location only inside this candidate set using
O(log log n) bits. Now after a careful calculation we get
that the whole encoding is of length (1 + o(1))OPT(S).
Then we apply Shannon’s source coding theorem and
conclude that the objective value with respect to x
(which is equal to the total entropy of random move
operations) is at most (1 + o(1))OPT(S), and so x is
a (1 + o(1))-approximate median of S. We defer the
exact details of the encoding-decoding argument (i.e.,
the proof of Theorem 4.3) to the full version.

The second step is to reconstruct the initial un-
known permutation x. The task is similar to that
in [CDKL14], although their underlying distance is
Kendall’s tau distance, and their random perturbation
model is different. In our case, each symbol of x is
moved with probability ε to generate a permutation xi.
Hence any particular symbol is moved in expectation
in εm many xi’s. Further, the total objective value is
equally distributed on all the symbols. This scenario is
similar to Case 1 in our worst-case approximation al-
gorithm, except that now the underlying permutation
is x instead of xmed. Thus we can use Procedure Rel-
ativeOrder discussed above, and since the objective
value is distributed equally among all the symbols, we
can find a permutation x̃ that is very close to the un-
known x. Moreover, when m ≥ Ω(log n) we show that
for every two symbols a 6= b ∈ [n] we can decide (with
high probability) whether a appears before b in x or not,
by observing their relative order in the input permuta-
tions. Hence using any sorting algorithm (with slight
modification) we can reconstruct x with high probabil-
ity.

Exact median for three permutations. We
devise an algorithm that finds an exact median for three

permutations. The non-trivial part of this algorithm
is that running the conventional dynamic program
for a median [San75, Kru83] will compute a string,
which need not be a permutation, and in fact even
its length need not be equal to n. Therefore, we
first use a slight modification of that dynamic program
to compute a string x′ of length exactly n (but not
necessarily a permutation) with the minimum possible
median objective value with respect to edit distance
(i.e., x′ = arg miny∈[n]n

∑
i∈[3] ∆(y, xi)). Crucially, the

objective value attained by this x′ is at most that of
a median permutation xmed. Next, we post-process
x′ to produce a permutation x̃ over [n], by removing
multiple occurrences of any symbol and then inserting
all the missing symbols (in a careful manner). To
complete the analysis we show that

∑
i∈[3] ∆(x̃, xi) =∑

i∈[3] ∆(x′, xi). Interested readers may refer to the full
version for the details.

1.2 Conclusion There is a folklore algorithm that
computes 2-approximate median in any metric space,
however no better approximation algorithm was known
for the Ulam and edit metrics, despite their utter impor-
tance. Our main result breaks below 2-approximation
for the Ulam metric. Further, we extend our result
to the more general edit metric, albeit with certain re-
strictions on the length of the median and on the op-
timal median objective value. An exciting future di-
rection, is to beat 2-approximation without these re-
strictions. In fact, this was recently stated as an open
problem [Coh19].

We also consider for the median Ulam problem a
probabilistic model, which is motivated by the applica-
tions to DNA storage system, and we provide for it a
(1 + o(1))-approximation algorithm. In achieving our
result, we use novel encoding-decoding (information-
theoretic) argument, which we hope could also be used
for the edit metric (left open for the future work) and
perhaps even more general metric spaces.

2 Preliminaries

Notations: Let [n] denote the set {1, 2, · · · , n}. We re-
fer the set of all permutations over [n] by Sn. Through-
out this paper we consider any permutation x as a se-
quence of numbers a1, a2, · · · , an such that x(i) = ai.
For any subset I ⊆ [n], let x(I) := {x(i)|i ∈ I}.

The Ulam Metric and the Problem of Find-
ing Median. Given two permutations x, y ∈ Sn, the
Ulam distance between them, denoted by d(x, y), is the
minimum number of character move operations that is
needed to transform x into y.

Given two strings (permutations) x and y of lengths
n1 and n2 respectively, alignment g is a function from
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[n1] to [n2] ∪ {∗} which satisfies:

� ∀i ∈ [n1], if g(i) 6= ∗, then x(i) = y(g(i));

� For any two i 6= j ∈ [n1], such that g(i) 6= ∗ and
g(j) 6= ∗, if i > j, then g(i) > g(j).

For an alignment g between two strings (permuta-
tions) x and y, we say g aligns a character x(i) with
some character y(j) iff j = g(i).

Given a set S ⊆ Sn and another permutation
y ∈ Sn, we refer the quantity

∑
x∈S d(y, x) by the

median objective value of S with respect to y, denoted
by Obj(S, y).

Given a set S ⊆ Sn, a median of S is a
permutation xmed ∈ Sn (not necessarily from S)
such that Obj(S, xmed) is minimized, i.e., xmed =
arg miny∈Sn Obj(S, y). We refer Obj(S, xmed) by
OPT(S). We call a permutation x̃ a c-approximate me-
dian, for some c > 0, of S iff Obj(S, x̃) ≤ OPT(S) ≤
c · Obj(S, x̃).

A Folklore 2-approximation Algorithm. For
the problem of finding median (over any metric space,
and so for the Ulam), there is a folklore 2-approximation
algorithm (actually, a (2 − 1

m+1 )-approximation algo-
rithm for m input permutations). We briefly present
here this algorithm for a set of permutations. We also
refer to this algorithm as Procedure BestFromInput
(Procedure 1).

Procedure 1 BestFromInput (S)

Input: S ⊆ Sn.
Output: A permutation y ∈ S.

