
Streaming Euclidean Max-Cut: Dimension vs Data Reduction∗

Xiaoyu Chen
yuchen21@stu.pku.edu.cn

Peking University
China

Shaofeng H.-C. Jiang†
shaofeng.jiang@pku.edu.cn

Peking University
China

Robert Krauthgamer‡
rober.krauthgamer@weizmann.ac.il

Weizmann Institute of Science
Israel

ABSTRACT

Max-Cut is a fundamental problem that has been studied exten-
sively in various settings. We design an algorithm for Euclidean
Max-Cut, where the input is a set of points in R𝑑 , in the model of
dynamic geometric streams, where the input𝑋 ⊆ [Δ]𝑑 is presented
as a sequence of point insertions and deletions. Previously, Frahling
and Sohler [STOC 2005] designed a (1+Y)-approximation algorithm
for the low-dimensional regime, i.e., it uses space exp(𝑑).

To tackle this problem in the high-dimensional regime, which
is of growing interest, one must improve the dependence on the
dimension 𝑑 , ideally to space complexity poly(Y−1𝑑 logΔ). Lam-
mersen, Sidiropoulos, and Sohler [WADS 2009] proved that Eu-
clideanMax-Cut admits dimension reduction with target dimen-
sion 𝑑′ = poly(Y−1). Combining this with the aforementioned
algorithm that uses space exp(𝑑′), they obtain an algorithm whose
overall space complexity is indeed polynomial in 𝑑 , but unfortu-
nately exponential in Y−1.

We devise an alternative approach of data reduction, based on
importance sampling, and achieve space bound poly(Y−1𝑑 logΔ),
which is exponentially better (in Y) than the dimension-reduction
approach. To implement this scheme in the streaming model, we
employ a randomly-shifted quadtree to construct a tree embedding.
While this is a well-known method, a key feature of our algorithm
is that the embedding’s distortion𝑂 (𝑑 logΔ) affects only the space
complexity, and the approximation ratio remains 1 + Y.

CCS CONCEPTS

• Theory of computation→ Streaming, sublinear and near

linear time algorithms.

KEYWORDS

max cut, streaming, data reduction, dimension reduction

∗Full version of the paper is available at arXiv:2211.05293.
†Research partially supported by a national key R&D program of China No.
2021YFA1000900, and a startup fund from Peking University.
‡Work partially supported by ONR Award N00014-18-1-2364, by a Weizmann-UK
Making Connections Grant, by a Minerva Foundation grant, and the Weizmann Data
Science Research Center.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
STOC ’23, June 20–23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9913-5/23/06. . . $15.00
https://doi.org/10.1145/3564246.3585170

ACM Reference Format:

Xiaoyu Chen, Shaofeng H.-C. Jiang, and Robert Krauthgamer. 2023. Stream-
ing Euclidean Max-Cut: Dimension vs Data Reduction. In Proceedings

of the 55th Annual ACM Symposium on Theory of Computing (STOC ’23),

June 20–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3564246.3585170

1 INTRODUCTION

Max-Cut is a fundamental problem in multiple domains, from
constraint satisfaction (CSP) and linear equations to clustering. It
was studied extensively in many computational models and for
types of inputs, and many (nearly) tight bounds were obtained,
oftentimes leading the way to even more general problems. For
instance, in the offline setting, Max-Cut admits a polynomial-time
0.878-approximation for general graphs [20], and this approxima-
tion factor is tight under the Unique Games Conjecture [31]. In
contrast, if the input is a dense unweighted graph, or a metric space
(viewed as a weighted graph), then a PTAS exists [14, 15]. In the
graph-streaming setting, (1 + Y)-approximation can be obtained
using �̃� (𝑛) space [3], and this space bound is tight [30].

However, the streaming complexity of Max-Cut is only par-
tially resolved in the geometric setting, i.e., for Euclidean points. A
known algorithm, due to Frahling and Sohler [19], achieves (1 + Y)-
approximation but uses space exp(𝑑), which is prohibitive when the
dimension is high. Combining this algorithm with a dimension re-
duction result, based on the Johnson-Lindenstrauss Lemma but spe-
cialized toMax-Cut and has target dimension poly(Y−1) [34, 35],
one can achieve polynomial dependence on 𝑑 , but at the expense of
introducing to the space complexity an undesirable exp(poly(Y−1))-
factor. It was left open to obtain in the high-dimension regime space
complexity that is truly efficient, i.e., poly(Y−1𝑑).

