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Abstract

In the Asymmetric k-Center problem, the input is an integer k and a complete
digraph over n points together with a distance function obeying the directed triangle
inequality. The goal is to choose a set of k points to serve as centers and to assign all
the points to the centers, so that the maximum distance of any point from its center
is as small as possible.

We show that the Asymmetric k-Center problem is hard to approximate up to a
factor of log∗ n−O(1) unless NP ⊆ DTIME(nlog log n). Since an O(log∗ n)-approximation
algorithm is known for this problem, this resolves the asymptotic approximability of
Asymmetric k-Center. This is the first natural problem whose approximability
threshold does not polynomially relate to the known approximation classes. We also
resolve the approximability threshold of the metric (symmetric) k-Center problem with
costs.
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1 Introduction

The input to the Asymmetric k-Center problem consists of a complete digraph G with
vertex set V , a non-negative weight (or distance) function cuv ≥ 0 for every u, v ∈ V ,
and an integer k. The weight function c satisies the directed triangle inequality, that is,
cuv + cvw ≥ cuw for all u, v, w ∈ V . Note that cuv might differ from cvu. The goal is to find a
set S of k vertices, called centers, and to assign each vertex of V to a center, such that the
maximum distance of a vertex from its center is minimized. More formally, we want to find
a subset S ⊆ V of size k, that minimizes

max
v∈V

min
u∈S

cuv. (1)

The quantity in (1) is called the covering radius of the centers S.
The problem is well-known to be NP-hard [11] and therefore, it is natural to seek ap-

proximation algorithms with small approximation ratio for the problem. If the function c is
assumed to be symmetric as well, i.e. cuv = cvu for all u, v ∈ V , the above problem is known
as the (metric) k-Center problem. This is one of the early problems for which approxima-
tion algorithms were designed, and an optimal approximation ratio of 2 is known from the
results of [6, 16, 13, 18, 20]. Subsequent to the solution of this problem a significant number
of other problems in location theory were solved (see [23]); however, the approximability of
the asymmetric case remained open1, and was evoked by Shmoys [22].

For any positive integer n, define the iterated log function log(i) n as follows: log(1) n =
log n and log(i+1) n = log(log(i) n). (All logs are to the base 2.) The function log∗ n
is defined to be the least integer i for which log(i) n ≤ 1. In a significant step, Pani-
grahy and Vishwanathan [19] designed an elegant O(log∗ n) approximation algorithm for
the Asymmetric k-Center problem, which was subsequently improved by Archer [3] to
O(log∗ k). Interestingly, [19] showed that given an Asymmetric k-Center instance, it is
possible to compute in polynomial time a set of at most 2k centers whose value (covering
radius) is within a factor of log∗

(
n
k

)
of the optimal solution with k centers. This approxima-

tion ratio tantalized researchers, partly because log∗ n is an exotic function (in the area of
approximation algorithms) and partly because it is so close to being a constant; nevertheless,
no improved approximation algorithm was found.

We show that the approximation algorithms of [19, 3] are asymptotically best possible,
unless NP ⊆ DTIME(nlog log n). This is a lower bound for a natural problem that does not
conform to any of the known classes of approximation (see [1]). Recently, a sequence of
papers [14, 15], has shown for the first time, a natural problem (Group-Steiner-Tree)
which is hard to approximate up to a poly-logarithmic factor. However, a hardness of log∗ n
is not even polynomially related to any of the known approximation classes.

1.1 Results

Our main result is a log∗ n−O(1) hardness of approximation for the Asymmetric k-Center
problem. More precisely, we show that:

1The problem is inapproximable if the triangle inequality does not hold.
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• There is a constant α > 0 such that Asymmetric k-Center cannot be approximated
within a factor of log∗ n− α, unless NP ⊆ DTIME(nlog log n).

• The above result holds also for bicriteria algorithms, that are allowed to use O(k)
additional centers while their solution is compared against an optimum that uses only
k centers.

Previously, the only hardness result known was 2, which follows immediately from the sym-
metric case.

Finally, we show that the (metric) k-Center problem with (non-uniform) vertex costs
is hard to approximate within a factor better than 3. This matches the 3–approximation of
Hochbaum and Shmoys [16], and separates the problem from its uniform cost counterpart
(which has 2–approximation).