1: For all pairs of permutations xi, xj ∈ S, compute
d(xi, xj).

2: return arg miny∈S
∑
x∈S d(y, x).

3 Breaking below 2-approximation (in
Worst-case)

In this section, we describe a polynomial-time algorithm
that computes, for any given input permutations, a
(2 − δ)-approximate median under the Ulam metric.
Below we restate Theorem 1.1.

Theorem 3.1. There is a constant δ > 0 and a de-
terministic algorithm that, given as input a set of m
permutations S ⊆ Sn, computes a (2 − δ)-approximate
median in time O(nm2 log n+ n2m+ n3).

We start with the description of our algorithm and
the running time bound. Next we analyze the approxi-
mation factor into two parts. First we consider a special

case where the objective is large and give a stronger ap-
proximation guarantee. After that we discuss the gen-
eral case. Given as input a set of permutations S ⊂ Sn,
our algorithm runs two procedures, each producing a
permutation (candidate median), and returns the bet-
ter of the two (that has smaller objective value). The
first procedure is BestFromInput (see Procedure 1),
which reports an input permutation y ∈ S that has
the minimum objective value among all input permuta-
tions, i.e., arg miny∈S

∑
x∈S d(y, x). (We have discussed

in previous section that this algorithm is well-known to
achieve 2-approximation in every metric space.)

The second procedure, called RelativeOrder, is
given a parameter 0 ≤ α ≤ 1/10, and works as follows
(see also Procedure 2). First, create a directed graph H
with vertex set V (H) = [n] and edge set

E(H) = {(i, j) : i appears before j in at least

(1− 2α)|S| permutations in S}.

Next, as long as the current graph H is not acyclic,
repeatedly find in it a cycle of minimum length and
delete all its vertices (with all their incident edges).
Denote the resulting acyclic graph by H, and use
topological sort to compute an ordering P of its vertex
set V (H) ⊂ V (H) = [n]. We shall write i / j to denote
that i precedes j in this ordering P. Let the string x̄ be a
permutation of (set of symbols) V (H) by ordering them
according to P. Finally, output the permutation x̃ of
[n] that is obtained by appending to x̄ all the remaining
symbols [n] \ V (H) in an arbitrary order.

Procedure 2 RelativeOrder (S, α)

Input: S ⊆ Sn of size m, 0 < α ≤ 1/10.
Output: A permutation string x̃ over [n].

1: H ← ([n], E) where E = {(i, j) : i appears
before j in ≥ (1− 2α)|S| permutations in S}

2: while H contains a cycle do
3: Cmin ← cycle of minimum length in H
4: H = H − V (Cmin)
5: end while
6: H ← H
7: x← string formed by topological ordering of H
8: x̃ ← string formed by appending to x the symbols

[n] \ V (H) in an arbitrary order.
9: return x̃.

Running time analysis. Let m = |S|. Since
d(x, y) can be computed in O(n log n) time for any
x, y ∈ Sn, Procedure BestFromInput runs in time
O(nm2 log n).

In Procedure RelativeOrder, given the set S and
parameter α we can compute graph H in time O(n2m).
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Next, we iteratively find a minimum-length cycle Cmin in
the current graph H̃ in time O(n3) (using an All-Pairs
Shortest Path algorithm), and delete all the vertices
of Cmin (and edges incident on these vertices) in time
O(n2). Hence, each iteration takes time O(n3), and
since the number of iterations required is at most n,
the total time to compute H is O(n4). Now since H
has at most n vertices, computing a topological order
of its vertices runs in time O(n2). Given this ordering,
the strings x and x̃ are computed in time O(n). Thus,
Procedure RelativeOrder runs in time O(n2m+n4).

As our main algorithm outputs the string with
the minimum median objective value among the two
strings returned by Procedure BestFromInput and
Procedure RelativeOrder, its total running time
is O(nm2 log n + n2m + n4). In Remark 3.12, we
will comment on how to improve the O(n4) factor of
the above time-bound to O(n3) by slightly modifying
Procedure RelativeOrder.

We devote the remaining part of the section to
derive the approximation ratio of our algorithm. We
will first consider a special case when OPT(S) is “large”,
for which the analysis is slightly simpler, and also, we
get a stronger approximation guarantee. Then we will
turn our attention to the more general case. Although
the result for the high regime is independent of that for
the general case, one of the main ideas carries forward
to the general case, albeit with more complications.

3.1 High regime of the optimal objective value

Lemma 3.2. Given a set of permutations S ⊆ Sn
with OPT(S) ≥ |S|n/c for some c > 1, Procedure
BestFromInput (S) outputs a (2− 1

50c2 )-approximate
median.

Proof. We first introduce some notation. Let m = |S|
and set δ = 1

50c2 . Let xmed be an (optimal) median
of S; then OPT(S) =

∑
x∈S d(x, xmed), and for brevity

we denote it by OPT. For any subset S′ ⊆ S, denote
OPTS′ =

∑
x∈S′ d(x, xmed). We assume henceforth that

(3.2) ∀x ∈ S, d(x, xmed) > (1− δ)OPT/m,

because any x′ ∈ S that violates (3.2) is a (2 − δ)-
approximate median of S by the triangle inequality, for-
mally

∑
z∈S d(x′, z) ≤

∑
z∈S [d(x′, xmed)+d(xmed, z)] ≤

(2− δ)OPT.
For each x ∈ S fix an optimal alignment (see

Section 2 for the definition) between xmed and x, and
denote by Ix ⊂ [n] the set of symbols moved (i.e., not
aligned) by this alignment. Then by (3.2) we have
|Ix| = d(x, xmed) > (1 − δ)OPT/m ≥ (1 − δ)n/c. Set
c′ = d c

1−δ e and ξ = 1
2c′2 .