We answer this question by providing the first streaming al-
gorithms that achieve (1 + Y)-approximation forMax-Cut using
space poly(𝑑Y−1). We consider the setting of dynamic geometric

streams, introduced by Indyk [24], where the input is a dataset
𝑋 ⊆ [Δ]𝑑 that is presented as a stream of point insertions and dele-
tions. The goal of the algorithm is to approximate (multiplicatively)
the so-calledMax-Cut value, defined as

Max-Cut(𝑋) := max
𝑆⊆𝑋

∑︁
𝑥∈𝑆,𝑦∈𝑋\𝑆

∥𝑥 − 𝑦∥2

(see Section 2 for general metric spaces). We say thatMax-Cut(𝑋)
is 𝛼-approximated, for 𝛼 ≥ 1, by a value [≥ 0 ifMax-Cut(𝑋)/𝛼 ≤
[≤ Max-Cut(𝑋).1 We assume throughout that𝑋 contains distinct
points (and is not a multiset), hence 𝑛 := |𝑋 | ≤ |Δ|𝑑 . In the high-
dimension regime, algorithms can use at most poly(𝑑 logΔ) bits
of space, which is polynomial in the number of bits required to

1We will actually aim at [∈ (1 ± Y) · Max-Cut(𝑋) , for 0 < Y < 1/2, which can be
scaled to achieve (1 +𝑂 (Y))-approximation.

170

https://orcid.org/0009-0003-4069-6663
https://orcid.org/0000-0001-7972-827X
https://orcid.org/0009-0003-8154-3735
https://arxiv.org/abs/2211.05293
https://doi.org/10.1145/3564246.3585170
https://doi.org/10.1145/3564246.3585170
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585170&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu Chen, Shaofeng H.-C. Jiang, and Robert Krauthgamer

represent a point in [Δ]𝑑 , and also allows counting to 𝑛 ≤ |Δ|𝑑 .
In the low-dimension regime, algorithms may have bigger space
complexity, e.g., exponential in 𝑑 .

A central challenge in the area of geometric streaming algorithms
is to achieve good accuracy (approximation) in the high-dimension
regime. Indeed, algorithms for many basic problems (like diameter,
minimum spanning tree, facility location, andMax-Cut), achieve
good approximation, say for concreteness𝑂 (1) or even 1 + Y, using
space that is exponential in𝑑 [1, 11, 13, 18, 19, 36, 43]. In contrast, al-
gorithms that use space polynomial in𝑑 are fewer and they typically
achieve far worse approximation ratio [10, 12, 24, 42], and obtaining
𝑂 (1)-approximation remains open. In particular, Indyk [24] tack-
led the high-dimension regime using a technique of randomized
tree embedding, which is rather general and economical in space,
but unfortunately distorts distances by a factor of 𝑂 (𝑑 logΔ) that
goes directly into the approximation ratio. Attempts to improve the
approximation ratio had only limited success so far; for example,
the algorithm of [2] (for diameter) works only in insertion-only
streams, and the algorithms of [10, 12] (for MST and for facility
location) fall short of the desired 𝑂 (1)-approximation in one pass.

1.1 Our Results

We bypass the limitation of dimension reduction via a data re-
duction approach, and design a streaming algorithm that (1 + Y)-
approximatesMax-Cut using poly(Y−1𝑑 logΔ) space, thereby clos-
ing the gap of high dimension (forMax-Cut). Our approach works
not only under Euclidean norm, but also when distances are calcu-
lated using ℓ𝑝 norm, for 𝑝 ≥ 1.

Data Reduction via Importance Sampling. We present an algo-
rithm that is based on the data-reduction approach, namely, it uses
the dataset 𝑋 to construct a small instance 𝑋 ′ that has a similar
Max-Cut value, then solve Max-Cut on it optimally and report
this value Max-Cut(𝑋 ′). Following a common paradigm, 𝑋 ′ is
actually a re-weighted subset of 𝑋 , that is picked by non-uniform
sampling from 𝑋 , known as importance sampling.

Theorem 1.1 (Streaming Max-Cut in ℓ𝑝 Norm). There is a ran-

domized streaming algorithm that, given 0 < Y < 1/2, 𝑝 ≥ 1, in-
tegers Δ, 𝑑 ≥ 1, and an input dataset 𝑋 ⊆ [Δ]𝑑 presented as a

dynamic stream, uses space poly(Y−1𝑑 logΔ) and reports an estimate

[> 0 that with probability at least 2/3 is a (1 + Y)-approximation to

Max-Cut(𝑋) in ℓ𝑝 .