1.2 Techniques

Our results build on a sequence of recent papers that have established hardness of approxi-
mating d-uniform hypergraph vertex cover to within a factor of (d− 1− ε) [17, 10, 9, 7, 8].
A hypergraph is d-uniform if every hyperedge contains exactly d vertices. The goal of the
d-uniform hypergraph vertex cover problem, or simply the d-Hypergraph Cover prob-
lem, is to find a smallest subset of vertices that hits every hyperedge. Specifically, our
construction is based on a result of Dinur, Guruswami and Khot [7] on the hardness of
d-Hypergraph Cover which they refer to as the “the simple construction”. This result
can be viewed as a construction of an instance of Set-Cover from an instance of 3SAT(5)
(a 3CNF formula, where each variable participates in 5 clauses) - the hypergraph vertices
correspond to sets while the hypergraph edges correspond to elements. As shown by Arora
et al. [2], there exists some 0 < ε < 1, such that it is NP-hard to decide whether an in-
stance of 3SAT(5) is a yes-instance (the input formula is satisfiable) or a no-instance (at
most a fraction (1 − ε) of the clauses are simultaneously satisfiable). It can be shown that
the construction of [7] achieves a strong bicriteria gap: If the input 3SAT(5) formula is a
yes-instance then an 3/d-fraction of the sets are sufficient to cover all the elements. If the
formula is a no-instance then any collection of (1 − 2/d)-fraction of the sets covers at most
a (1− f(d))-fraction of the elements with f(d) = 1/2poly(d).

Suppose we “compose” the Set-Cover instance above with another Set-Cover in-
stance, in the sense that the elements of the first instance become the sets of the second
instance. Then any (1−2/d)-fraction of the sets in the first instance covers at most (1−f(d))-
fraction of the sets of the second instance. If the second Set-Cover instance is constructed
using d′ = 2/f(d), then the already covered sets of the second instance are not sufficient
to cover all the elements of the second instance. In other words, no (1 − 2/d)-fraction of
the sets in the first instance can cover “within distance 2” all the elements of the second
instance. This process can be continued further, with the limitation being the rapid growth
in the construction size since the value of d in successive instances must grow as 2poly(d).

More specifically, our reduction works as follows. Given an instance ψ of size n of
3SAT(5), we build a directed graph with N = O(nlog log n) vertices. The graph vertices
are partitioned into h + 2 layers, where h = log∗ n−Θ(1) = log∗ N −Θ(1). For each pair of
consecutive layers, i and i + 1, there are directed edges from some layer i vertices to some
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layer (i+1) vertices. This graph is transformed into an instance of Asymmetric k-Center
as follows. The set of vertices remains the same, the distance cuv is the length of the shortest
(directed) path from u to v, and k is set to a certain value.

Layer 0 of the vertex set consists of only one vertex which is connected to every vertex in
layer 1. For any two other consecutive layers, i and i + 1, we build a Set-Cover instance,
where layer i vertices serve as sets, and layer (i + 1) vertices serve as elements. There is
a directed edge from layer i vertex v to layer i + 1 vertex u if and only if the element
corresponding to u belongs to the set corresponding to v.

If the formula ψ is a yes-instance, then all the vertices can be covered by k centers with
radius 1, essentially by taking the solutions to all the Set-Cover instances, using in total
only k − 1 sets (vertices), and adding the vertex at level 0.

If ψ is a no-instance, we prove that it is impossible to cover all the vertices by k centers
with radius h. To do this, it is enough to show that it is impossible to choose k − 1 vertices
in layer 1 that cover (with radius h) all the vertices in layer h + 1. Indeed, we can assume
that every solution uses only vertices in layers 0 and 1, since any solution must contain the
layer 0 vertex (because it is impossible to cover this vertex otherwise), and this vertex covers
(with radius h) all the vertices except for layer h + 1. Additionally, if we include a vertex
v in some layer i > 1 in the solution, then replacing v by any of its predecessors in layer 1
covers with radius h all the vertices that were covered by v.

Organization

The rest of the paper is organized as follows. Section 2 presents the bicriteria hardness
for Set-Cover that we require. The reduction to Asymmetric k-Center is given in
Section 3. The hardness proof also provides an explicit construction of an integrality gap of
log∗ n − O(1) for the linear program used by Archer [3]. In Section 4 we show tight lower
bounds for the (metric) k-Center problem with (non-uniform) vertex costs.