We now partition S into the far and close permuta-
tions (from xmed). Let F = {x ∈ S : d(x, xmed) ≥ (1 +
δ)OPT/m} and F = S\F . Since OPT =

∑
x∈S d(x, xmed),

by our assumption (3.2), |F | ≤ |F |. Thus |F | ≥ m/2.
It follows that

(3.3) OPTF ≥
m
2 · (1− δ)

OPT
m = 1−δ

2 OPT.

Next, we partition F even further using the follow-
ing procedure. Initialize a set C = ∅, and then iterate
over the permutations x ∈ F in non-decreasing order of
|Ix|. For each such x, if

∀y ∈ C, |Ix ∩ Iy| < ξn,

then add x to C and create its “buddies set” Bx = ∅;
otherwise, pick y ∈ C that violates the above, breaking
ties arbitrarily, and add x to its buddies set By. Note
that this partitioning is solely for the sake of analysis.
Since F is processed in sorted order, it is clear that

(3.4) ∀y ∈ C, x ∈ By, |Iy| ≤ |Ix|.

We shall now prove two claims about this partition-
ing; the first one argues that at least a buddies set By
(i.e., one “cluster”) must be responsible for a large por-
tion of the cost, and the second one bounds the distances
from its “center” y.

Claim 3.3. There exists y ∈ C such that

(3.5) OPTBy ≥
OPTF
|C|

≥
OPTF
2c′

.

To prove the claim, we shall need the following
upper bound on the size of a family of subsets with
small pairwise intersections.

Lemma 3.4. For every n, c′ ∈ N and 0 < ξ ≤ 2
2c′2 ,

every family of subsets of [n] in which every subset has
size n/c′ and every pair of subsets share at most ξn
elements, has size at most 2c′.

We defer the proof of the above lemma to the end of
this subsection. Now assuming the lemma we prove
Claim 3.3.

Proof. [Proof of Claim 3.3] Lemma 3.4 applies to the
set C because ξ = 1

2c′2 , and by construction of C, all
distinct y, y′ ∈ C satisfy |Iy ∩ Iy′ | < ξn. We thus
conclude that

|C| ≤ 2c′.

Now since F =
⋃
x∈C Bx, a straightforward averaging

implies the claim.
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Claim 3.5. Suppose y ∈ C satisfies (3.5). Then its
distance to every x ∈ S is bounded by:

∀x ∈ F, d(x, y) ≤ 2d(x, xmed).(3.6)

∀x ∈ F , d(x, y) ≤ (2 + 4δ)d(x, xmed)(3.7)

∀x ∈ By, d(x, y) ≤ (2− ρ)d(x, xmed),(3.8)

where ρ = (1−δ)(c′−1)
2(1+δ)c′2 .

Proof. To prove (3.6), consider x ∈ F . Since y ∈ C ⊆
F we have d(y, xmed) ≤ d(x, xmed), and thus by the
triangle inequality, d(x, y) ≤ d(x, xmed) + d(y, xmed) ≤
2d(x, xmed).

To prove (3.7), consider x ∈ F . Since y ∈ C ⊆ F
and using our assumption (3.2), we have d(y, xmed) ≤
(1 + δ)OPT/m ≤ 1+δ

1−δd(x, xmed). Using δ ≤ 1/2 and
the triangle inequality, we obtain d(x, y) ≤ d(x, xmed) +
d(y, xmed) ≤ 2(1 + 2δ)d(x, xmed).

To prove (3.8), consider x ∈ By. Then

d(x, y) ≤ |Ix|+ |Iy| − |Ix ∩ Iy|
≤ 2|Ix| − ξn

[by (3.4)]

≤
(

2− ξn

d(x, xmed)

)
d(x, xmed)

[since |Ix| = d(x, xmed)]

≤
(

2− (1− δ)(c′ − 1)

2(1 + δ)c′2

)
d(x, xmed)

where the last inequality follows because d(x, xmed) ≤
(1 + δ)OPT/m ≤ (1 + δ)n/c and c′ = d c

1−δ e.

We can now complete the proof of the lemma. Let
y ∈ C be as in Claims 3.3 and 3.5∑
x∈S

d(x, y) ≤
∑
x∈F

d(x, y) +
∑

x∈F\By

d(x, y) +
∑
x∈By

d(x, y)

≤ 2OPTF + (2 + 4δ)OPTF\By + (2− ρ)OPTBy

[by Claim 3.5]

≤ 2OPT + 4δOPTF − ρOPTBy

≤ 2OPT + 4δOPTF − ρ
OPTF
c′

[by (3.5)]

≤ 2OPT− (
ρ

c′
− 4δ)(1− δ)OPT

2
[by (3.3)]

≤
(

2−
( ρc′ − 4δ)(1− δ)

2

)
OPT

≤ (2− 1

50c2
)OPT

[for δ =
1

50c2
].

This concludes the proof of Lemma 3.2.

It only remains to prove Lemma 3.4.