This data-reduction approach was previously used for several
clustering problems. For 𝑘-median and related problems, such an
instance 𝑋 ′ is often called a coreset, and there are many construc-
tions, see e.g. [8, 16, 17, 19, 22, 23]. Earlier work [41] has designed
importance-sampling based algorithms for a problem closely related
to Max-Cut, but did not provide a guarantee that 𝑋 and 𝑋 ′ have a
similar Max-Cut value (see Section 1.3 for a more detailed discus-
sion). Recently, importance sampling was used to design streaming
algorithms for facility location in high dimension [12], although
their sample 𝑋 ′ is not an instance of facility location. Overall, this
prior work is not useful for us, and we have to devise our own sam-
pling distribution, prove that it preserves the Max-Cut value, and
design a streaming algorithm that samples from this distribution.

The approximation ratio 1 + Y in Theorem 1.1 is essentially the
best one can hope for using small space, because finding the Max-
Cut value exactly, even in one dimension, requires Ω(Δ) space,
as shown in Claim A.3. Compared with the dimension-reduction
approach (based on [19]), our Theorem 1.1 has the advantage that
it works for all ℓ𝑝 norms (𝑝 ≥ 1) and not only ℓ2. The result of [19]
is stronger in another aspect, of providing a “cut oracle”, i.e., an
implicit representation of the approximately optimal cut that can
answer the side of the cut that each data point 𝑥 ∈ 𝑋 (given as
a query) belongs to. This feature extends also to high dimension,
as it is easy to combine with the dimension reduction. For com-
pleteness, we give a (somewhat simplified) proof of the dimension
reduction in Section B, followed by a formal statement of this “cut
oracle” in Corollary B.3. It remains open to design a streaming al-
gorithm that computes such an implicit representation using space
poly(Y−1𝑑 logΔ).

1.2 Technical Overview

In order to estimate Max-Cut using importance sampling, we
must first identify a sampling distribution for whichMax-Cut(𝑋 ′)
indeed approximatesMax-Cut(𝑋), and then we have to design a
streaming algorithm that samples from this distribution.

Sampling Probability. One indication that geometricMax-Cut
admits data reduction by sampling comes from the setting of dense
unweighted graphs, where it is known thatMax-Cut can be (1+Y)-
approximated using a uniform sample of𝑂 (Y−4) vertices, namely, by
taking the Max-Cut value in the induced subgraph and scaling ap-
propriately [4, 40] (improving over [21]). However, sampling points
uniformly clearly cannot work in the metric case – if a point set 𝑋
has many co-located points and a few distant points that are also far
from each other, then uniform sampling from 𝑋 is unlikely to pick
the distant points, which have a crucial contribution to theMax-
Cut value. It is therefore natural to employ importance sampling,
i.e., sample each point with probability proportional to its contribu-
tion. The contribution of a point 𝑥 to theMax-Cut value is difficult
to gauge, but we can use instead a simple proxy – its total distance to
all other points 𝑞(𝑥) := ∑

𝑦∈𝑋 dist(𝑥,𝑦), which is just its contribu-
tion to twice the total edge weight

∑
𝑥,𝑦∈𝑋 dist(𝑥,𝑦). For any fixed

cut in𝑋 , this sampling works well and the estimate will (likely) have
additive error Y

∑
𝑥,𝑦∈𝑋 dist(𝑥,𝑦) = Θ(Y) ·Max-Cut(𝑋). While the

analysis is straightforward for a fixed cut, say a maximum one,
proving that the sampling preserves theMax-Cut value is much
more challenging, as one has to argue about all possible cuts.

We show in Theorem 3.1 that 𝑂 (Y−4) independent samples gen-
erated with probability proportional to 𝑞(𝑥) preserve theMax-Cut
value. This holds even if the sampling probabilities are dampened
by a factor _ ≥ 1, at the cost of increasing the number of samples by
a poly(_) factor. To be more precise, it suffices to sample from any
probability distribution {𝑝𝑥 : 𝑥 ∈ 𝑋 }, where 𝑝 (𝑥) ≥ 1

_

𝑞 (𝑥)∑
𝑦∈𝑋 𝑞 (𝑦)

for all 𝑥 ∈ 𝑋 . A small technicality is that we require the sam-
pling procedure to report a random sample 𝑥∗ together with its
corresponding 𝑝 (𝑥∗), in order to re-weight the sample 𝑥∗ by factor
1/𝑝 (𝑥∗), but this extra information can often be obtained using the
same methods.