2 A Bicriteria Hardness Result for Hypergraph Cover

In this section we set up the stepping stone for the hardness of Asymmetric k-Center
problem. We will use the d-Hypergraph Cover problem which is defined as follows. Given
a set of M vertices and a collection of N hyperedges (i.e., subsets of vertices) of cardinality
d, the goal is to find a minimum size set of vertices S such that every hyperedge contains at
least one vertex from S. It is sometimes convenient to view this problem as a Set-Cover
instance. In Set-Cover, the input is a collection of sets of so-called elements, and the goal
is to find a minimum number of sets whose union equals the union of all the input sets. The
d-Hypergraph Cover problem is a special case of the Set-Cover problem, where the
vertices of the hypergraph correspond to sets and the hyperedges correspond to elements, so
each element belongs to exactly d sets.

The reduction is performed from the Gap-3SAT(5) problem, which is defined as follows.
The input is a CNF formula ψ on n variables and 5n

3
clauses. Each clause contains exactly

3 literals and each variable appears in 5 different clauses. Formula ψ is called a yes-instance
if it is satisfiable. It is called a no-instance (with respect to some ε) if at most a fraction
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(1− ε) of clauses are simultaneously satisfiable. The celebrated PCP theorem [2] shows that
there exists a constant 0 < ε < 1 such that it is NP-hard to distinguish between the yes and
the no instances of the problem.

The goal of this section is to prove the following theorem:

Theorem 2.1. Given a Gap-3SAT(5) formula ψ and integer d, we can construct a
d-Hypergraph Cover instance with the following properties:

• If ψ is a yes-instance, then all the hyperedges in the hypergraph can be covered using a
fraction 3

d
of the vertices.

• If ψ is a no-instance, then no subset containing at most a (1− 1
d
)-fraction of the vertices

covers all the hyperedges.

• The hypergraph size is nO(log d)2dβ
for some sufficiently large constant β ≥ 1, and it

can be constructed in time polynomial in its size. Moreover, if M denotes the number
of vertices and N is the number of hyperedges, then N ≤ 2dβ

M .

We note that the above theorem follows directly from [7, 8]. The reduction presented
below is identical to the one called “simple construction” in [7]. However, we find it more
convenient to change the parameter p of the construction (which is explained below) to
(1 − 3

d
), as well as to use [8] to bound the size of s-wise t-intersecting families. We provide

the construction for the sake of completeness and also because we use some of its properties
which are not proven explicitly in [7, 8].

2.1 s-wise t-intersecting families

Suppose we are given a ground set R. A family F of subsets of R is called s-wise t-intersecting
if for every collection of s sets F1, F2, ..., Fs ∈ F , we have |F1∩F2...∩Fs| ≥ t. Following [7, 8],
define the weight of a set F ⊆ R to be p|F |(1 − p)|R\F |, i.e., the probability of obtaining F
when each element of R is chosen independently at random with probability p. The weight
of a collection F of sets is defined to be the sum of the weights of the sets in the collection.

Lemma 2.1 (Lemma 2.5 of [8]). Let s, t be some integers, and let p < 1− 1
s
. Then, the

weight of any s-wise t-intersecting family is at most

e−2t(1− 1
s
−p)2

1− e−2s(1− 1
s
−p)2

Setting s = d
2
, p = 1− 3

d
, the bound simplifies to e−2t/d2

1−e−1/d . Using 1−e−x ≥ x
2

for 0 ≤ x ≤ 1
2
,

the bound becomes 2de−2t/d2
.

Corollary 2.2. Let d be an even integer, p = 1 − 3
d

and t = 4d2 ln d. Then, the weight of
any d

2
-wise t-intersecting family is at most 1

2d
.
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2.2 The d-Hypergraph Cover Hardness

We perform a reduction from the Gap-3SAT(5) problem. A useful tool for describing the
reduction is a two-prover one-round protocol known as the Raz Verifier for Gap-3SAT(5)
with ` repetitions. The protocol works as follows.

Given an instance ψ of size n for Gap-3SAT(5), the verifier chooses a random string r
and uses r to (i) generate independently at random l clauses C1, . . . , C` from ψ, and (ii) to
choose in each clause Ci, 1 ≤ i ≤ `, a variable αi (called a distinguished variable) uniformly
at random. Prover 1 receives the collection of clauses C1, . . . , C` and is expected to answer
with an assignment to all the variables appearing in the clauses, and prover 2 receives the
collection of distinguished variables α1, . . . , α` and is expected to answer with an assignment
to all the distinguished variables. The verifier then checks that the assignment of prover 1
satisfies all the clauses and that the answers of the two provers are consistent (imply same
values for the distinguished variables).