Proof. [Proof of Lemma 3.4] For contradiction sake,
assume that there are 2c′ subsets Z1, · · · , Z2c′ ⊆ [n],
such that

∀i ∈ [2c′], |Zi| ≥ n/c′,(3.9)

∀i 6= j ∈ [2c′],|Zi ∩ Zj | ≤ n/2c′2.(3.10)

Clearly,
∣∣∣⋃i∈[2c′] Zi∣∣∣ ≤ n. Now from simple inclusion-

exclusion principle together with (3.9) and (3.10), we
get ∣∣∣ ⋃

i∈[2c′]

Zi

∣∣∣ ≥ n

c′
2c′ − n

2c′2

(
2c′

2

)
= n+

n

2c′
> n

which leads to a contradiction. Now the lemma follows.

3.2 The general case We now argue the below 2-
approximation guarantee for general input. Let us
first recall a few notations from the last subsection
and introduce a few more. Let xmed be an (arbitrary)
median of S; then OPT(S) =

∑
x∈S d(x, xmed), and for

brevity we denote it by OPT. For any subset S′ ⊆ S
let OPTS′ =

∑
x∈S′ d(x, xmed). Let us take parameters

δ, α, β, γ, ξ, η, the value of which will be set later. (Note,
the parameters δ, ξ were also used in the last subsection,
but their values will be set differently in this subsection.)

From now on we assume that

(3.11) ∀x ∈ S, d(x, xmed) > (1− δ)OPT/m,

because any x′ ∈ S that violates (3.11) is a (2 − δ)-
approximate median of S (by the triangle inequality).

For each x ∈ S consider an (arbitrary) optimal
alignment gx between xmed and x, and let Ix denote
the set of symbols that are moved (i.e., not aligned) by
this alignment. Note, |Ix| = d(x, xmed). For any x ∈ S
and subset of symbols Z ⊆ [n], let Ix(Z) = Ix ∩ Z.

For each symbol a ∈ [n] and any subset S′ ⊆ S, let

cS′(a) = |{x ∈ S′ : a is moved by the alignment gx}|.

For brevity when S′ = S we drop the subscript S′ and
simply use c(a). For any subset Z ⊆ [n] and S′ ⊆ S,
let OPTS′(Z) =

∑
a∈Z cS′(a). Again for brevity when

Z = [n] we only use OPTS′ .
We call a symbol a ∈ [n] good if c(a) ≤ αm;

otherwise bad. Let

G = {a ∈ [n] : a is a good symbol},

and G = [n] \ G. Now we divide our analysis into two
cases depending on the size of G.
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Case 1: |G| ≤ β OPT
m

Lemma 3.6. Let α ∈ (0, 1/10] and β ∈ (0, 1).
Given a set S ⊆ Sn of size m such that the set
of bad symbols G is of size at most β OPT

m , Proce-
dure RelativeOrder(S, α) outputs a (1 +β(1 + 8α))-
approximate median.

In this section we show Procedure Relative-
Order(S, α) finds a string x̃ such that d(x̃, xmed)
≤ 1

1−4α |G|. Given set S, Procedure RelativeOrder()
starts with the construction of the alignment graph H =
(V (H), E(H)). Call a vertex good if its corresponding
symbol is good; otherwise call it bad. We first make the
following observation.

Observation 3.7. Given a set S ⊆ Sn of size m and
a parameter 0 < α ≤ 1/10, let G be the set of good
symbols. For each pair of symbols i, j ∈ G there exists
either a directed edge (i, j) or (j, i) in E(H).

Proof. As both i and j are good symbols, c(i) and c(j)
are at most αm. Now for the sake of contradiction,
assume the observation is not correct. Then neither i
precedes j, nor j precedes i in at least (1−2α)m strings
of S. In this case, irrespective of the order of i and j in
xmed, together they can be aligned in less than (1−2α)m
strings of S. Hence c(i)+c(j) > 2αm. But then at least
one of c(i) and c(j) is strictly larger than αm and we
get a contradiction.

Next we take the graph H and repetitively delete
the shortest length cycle until the resultant graph H =
(V (H), E(H)) becomes acyclic. We make the following
claim.

Claim 3.8. Given a set S ⊆ Sn of size m and a
parameter 0 < α ≤ 1/10, let H be the associated
alignment graph. Let Hk be the graph obtained from H
after k deletion steps and Ckmin be a shortest length cycle
in Hk. Then for any k ≥ 0, we claim the following.

1. Each cycle Ck of Hk has length at least 1
2α .

2. There exist at most two good vertices in Ckmin.

Proof. Consider a cycle Ck in Hk. Let i be some vertex
and (j, i) be some edge contained in Ck. Without loss
of generality assume Ck be the shortest cycle containing
i. Let pij be the path from i to j in Ck. Note, pij
is indeed the shortest path from i to j. To prove the
first part we show if length of pij is ` then in at most
2`αm strings of S, j precedes i. We prove this by
induction on the length of pij . As a base case, consider
the scenario when the path length is just one, that is
there is a directed edge from i to j. Hence, in at least

(1 − 2α)m strings of S, i precedes j and therefore in
at most 2αm strings j precedes i. Let the claim be
true for path of length ` − 1. Now consider a shortest
path i = i1 → i2 → · · · → i` → i`+1 = j of length
`. Notice the length of the shortest path between i and
i` is ` − 1. Hence in at most 2(` − 1)αm strings, i`
precedes i. Now as there is a directed edge from i` to j,
in at least (1− 2α)m strings i` precedes j. Together we
claim in at most 2(` − 1)αm + 2αm = 2`αm strings, j
precedes i. Now as there is a directed edge from j to i,
2`αm ≥ (1− 2α)m. So, ` ≥ 1−2α