171

Streaming Euclidean Max-Cut: Dimension vs Data Reduction STOC ’23, June 20–23, 2023, Orlando, FL, USA

This sampling distribution, i.e., probabilities proportional to
{𝑞(𝑥) : 𝑥 ∈ 𝑋 }, can be traced to two prior works. Schulman [41]
used essentially the same probabilities, but his analysis works only
for one fixed cut, and extends to a multiple cuts by a union bound.2
The exact same probabilities were also used by [15] as weights to
convert a metric instance to a dense unweighted graph, and thereby
obtain a PTAS (without sampling or any data reduction).

In fact, our proof combines several observations from [15] about
a uniform sample of 𝑂 (Y−4) vertices in unweighted graphs [4, 40].
In a nutshell, we relate sampling from 𝑋 proportionally to {𝑞(𝑥) :
𝑥 ∈ 𝑋 } with sampling uniformly from a certain dense unweighted
graph, whose cut values corresponds to those in 𝑋 , and we thereby
derive a bound on the Max-Cut value of the sample 𝑋 ′.

Streaming Implementation. Designing a procedure to sample
proportionally to {𝑞(𝑥) : 𝑥 ∈ 𝑋 }, when 𝑋 is presented as a stream,
is much more challenging and is our main technical contribution
(Lemma 4.2). The main difficulty is that standard tools for sampling
from a stream, such as ℓ𝑝 -samplers [25, 28, 39], are based on the
frequency vector and oblivious to the geometric structure of 𝑋 .
Indeed, the literature lacks geometric samplers, which can be very
useful when designing geometric streaming algorithms. Our goal
of sampling proportionally to 𝑞(𝑥), which is the total distance to
all other points in 𝑋 , seems like a fundamental geometric primitive,
and therefore our sampler (Lemma 4.2) is a significant addition
to the geometric-streaming toolbox, and may be of independent
interest.

High-Level Picture. At a high level, our sampling procedure is
based on a randomly-shifted quadtree 𝑇 that is defined on the en-
tire input domain [Δ]𝑑 and captures its geometry. This randomly-
shifted quadtree 𝑇 is data oblivious, and thus can be picked (con-
structed implicitly) even before the stream starts (as an initialization
step), using space𝑂 (poly(𝑑 logΔ)). This technique was introduced
by Indyk [24], who noted that the quadtree essentially defines a tree
embedding with expected distortion of distances𝑂 (𝑑 logΔ). Unfor-
tunately, the distortion is fundamental to this approach, and directly
affects the accuracy (namely, goes into the approximation ratio) of
streaming algorithms that use this technique [10, 24].3 While our
approach still suffers this distortion, we can avoid its effect on the
accuracy; instead, it affects the importance-sampling distribution,
namely, the dampening factor _ grows by factor 𝑂 (𝑑 logΔ), which
can be compensated by drawing more samples. This increases the
space complexity moderately, which we can afford, and overall
leads to (1 + Y)-approximation using space poly(Y−1𝑑 logΔ).

Comparison to Other Sampling Approaches. A different impor-
tance sampling method was recently designed in [12] for facility
location in high dimension. Their sampling procedure relies on a
geometric hashing (space partitioning), and completely avoids a
quadtree.4 Our sampling technique may be more easily applicable

2We gloss over slight technical differences, e.g., he deals with squared Euclidean
distances, and his sampling and re-weighting processes are slightly different.
3A randomly-shifted quadtree was used also in Arora’s approximation algorithm for
TSP [6], but as the basis for dynamic programming rather than as a tree embedding,
and similarly in streaming applications of this technique [11].
4A key parameter in that hashing, called consistency, turns out to be poly(𝑑) , and
unfortunately affects also the final approximation ratio for facility location, and not
only the importance-sampling parameter _ (and thus the space).

to other problems, as it uses a more standard and general tool of a
randomly-shifted quadtree. Another importance-sampling method
was recently designed in [37] in the context of matrix streams. Ge-
ometrically, their importance-sampling can be viewed as picking
a point (row in the matrix) proportionally to its length, but after
the points are projected, at query time, onto a subspace. This sam-
pling procedure is very effective for linear-algebraic problems, like
column-subset selection and subspace approximation, which can
be viewed also as geometric problems.

Previously, quadtrees were employed in geometric sampling
results, but mostly a fixed quadtree and not a randomly-shifted
one, and to perform uniform sampling over its non-empty squares
at each level, as opposed to our importance sampling [11, 18, 19].
Furthermore, in [18], uniform sampling was augmented to report
also all the points nearby the sampled points, and this was used to
estimate the number of connected components in a metric threshold
graph.