Let X and Y denote the collections of all the possible queries of prover 1 and 2 respec-
tively. Given query x ∈ X, let Rx be the set of all the possible answers of prover 1 that
satisfy all the clauses in x. Clearly, |X| = nO(l) and for all x ∈ X, |Rx| = 7l. Similarly, for
each y ∈ Y , Ry denotes the set of all the possible answers of prover 1 to query y. A strategy
of the two provers defines an answer of each prover to each possible query. We sometimes
view a strategy as an assignment to variables X ∪ Y , where each variable z ∈ X ∪ Y is
assigned a value from Rz. Each random string r defines a constraint ϕ which depends on the
queries x ∈ X, y ∈ Y corresponding to r. Note that for every ax ∈ Rx assigned to x there is
exactly one value ay ∈ Ry that satisfies the constraint ϕ. For convenience, the constraint ϕ
is viewed as a function ϕx→y : Rx → Ry. The set of constraints is denoted by Φ. Note that
every x ∈ X appears in exactly 3` constraints and every y ∈ Y appears in 5` constraints.

The following theorem is obtained by combining the PCP theorem [4, 2] with parallel
repetition [21].

Theorem 2.2. There exists a constant γ > 0 such that for all n and `, the above set of
constraints Φ satisfies:

• If ψ is a yes-instance, then there is an assignment that satisfies all the constraints.

• If ψ is a no-instance, then no assignment satisfies more than a 2−γ` fraction of the
constraints.

Given a Gap-3SAT(5) instance ψ and an even d, we build a d-hypergraph H = (V, E).
The vertex set is V = {〈x, F 〉 | x ∈ X, F ⊆ Rx}. The set of hyperedges is defined as follows.
Suppose x, x′ ∈ X, such that for some y ∈ Y , ϕx→y, ϕx′→y ∈ Φ. Let a ∈ Rx, a′ ∈ Rx′ be
some assignments to x, x′. We say that these assignments are consistent if they imply the
same assignment to every y′ such that ϕx→y′ , ϕx′→y′ ∈ Φ, that is, ϕx→y′(a) = ϕx′→y′(a

′).
Now, for any pair x, x′ ∈ X, such that for some y ∈ Y , ϕx→y, ϕx′→y ∈ Φ, consider any

d vertices of the form 〈x,A1〉, 〈x,A2〉, . . . , 〈x,A d
2
〉 and 〈x′, B1〉, 〈x′, B2〉, . . . , 〈x′, B d

2
〉. Then,

there is a hyperedge containing these vertices if and only if there is no pair of consistent

assignments a ∈ ⋂ d
2
i=1 Ai, a′ ∈ ⋂ d

2
i=1 Bi. The following observation about the construction is

useful:
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Proposition 2.3. Consider a collection 〈x,A1〉, . . . , 〈x,A d
2
〉, 〈x′, B1〉,. . .,〈x′, B d

2
〉 of d ver-

tices (d is even). Suppose that for some y the constraints ϕx→y, ϕx′→y exist and there is no
hyperedge containing the d vertices 〈x,A1〉, . . . , 〈x,A d

2
〉 and 〈x′, B1〉,. . .,〈x′, B d

2
〉. Then, there

must be an ax ∈
⋂ d

2
j=1 Aj and an ax′ ∈

⋂ d
2
j=1 Bj such that assigning ax to x and ax′ to x′ is

consistent with some assignment b to y.

For every subset A ⊆ RX , define its weight to be the probability of choosing it if each
element of RX is chosen independently with probability p = 1 − 3

d
. The weight of a vertex

〈x,A〉 is the weight of A, i.e., p|A|(1 − p)|RX\A|. The next lemma follows by choosing all
vertices 〈x, F 〉 for which F does not include the correct assignment to x.

Lemma 2.4 (Lemma 3.5 in [7]). If Φ is satisfiable then there exists a hypergraph cover
of weight at most (1− p)|X| = (3/d)|X|.
Proof. Let S be a satisfying assignment for Φ. Let S(x) denote the value assigned to a
variable x for x ∈ X. We claim that the set of vertices {〈x, F 〉|F ⊆ Rx and S(x) 6∈ F} form
a cover.