2α . Hence length of the
cycle is at least `+ 1 ≥ 1

2α .
Fix two consecutive vertices i, j in Ckmin such that

the directed edge (j, i) is part of Ckmin. To prove the
second part assume there are more than two good ver-
tices, namely v1, v2, . . . v`′ appearing on pij . Moreover,
assume they appear on the path pij in the above or-
der. By Observation 3.7 between any vq and vr there is
an edge. First we claim for each pair q, r ∈ [`′] where
q < r, except both vq = i and vr = j, the direction of
the edge is from vq to vr. As otherwise let ∃q < r where
either vq 6= i or vr 6= j or both, the edge is from vr to
vq. This gives rise to a cycle (vq, . . . , vr, vq) which has
length strictly smaller than the length of Ckmin, and thus
we get a contradiction. Next we divide the proof into
two cases.

Case i: (When at least one of i and j is a bad
symbol) We have already seen, ∀q, r ∈ [`′] where q < r
the edge is from vq to vr. Following this there exists a
directed edge from v1 to v`′ . Hence, the concatenation
of the path from i to v1, the edge (v1, v

′
`) and the

path from v`′ to j creates a path from i to j of length
|pij |−(`′−2) < |pij | as `′ > 2, and we get a contradiction
as we assumed Ckmin to be the shortest length cycle.

Case ii: (When both i and j are good
symbols) In this case, as we have already argued there
must be an edge from v1 = i to v2 and an edge from v2
to v`′ = j. That implies there is a cycle (i, v2, j, i) of
length 3, which contradicts the first part of our claim
that says each cycle must be of length at least 1

2α ≥ 5
(for α ≤ 1/10).

Recall, G is the set of good symbols (vertices). As
a corollary of Claim 3.8 we have the following.

Corollary 3.9. |G \ V (H)| ≤ 4α
1−4α |G|.

Proof. By Claim 3.8, any cycle that we remove has at
least 1

2α vertices. Moreover, among them at most two
are good. So the number of bad vertices in each removed
cycle is at least 1−4α

2α . Hence, total number of good

vertices we remove is at most 4α
1−4α |G|.

Next we consider a topological ordering of H. Using
this we define an ordering P among the symbols of V (H)
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as follows: For each i, j ∈ V (H), i precedes j, denoted
by i / j if i occurs before j in the topological sorted
ordering. Let x be the string over the symbols of V (H)
obeying the ordering of P. Note, V (H) may not contain
all the n vertices (or symbols). Create a permutation
x̃ over [n] by appending the symbols of [n] \ V (H) at
the end of string x in any arbitrary order. We claim the
following.

Lemma 3.10. d(x̃, xmed) ≤ 1
1−4α |G|.

Before proving the lemma, we make the following
claim.

Claim 3.11. For any pair of symbols i, j ∈ G ∩ V (H),
if i / j, then i precedes j in xmed; otherwise j precedes i
in xmed.

Proof. For any pair of symbols i, j ∈ G∩V (H), as both
the symbols i, j ∈ G, by Observation 3.7 there exists
an edge between i and j in H. So if i / j, then there
must exist a directed edge from i to j, and therefore in
at least (1− 2α)m strings i appears before j. As both i
and j are aligned together in at least (1− 2α)m strings
and 1 − 2α > 2α (for α ≤ 1/10), i precedes j in xmed.
We can prove the other direction in a similar way.

Proof. [Proof of Lemma 3.10] Following Claim 3.11,
between x̃ and xmed there exists a common subsequence
of length at least |G ∩ V (H)|. Hence

d(x̃, xmed) ≤ n− |G ∩ V (H)|
= |G|+ |G| − |G ∩ V (H)|
= |G|+ |G \ V (H)|

≤ 1

1− 4α
|G| [by Corollary 3.9].

Proof. [Proof of Lemma 3.6] Procedure
RelativeOrder(S, α) outputs a string x̃ such that
d(x̃, xmed) ≤ 1

1−4α |G|. Hence by triangle inequality,

∑
y∈S

d(x̃, y) ≤
∑
y∈S

(
d(y, xmed) + d(xmed, x̃)

)
≤ OPT +

m

1− 4α
|G| [by Lemma 3.10]

≤ OPT +
β

1− 4α
OPT [as |G| ≤ β OPT

m
]

≤ (1 + β(1 + 8α))OPT [as α ≤ 1/10].

Remark 3.12. We can improve the running time of
Procedure RelativeOrder from O(n2m + n4) to
O(n2m + n3) by slightly modifying it, without losing
much on the approximation guarantee. Currently, Pro-
cedure RelativeOrder runs a while loop until there
is no cycle in the graph H, and at each iteration com-
putes a shortest cycle on the whole graph and delete all
the vertices of that cycle (with all their incident edges).
Instead of this while loop, we can enumerate over all
the vertices and while enumerating a vertex v compute
a shortest cycle that contains v and then delete all its
vertices (with all their incident edges). Now each iter-
ation takes only O(n2) time, and so the enumeration
over all the vertices takes O(n3) time. Hence, the over-
all running time is O(n2m+ n3).

The issue with this modification is that Claim 3.8
can get violated as each deleted cycle may contain more
than two good vertices. However, we can claim that
for any vertex v, in a shortest cycle C containing it,
the ratio between the number of good and bad vertices
is at most 3/( 1

2α − 2). The claim follows from two
observations. First, for any two good vertices u1, u2
in C, either they are consecutive in C, or there are at
least 1

2α − 2 bad vertices between them. To see this,
take any two non-consecutive vertices u1, u2 in C, and
without loss of generality assume u1 appears before u2
in C. By an argument similar to that in the proof of
Claim 3.8, if there are at most 1

2α − 3 bad vertices
between u1, u2 then there must be a directed edge from
u1 to u2 in H, contradicting the cycle C being a shortest
cycle containing v. Our second observation is that, if
three good vertices u1, u2, u3 form a 3-length subpath
u1 → u2 → u3 in C (which is a shortest cycle containing
v), then u2 = v. This is because, since u1, u2, u3 all are
good vertices and there is an edge from u1 to u2 and
from u2 to u3, there must be an edge also from u1 to
u3, and therefore if u2 6= v, we will get a shorter cycle
by following the edge u1 to u3 contradicting C being a
shortest cycle containing v. Our claimed bound on the
ratio of good and bad symbols now follows from these
two observations. Hence, at the end of enumeration,
the number of good symbols (or vertices) that got deleted
is at most 6α

1−4α |G| (which is slightly worse than that in
Corollary 3.9). The rest of the argument will remain the
same, and therefore finally, we will get a (1+β(1+12α))-
approximate median.

Case 2: |G| > β OPT
m Recall, we take parameters

δ, α, β, γ, ξ, η, the value of which will be set later.

Lemma 3.13. Let α ∈ (0, 1/10] and β ∈ (0, 1). Given
S ⊆ Sn of size m such that the number of bad sym-
bols is |G| ≥ β OPT

m , Procedure BestFromInput(S)
outputs a (2 − ζ)-approximate median, where ζ =

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



(1−α/2)α5β2

220 log2

(1+ 3α
64

)
(8/3α)

.

We would like to mention that the constant 1/220 in
the above lemma is not optimal, and one can improve
this significantly by optimizing various parameters. The
proof of the above lemma resembles that of Lemma 3.2,
however it is much more intricate. We defer the proof
to the full version.

Proof of Theorem 1.1. Recall, if our input set
S violates assumption (3.11), then we get a (2 − δ)-
approximate median using Procedure BestFromIn-

put. Set δ = α6β2

219 log2

(1+ 3α
64

)
(8/3α)

. Next, set α = 1/10 and

β = 1/2. Now Theorem 1.1 follows from Lemma 3.6
and 3.13.

3.3 Generalization to Edit Distance (for the
High Regime) So far, all our results are only for the
Ulam metric. In this section, we will describe how to
extend our result of Section 3.1 to the edit metric space,
which is a generalization of the Ulam. The edit distance
between two strings is defined as the minimum number
of insertion, deletion and character substitution opera-
tions required to transform one string into another. For
the simplicity in exposition, we start with a special vari-
ant of the edit distance, where character substitution is
not allowed. (Originally, Levenshtein [Lev65] defined
both the variants, with and without the substitution
operation.) In this section, we refer this special variant
also as the edit distance. For any two strings x, y, their
edit distance, denoted by ∆(x, y), is the minimum num-
ber of insertion and deletion operations to transform x
into y. So ∆(x) = |x|+ |y| − |lcs(x, y)|.

We now define the median under the edit distance
metric, requiring it has the same length as the in-
put strings. Formally, the length-n edit-median of a
set of strings S ⊆ Σn is a string xmed ∈ Σn such
that

∑
x∈S ∆(x, xmed) is minimized. A c-approximate

length-n edit-median is defined analogous to that for
the Ulam metric.

Theorem 3.14. Given a set of strings S ⊆ Σn whose
optimal median objective value is at least |S|n/c for
some c > 1, Procedure BestFromInput reports a
(2 − 1

50c2 )-approximate length-n edit-median in time
O(nm2 log n).3

Let xmed ∈ Σn be an (arbitrary) median of S; then
OPT(S) =

∑
x∈S ∆(x, xmed). We use the argument used

in the proof of Lemma 3.2, but change the definition
of Ix for x ∈ S as follows: Fix an optimal alignment
(or a lcs) between xmed and x, and let Ix be the set

3We make no attempt to optimize the constants.

of positions i ∈ [n] such that xmed(i) is not aligned by
this alignment. Notice that |Ix| = ∆(x, xmed)/2 since x
and xmed have the same length n. Furthermore, for all
x 6= y ∈ S,

|lcs(x, y)| ≥ |Ix ∩ Iy|,

because the positions in Ix ∩ Iy define a subsequence of
xmed that is common to both x and y. Thus,

∆(x, y) = 2(n− |lcs(x, y)|)
≤ 2(n− |Ix ∩ Iy|)
= 2|Ix ∪ Iy|
= 2(|Ix|+ |Iy| − |Ix ∩ Iy|)
≤ ∆(x, xmed) + ∆(y, xmed)− |Ix ∩ Iy|.(3.12)

Then we follow the argument as in the proof of
Lemma 3.2 to identify a point y ∈ Σn (a cluster) as in
Claim 3.3, and bound the distance from y to all x ∈ S as
in Claim 3.5. To prove the bound (3.8), we use (3.12),
and the rest of the arguments will remain the same.