If not, there is an uncovered hyperedge 〈x,A1〉, . . . , 〈x,A d
2
〉, 〈x′, B1〉, . . . , 〈x′, B d

2
〉. But the

assigment S(x) belongs to all the Ai’s and S(x′) belongs to all Bi’s and they are consistent.
This contradicts the existence of this hyperedge by our construction.

Finally, it is easy to see that the weight of vertices in the cover is exactly (1−p)|X| since
for each x we choose all the subsets that rule out a particular assignment.

The next lemma follows from the contrapositive of Corollary 2.2, that is, if a collection
of sets A has large weight, then there must be s = d

2
sets in the collection whose intersection

is at most t = 4d2 ln d.

Lemma 2.5. Suppose we are given a collection A of subsets of RX . If the set of vertices
{〈x, F 〉|F ∈ A} has weight greater than 1

2d
, then there are d

2
sets Ax(1), . . . , Ax(

d
2
) in the

collection A such that
∣∣∣⋂

d
2
j=1 Ax(j)

∣∣∣ ≤ t = 4d2 ln d.

Lemma 2.6 ([7], Lemma 3.6). If there exists a hypergraph cover of weight less than
(1− 1

d
)|X|, then we can satisfy 1

32d5 ln2 d
of the constraints in Φ.

Proof. The proof follows the proofs of Proposition 3.4 and Lemma 3.6 in [7]. We present the
proof here for the sake of completeness.

Fix a vertex cover of the hypergraph. For each variable x, let I(x) be the set of vertices
〈x,A〉, A ⊆ Rx, which are not in the cover. Define X ′ to be the set of variables x ∈ X for
which the weight of I(x) is greater than 1

2d
. It follows from a simple averaging argument

that at least 1
2d

fraction of the variables in X belong to X ′. From now on, we focus only on
the variables in X ′. Since each variable in X participates in the same number of the original
x → y constraints, the variables in X ′ participate in at least a fraction 1

2d
of the constraints

in Φ.
For each x ∈ X ′ define Ax = {F |〈x, F 〉 ∈ I(x)}. By Lemma 2.5, there exist sets

Ax(1), . . . , Ax(
d
2
) in Ax such that

∣∣∣∣∣∣

d
2⋂

i=1

Ax(i)

∣∣∣∣∣∣
≤ t = 4d2 ln d
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Define T (x) =
⋂ d

2
i=1 Ax(i). We show an assignment to X ∪Y that satisfies a large fraction of

constraints. For x ∈ X ′, pick any assignment in T (x) uniformly at random as an assignment
for x.

For a variable y ∈ Y , choose any xy ∈ X ′ such that the constraint ϕxy→y exists (we ignore
any variables y for which no such xy exists). Choose a random element a ∈ T (xy) and give
y the assignment ϕxy→y(a).

Now let us evaluate the fraction of constraints {ϕx→y|x ∈ X ′} which are satisfied. There
are two cases to consider. If x = xy, then the probability we satisfy ϕx→y is 1

t
. Otherwise,

if x 6= xy, we claim that there must be an assignment a ∈ T (x) and a′ ∈ T (xy), such
that assigning a to x and a′ to xy implies the same assignment to y. This is true since
there is no hyperedge spanning the d vertices 〈x, Ax(1)〉, . . . , 〈x,Ax(

d
2
)〉, and 〈xy, Axy(1)〉,

. . . , 〈xy, Axy(
d
2
)〉 (otherwise, it would contradict that we have a cover), and thus we can

invoke Proposition 2.3. Now, the probability that y was assigned a value consistent with the
assignment of a′ to xy is 1

t
, and furthermore the probability that x was assigned the value a

is 1
t
. Therefore, with probability at least 1

t2
the constraint ϕx→y is satisfied.

Since the fraction of constraints involving variables in X ′ is at least 1
2d

, the expected
fraction of satisfied constraints in Φ is at least 1

2d·t2 = 1
2d(4d2 ln d)2

= 1
32d5 ln2 d

. Thus, the lemma
follows.

Setting ` = Θ(log d), so that 1
32d5 ln2 d

> 2−γ` holds, we ensure that for a no-instance, no

cover of weight less than (1− 1
d
)|X| exists.

The above construction produces a weighted instance of a hypergraph cover. The number
of vertices in the construction is M = |X| · 27`

and the number of edges is N ≤ |X| · 15` · 27`d

(since for each x ∈ X, there are at most 15` queries x′ ∈ X such that ϕx→y, ϕx′→y ∈ Φ for
some y ∈ Y ). The instance can be converted into an unweighted instance by replicating
vertices appropriately along the lines of [10, 7, 8]. This will increase the construction size by
a factor of 2poly(d). Therefore, for some sufficiently large positive integer β, the size of the
construction is bounded by nO(log d) · 2dβ

, and N ≤ 2dβ
M .