Remark 3.15. We can further extend our proof to a
more generalized edit distance notion, with character
substitution also as a valid edit operation. In this case,
the proof will be slightly more involved (by considering
different cases depending on whether the unaligned index
positions are for substitutions or deletions). However,
if we allow the median string to be of arbitrary length
(not necessarily the same as that of input strings), our
proof will fail. Indeed, in this case, there exists an
input set S with OPT ≥ Ω(n|S|) such that Procedure
BestFromInput (S) does not achieve approximation
better than factor 2.

4 Approximate Median in a Probabilistic
Model

Consider a permutation x ∈ Sn. Then take a set of
“noisy” copies of x, where each noisy copy is generated
from x by moving “a few” randomly chosen symbols
in randomly chosen positions. Formally, for any ε ∈
(0, 1) define S(x, ε,m) as a set of m permutations
x1, · · · , xm ∈ Sn such that for each i ∈ [m] xi is
generated from x in the following way: Select each
symbol in [n] independently with probability ε. Let the
set of selected symbols be Σi. For each symbol a ∈ Σi
choose another symbol bi(a) independently uniformly
at random from [n], and then move the symbol a from
its original position (in x) to right next to bi(a). Let
Σbi = {bi(a) : a ∈ Σi}.

Denote the set of all move operations performed
to generate xi by the set of tuples (a, bi(a)). Let
Σei = {(a, bi(a)) : a ∈ Σi}. For each i ∈ [m], define
set Σri = {a ∈ Σi : bi(a) ∈ Σi}.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Given S drawn from S(x, ε,m), the objective is
to find its median. Throughout this section, all the
probabilities are over the randomness used to generate
this set S. Now we state the main theorem of this
section (which is a restatement of Theorem 1.3).

Theorem 4.1. Fix a parameter ε ∈ (0, 1/40), a permu-
tation x ∈ Sn, and 40 ≤ m ≤ n. There is an O(n3)-time
deterministic algorithm that, given input S drawn from
S(x, ε,m), outputs a (1 + δ)-approximate median of S,

for δ = 20
m + 3

log(n/ε) + 2e−m/40

ε , with probability at least

1− 5/m.

Next, we state an important observation about per-
mutations in S(x, ε,m), following the simple application
of Chernoff bound.

Observation 4.2. For any ε ∈ (0, 1), any n ∈ N, a
permutation x ∈ Sn and any m ∈ N, let S = S(x, ε,m).
Then the followings hold.

1. For any i ∈ [m], Pr[|Σi| 6∈ (1 ± 1√
logn

)εn] ≤
e−εn/4 logn.

2. For any two xi 6= xj ∈ S, Pr[|Σi ∩ Σj | 6∈ (1 ±
1√
logn

)ε2n] ≤ e−ε2n/4 logn.

4.1 Hidden Permutation and Approximate Me-
dian To prove Theorem 1.3 we design an algorithm that
given a set S drawn from S(x, ε,m), finds a “good ap-
proximation” of x. Recall, our main goal is to find a
median permutation xmed for S. The following theorem
explains why it suffices to find x instead of an actual
median.

Theorem 4.3. For every ε ∈ (0, 1/12), any large
enough n ∈ N, a permutation x ∈ Sn, 20 ≤ m ≤ n
and δ = 20

m + 3
log(n/ε) , for a set of permutations S drawn

from S(x, ε,m),

Pr[Obj(S, x) ≤ (1 + δ)OPT(S)] ≥ 1−mn−1.5.

Our proof will go via an information-theoretic
(encoding-decoding based) argument. First, we will ar-
gue that one can encode the set S by specifying the
move operations to produce xi’s from a median xmed.
Then we will show that given x, using xi’s and extra
“few” bits, one can decode all the random move op-
erations of Σei ’s. Now using Shannon’s source coding
theorem we will get a lower bound on the optimum
median objective value OPT(S) =

∑
xi∈S d(xmed, xi).

Then compare that with the value obtained by x, i.e.,
Obj(S, x) =

∑
xi∈S d(x, xi) to get the claimed approx-

imation guarantee. We defer the detailed proof to the
full version.

4.2 Finding the Hidden Permutation In the last
section, we have seen that to find an approximate
median of a set S drawn from S(x, ε,m), it suffices to
find the permutation x. So from now on, we will focus
only on finding x (approximately).

When m is large Apparently the task of finding the
unknown x becomes much easier when m ≥ Ω(log n).

Lemma 4.4. For any ε ∈ (0, 1/16), a large enough
n ∈ N, a permutation x ∈ Sn, and any m ≥ 32 log n,
let S be drawn from S(x, ε,m). There is an O(n log2 n)
time algorithm that given S outputs x with probability
at least 1− 1/n.

Note, running time of the algorithm is independent
of m. The reason is that our algorithm will take an
arbitrary Θ(log n)-sized subset of S and compute x.

Proof. Finding x is nothing but sorting the numbers
in [n] according to the order specified by x. Before
proceeding further, let us introduce a notation that
we will use henceforth. For any two distinct symbols
a, b ∈ [n] if a appears before b in x we use the notation
a <x b. Below we describe our algorithm.

Without loss of generality, assume that m =
32 log n; otherwise, take an arbitrary subset S′ ⊆ S of
size 32 log n and perform our algorithm with S′ instead
of S. To sort the symbols according to the ordering of
x, we use the Mergesort 4 with additional query access
to the set S. While performing the Mergesort when-
ever two elements a, b ∈ [n] will be compared to check
whether a <x b, we will use the following query algo-
rithm.

Query algorithm (a, b): Compare a, b in all xi ∈
S. If at least in m/2 many xi’s a appears before b, then
return a <x b; else return b <x a.