This completes the proof of Theorem 2.1.

Corollary 2.7. In the above hypergraph, in the no-instance case, no subset containing at
most a (1− 2

d
)-fraction of the vertices covers more than a 1− 1

d2dβ fraction of the hyperedges.

Proof. Assume by contradiction that we can choose a 1 − 2
d

fraction of the vertices that
covers a fraction 1 − 1

d2dβ of the hyperedges. We can then cover the remaining hyperedges

by using one additional vertex for each edge. Since N/d2dβ ≤ M/d, we would be using less
than (1 − 2

d
)M + M

d
= (1 − 1

d
)M vertices to cover all the hyperedges, which contradicts

Theorem 2.1.

In what follows, we refer to the Set-Cover instances used in the above corollary as the
basic Set-Cover instances with parameter d.

3 Hardness of Asymmetric k-Center

We now use the machinery of Section 2 to present our hardness result for Asymmetric k-Center.
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3.1 The reduction

We use the basic Set-Cover instances to build a directed graph with h+2 layers of vertices.
For each pair of consecutive layers, i and i+1, there are directed edges from layer i vertices to
layer i+1 vertices corresponding to an encoding of basic Set-Cover instances with suitably
chosen parameters. This graph is transformed into an instance of Asymmetric k-Center
as follows. The set of vertices remains the same and the distance c(v, u) is the length of the
shortest path from v to u.

Layer 0 of vertices consists of only one vertex, which is connected to each vertex in layer
1. For each pair of consecutive layers, i and i + 1, for 1 ≤ i ≤ h, we use multiple disjoint
copies of the basic Set-Cover instance, denoted by SCi, as constructed in Section 2, with a
parameter di that will be chosen soon. In this Set-Cover instance, the sets are represented
by the vertices of layer i and the elements are represented by vertices of layer i + 1. There
is a directed edge from vertex v in layer i to vertex u in layer i + 1 if and only if the element
corresponding to u belongs to the set corresponding to v. See Figure 1 for illustration.

. . .

. . .

SCi

V0

.

.

.

V1

.

.

.

.

.

.

Vi

Vi+1

.

.

.

Vh+1

Figure 1: The reduction constructs a directed graph with h + 2 layers. Layer 0 consists of
a single vertex connected to every vertex in layer 1. Every layer i ∈ {1, . . . , h} is connected
to layer i + 1 by using multiple disjoint copies of SCi, the basic Set-Cover instance with
parameter di.

We define the parameters di inductively as follows. d1 is chosen to be any positive integer

greater than 7, and di+1 = 2d2β
i (where β is the constant from Section 2). The number of

layers h is the maximum integer for which dh ≤ log(3) n holds.
Let Mi and Ni denote the number of sets and elements in the basic Set-Cover instance

with parameter di. Layer i Set-Cover instance, SCi, consists of ci disjoint copies of the
basic Set-Cover instance with parameter di. Since the vertices of layer i are both the sets
of SCi and the elements of SCi−1, we need to ensure that ciMi = ci−1Ni−1. To this end, we
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set ci =
∏i−1

j=1 Nj ·
∏h

j=i+1 Mj. Let the number of vertices in layer i be denoted by Vi. The

number of vertices in layer 1 is therefore V1 = c1M1 =
∏h

j=1 Mj. Finally, set k = 4V1/d1 + 1.
Our next step is to prove that with the above choice of parameters, h = log∗ n + Θ(1).

We start with the following technical claim.

Proposition 3.1. For all i ≥ 1, β ≥ 3, and d1 ≥ 3,

log(i) di ≤ 3β log d1.

Proof. For i = 1, the claim is clearly correct.
Fix some i ≥ 2. It is enough to prove that for all j : 1 ≤ j ≤ i − 1, log(j) di ≤ d3β

i−j,

since for j = i − 1, the inequality transforms into log(i−1) di ≤ d3β
1 , which is equivalent to

log(i) di ≤ 3β log d1.
We now prove that log(j) di ≤ d3β

i−j for all 1 ≤ j ≤ i − 1, by induction on j. The case
j = 1 follows immediately from the definition of di. For the inductive step, observe that
log(j+1) di ≤ log(d3β

i−j) = 3βd2β
i−j−1, where the inequality is due to the induction hypothesis for

j and the equality is by definition of di−j. Since d1 ≥ 3 and β ≥ 3, we have 3β ≤ dβ
1 ≤ dβ

i−j−1,

which yields the desired log(j+1) di ≤ d3β
i−j−1.

Thus, logh dh is bounded by a constant, and therefore, for some constant γ we have
log∗ dh ≤ h + γ. So whenever h ≤ log∗ n − 3 − γ, we have log∗ dh ≤ log∗ n − 3 and thus
dh ≤ log(3) n holds. Therefore, choosing h as the maximum integer for which dh ≤ log(3) n
results in h ≥ log∗ n−O(1). It is also easy to see that h ≤ log∗ n.

The size of the construction

The total number of vertices in this instance is

|V | =
h+1∑
i=1

Vi ≤ h

(
h∏

i=1

Ni ·
h∏

i=1

Mi

)

≤ h

h∏
i=1

(
nO(log di)2dβ

i

)2

≤ h · nO(h log dh) · 22hdβ
h ≤ nlog log n.

Notice that log∗ n = log∗ |V | −Θ(1), and so h = log∗ |V | −Θ(1) as well.

3.2 Analysis of the reduction

We now show that our reduction to Asymmetric k-Center creates a gap between a yes-
instance and a no-instance.

Lemma 3.2 (Yes-Instance). Suppose ψ is a yes-instance. Then, k = 4V1/d1 + 1 centers
can cover all the vertices with radius 1.
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Proof. Consider the following centers. At layer 0 take the single vertex, and at every layer
1 ≤ i ≤ h take ki = ci

3Mi

di
= 3Vi

di
vertices according to the solution of SCi (which is ci disjoint

basic Set-Cover instances). Clearly, these centers cover every vertex in V within radius 1.
To bound the number of centers, we first show that the sequence ki decreases geometri-

cally, namely, ki ≤ ki−1

d1
. Indeed, for all i ≥ 2,

ki

ki−1

=
3Vi

di

· di−1

3Vi−1

≤ ci−1Ni−1

ci−1Mi−1

· di−1

di

(since Vi−1 = ci−1Mi−1 and Vi = ci−1Ni−1 )

≤ 2dβ
i−1 · di−1

di

(since Ni−1 ≤ 2dβ
i−1Mi−1)

<
1

d1

(since di = 2d2β
i−1).

Therefore, the total number of vertices we use in the solution is k = 1 +
∑

i ki < 1 +
k1(1 + 1

d1−1
) ≤ 1 + 4V1

d1
. (The last inequality assumes d1 ≥ 4.)

Lemma 3.3 (No-Instance). If the formula ψ is a no-instance, then it is impossible to
cover all the vertices with radius h, using k = 4V1/d1 + 1 centers, for d1 ≥ 7.

To prove this lemma, it suffices to show that no k − 1 vertices in layer 1 can cover (with
radius h) all the vertices in layer h + 1. Indeed, any solution must contain the vertex in
layer 0 (as this is the only way to cover it), and this vertex covers within radius of h all the
vertices except for those in layer h+1. In order to cover the layer h+1 vertices (with radius
h), there is no point selecting centers in any layer other than 1, since for any center v in a
layer i > 1, we can cover the same vertices by choosing a predecessor of v in layer 1. (It is
easy to see there always exists one.) Therefore, the proof of Lemma 3.3 follows immediately
from the next claim.

Claim 3.4. Let S be a set of k − 1 centers in layer 1. Then, in every layer i ≥ 1, the
fraction of vertices unreachable from S is at least δi = 3/di, assuming d1 ≥ 7.

Proof. We proceed by induction on i. For i = 1 this is clear since the fraction of vertices in
layer 1 that are not in the solution is 1 − k−1

V1
= 1 − 4

d1
≥ 3

d1
for all d1 ≥ 7. Consider now

i ≥ 1, and assume the fraction of vertices in layer i that are reachable from S is at most
1− δi.