It follows from the time complexity of the Mergesort
that the algorithm will make at most O(n log n) queries
to our query algorithm. Each such query takes O(m)
time. So the total running time of our algorithm is
O(n log2 n), since by our assumption m = 32 log n.

Now it only remains to prove the correctness of our
algorithm. For each a ∈ [n] let Ba = {xi ∈ S : a ∈ Σi}.
Take a parameter δ = 1

4ε − 2. We call a symbol a ∈ [n]
bad if |Ba| ≥ (1 + δ)εm. (Note, here the definition of a
bad symbol is similar to that used in Section 3.2. The
only difference is that here our “unknown reference” is x
instead of a median string xmed.) Consider any symbol
a ∈ [n]. Then E[|Ba|] = εm. Since Σi’s are generated
independently of each other, by Chernoff bound

Pr[a is bad] ≤ e−
δ2εm
2+δ .

4One may take any comparison-based sorting algorithm in-
stead of the Mergesort; the running time will change accordingly.
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Then by a union bound over all symbols,

Pr[None of symbols is bad] ≥ 1− ne−
δ2εm
2+δ ≥ 1− 1/n

where the last inequality holds for ε < 1/16, δ = 1
4ε − 2

and m = 32 log n.
Observe, for any two distinct symbols a, b ∈ [n]

if a <x b and none of them is bad, then the number
of xi’s in S in which in a appears before b is at least
(1− 2(1 + δ)ε)m > m/2 for δ = 1

4ε − 2. Thus our query
algorithm always outputs a correct order among two
symbols (given none of them is bad). The correctness
now follows from the correctness of the Mergesort.

When m is small

Lemma 4.5. For any ε ∈ (0, 1/40), a large enough
n ∈ N, a permutation x ∈ Sn, and any m, let S be drawn
from S(x, ε,m). There is a (deterministic) algorithm
that given S, outputs a permutation x̃ ∈ Sn such that
d(x, x̃) ≤ 5

3 (e−m/40+2
√

log n/n)n in time O(n3+mn2)
with probability at least 1− 1/n.

Proof. Before describing the algorithm let us introduce
a few notations to be used in this proof. For each
a ∈ [n] let Ba = {xi ∈ S : a ∈ Σi}. Take a
parameter δ = 1

10ε − 2. We call a symbol a ∈ [n] bad
if |Ba| ≥ α|S| = αm, where α = (1 + δ)ε. (Note, here
the definition of a bad symbol is similar to that used
in Section 3.2. The only difference is that here our
“unknown reference” is x instead of a median string
xmed.) Let

G = {a ∈ [n] : a is not bad},

and G = [n] \G.
Now we run the procedure RelativeOrder (de-

scribed in Section 3) with S and α as input. Next we
show that this procedure will return a x̃ ∈ Sn with the
desired distance bound from x.

Consider any symbol a ∈ [n]. Then E[|Ba|] = εm.
Since Σi’s are generated independently of each other,
by Chernoff bound

Pr[a is bad] ≤ e−
δ2εm
2+δ .

Let p = e−
δ2εm
2+δ ≤ e−m/40 for any ε ∈ (0, 1/40). So

E[|G|] ≥ (1 − p)n. Since a symbols is bad independent
of any other symbol being bad, by Chernoff bound for
any δ′ ∈ (0, 1),

Pr[|G| ≥ (1− δ′)E[|G|]] ≥ 1− e−
δ′2E[|G|]

2

≥ 1− e−
δ′2(1−p)n

2 .(4.13)

Note, by our choice of parameter δ for any ε ∈ (0, 1/40),
α ∈ (0, 1/10) . So by an argument exactly the same as
that used in the proof of Lemma 3.10, we get that

d(x, x̃) ≤ 1

1− 4α
|G|

≤ 1

1− 4α
(p+ δ′(1− p))n

≤ 5

3
(e−m/40 + δ′)n since α < 1/10

where the second inequality holds with probability at

least 1− e−
δ′2(1−p)n

2 by (4.13). Now to finish the proof
set δ′ = 2

√
log n/n.

Proof of Theorem 1.3. Now we are ready to
finish the proof of Theorem 1.3. For m ≥ 32 log n,
Theorem 4.3 together with Lemma 4.4 shows that in
time O(n log2 n) we can find a (1 + δ)-approximate
median of S drawn from S(x, ε,m), for δ = 20

m + 3
log(n/ε)

with probability at least 1−mn−1.5.
For any m < 32 log n by Lemma 4.5 we get a x̃ such

that d(x, x̃) ≤ 5
3 (e−m/40+2

√
log n/n)n with probability

at least 1− 1/n. Let γ = e−m/40 + 2
√

log n/n.

Obj(S, x̃) =
∑
xi∈S

d(xi, x̃)

≤
∑
xi∈S

d(xi, x) +md(x, x̃)

[by the triangle inequality]

≤ Obj(S, x) +
5

3
γnm

[by Lemma 4.5]

≤
(

1 +
γ

ε

)
Obj(S, x)

[by Observation 4.2 w.p. ≥ 1− 1/m]

≤
(

1 +
γ

ε

)(
1 +

20

m
+

3

log(n/ε)

)
OPT(S)

[by Theorem 4.3]

≤
(

1 +
20

m
+

3

log(n/ε)
+

2e−m/40

ε

)
OPT(S)

[by replacing the value of γ].

This concludes the proof of Theorem 1.3.
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