Consider the Set-Cover instance SCi. The fraction of vertices in Vi (the sets for SCi)
that are reachable from S is at most 1−δi. The fraction of basic Set-Cover instances in SCi

in which these sets constitute more than a 1− 2
di

fraction is thus at most (1− 3
di

)/(1− 2
di

) =

1− 1
di−2

. The remaining basic Set-Cover instances comprise at least a fraction of 1
di−2

of

the ci basic instances in SCi. In each of these, at least a fraction of 1/di2
dβ

i of the elements
are not reachable from S by Corollary 2.7. Thus the total fraction of vertices of layer i + 1
that are unreachable from S is at least

1

di − 2
· 1

di2dβ
i

≥ 3

di+1

.
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Our main result now follows from Lemmas 3.2 and 3.3 (in conjunction with Section 2).

Theorem 3.1. Asymmetric k-Center cannot be approximated within ratio log∗ n−α for
some constant α > 0, unless NP ⊆ DTIME(nlog log n).

We note that for any constant h, our construction implies that there is no h-approximation
for Asymmetric k-Center, under the weaker assumption of P 6= NP. We also note that
by choosing a suitably larger value of the constant d1, we can obtain the hardness result of
Theorem 3.1 even when the approximation algorithm is allowed to use A · k centers for any
constant A ≥ 1.

3.3 Integrality Gap

Our reduction also provides an explicit construction of an integrality gap of log∗ n−Ω(1) for
the following natural linear programming relaxation:

min r

s.t. ∑
v xv = k∑
v yvu = 1 ∀u ∈ V

yvu ≤ xv ∀v, u ∈ V

cvuyvu ≤ r ∀v, u ∈ V

The variable xv indicates whether or not there is a center at vertex v and the variable
yvu indicate whether vertex u is assigned to center v.

In a no-instance, any integral solution, i.e., a collection of k centers, has value (covering ra-
dius) log∗ n−Ω(1). On the other hand, the reduction of [7] constructs a d-Hypergraph Cover
instance, and thus every vertex in layer i + 1 in our construction is adjacent to exactly di

vertices in layer i. It follows that a fractional solution, where every vertex at layer i is taken
to be a center to the extent of 1

di
, covers all the vertices of layer i + 1 within distance 1.

Hence all vertices in each of the layers can be fractionally covered within a distance of 1, and
the total number of fractional centers is (similar to the yes-instance) only 1 +

∑
i

Vi

di
≤ k

3
.

This integrality gap instance construction does not actually require the reduction of [7].
We can simply replace every SCi instance by a random d-Hypergraph Cover instance,
that is, let every vertex in layer i+1 have incoming edges from di (distinct) random vertices
in layer i. It can be verified, using a union bound, that with high probability the resulting
d-Hypergraph Cover instance satisfies the properties that we require from Section 2.

4 Implications for Symmetric Distance Functions

The same reduction (but with h = 2) shows another interesting hardness result for metric
k-Center with costs (sometimes called weighted k-center). In this problem we are given a
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distance metric c over the vertices, a nonnegative cost function w for the vertices, and a cost
bound k. (Note that being a metric, c is symmetric.) The goal is to choose a subset S of
the vertices having total cost at most k so as to minimize

max
v∈V

min
u∈S

cuv. (2)

Again, the vertices of S are called centers and the quantity in (2) is called the covering radius
of S.

Hochbaum and Shmoys [16] show a 3-approximation algorithm for this problem. In what
follows we show that this bound is tight. In contrast, if all vertices have unit cost then the
problem specializes to the familiar metric k-Center problem, which has a 2–approximation.
If we were allowed to discard a small fraction of the vertices (in the metric k-center with
costs), lower and upper bounds of 3 are known [5].

Theorem 4.1. It is NP-hard to approximate the metric k-Center problem with costs to a
factor less than 3.

Proof. We construct the same layered instance as in Asymmetric k-Center, but with
h = 2. Since the number of layers is constant, the instance can be constructed in polynomial
time. However, the edges in this case are undirected.

The vertices in the last layer (h + 1 = 3) have arbitrarily large weight (greater than k
suffices) to rule out choosing them in any solution. The weight of any other vertex is 1.

If the formula ψ is a yes-instance, then by Lemma 3.2 we can cover all the vertices within
radius 1 using at most 4V1/d1 centers from layers 0, 1 and 2.

If ψ is a no-instance, then for the purpose of covering layer 3 within radius 2, we can
replace any center in layer 2 with a neighbor of it from layer 1. And by Lemma 3.3 we know
that by allocating the entire budget to centers in layer 1, one cannot cover all the vertices in
layer 3 within radius 2. Hence, no set of centers of total cost k can cover all of layer 3 with
radius smaller than 3.
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