Sampling on Quadtree: Bypassing the Distortion. Finally, we dis-
cuss how to perform the importance sampling, based on a randomly-
shifted quadtree𝑇 , but without the𝑂 (𝑑 logΔ) distortion going into
the approximation ratio. As explained above, our importance sam-
pling (Theorem 3.1) requires that every point 𝑥 ∈ 𝑋 is sampled with
some probability 𝑝 (𝑥) ≥ 1

_

𝑞 (𝑥)
𝑄

for𝑄 :=
∑

𝑦∈𝑋 𝑞(𝑦), and the damp-
ening factor _ can be up to 𝑂 (poly(𝑑 logΔ)). We will exploit the
fact that there is no upper bound on the probability 𝑝 (𝑥). As usual, a
randomly-shifted quadtree𝑇 is obtained by recursively partitioning
of the grid [2Δ]𝑑 , each time into 2𝑑 equal-size grids, which we call
squares, and building a tree whose nodes are all these squares, and
every square is connected to its parent by an edge whose weight is
equal to that square’s Euclidean diameter. Furthermore, this entire
partitioning is shifted by a uniformly random 𝑣shift ∈ [Δ]𝑑 . (See
Section 4.1 for details.) The key is that every grid point 𝑥 ∈ [Δ]𝑑
is represented by a tree leaf, and thus 𝑇 defines distances on [Δ]𝑑 ,
also called a tree embedding. Define 𝑞𝑇 and 𝑄𝑇 analogously to 𝑞
and 𝑄 , but using the tree distance, that is, 𝑞𝑇 (𝑥) is the total tree
distance from 𝑥 to all other points in 𝑋 , and 𝑄𝑇 :=

∑
𝑦∈𝑋 𝑞𝑇 (𝑦).

The tree-embedding guarantees, for all 𝑥 ∈ [Δ]𝑑 , that 𝑞𝑇 (𝑥)
overestimates 𝑞(𝑥) (with probability 1), and that E𝑇 [𝑞𝑇 (𝑥)] ≤
𝑂 (𝑑 logΔ)·𝑞(𝑥). It thus suffices to have one event,𝑄𝑇 ≤ 𝑂 (𝑑 logΔ)·
𝑄 , which happens with constant probability by Markov’s inequality,
and then we would have 𝑞𝑇 (𝑥)

𝑄𝑇
≥ 1

𝑂 (𝑑 logΔ) ·
𝑞 (𝑥)
𝑄

simultaneously
for all 𝑥 ∈ 𝑋 . As mentioned earlier, the algorithm picks (constructs
implicitly)𝑇 even before the stream starts, and the analysis assumes
the event mentioned above happens. In fact, the rest of the sampling
procedure works correctly for arbitrary 𝑇 , i.e., regardless of that
event. We stress, however, that our final algorithm actually needs to
generate multiple samples that are picked independently from the
same distribution, and this is easily achieved by parallel executions
that share the same random tree 𝑇 but use independent coins in all
later steps. We thus view this 𝑇 as a preprocessing step that is run
only once, particularly when we refer to samples as independent.

A Two-level Sampling by Using Tree Structure. The remaining
challenge is to sample (in a streaming fashion) with probability
proportional to 𝑞𝑇 for a fixed quadtree 𝑇 . To this end, we make
heavy use of the structure of the quadtree. In particular, the quadtree

172

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu Chen, Shaofeng H.-C. Jiang, and Robert Krauthgamer

𝑇 has𝑂 (𝑑 logΔ) levels, and every data point 𝑥 ∈ 𝑋 forms a distinct
leaf in 𝑇 . Clearly, each internal node in 𝑇 represents a subset of 𝑋
(all its descendants in 𝑇 , that is, the points of 𝑋 inside its square).
At each level 𝑖 (the root node has level 1), we identify a level-𝑖
heavy node ℎ𝑖 that contains the maximum number of points from
𝑋 (breaking ties arbitrarily). We further identify a critical level 𝑘 ,
such that ℎ1, . . . , ℎ𝑘 (viewed as subsets of 𝑋), all contain more than
0.5|𝑋 | points, but ℎ𝑘+1 does not. This clearly ensures that ℎ1, . . . , ℎ𝑘
forms a path. Let 𝑋 (ℎ𝑖) ⊆ 𝑋 denote the subset of 𝑋 represented by
node ℎ𝑖 . The tree structure and the path property of (ℎ1, . . . , ℎ𝑘)
guarantee that, for each 𝑖 < 𝑘 , all points 𝑥 ∈ 𝑋 (ℎ𝑖) \ 𝑋 (ℎ𝑖+1)
have roughly the same 𝑞𝑇 (𝑥) values. For the boundary case 𝑖 = 𝑘 ,
a similar claim holds for 𝑥 ∈ 𝑋 (ℎ𝑘). Hence, a natural algorithm
is to employ two-level sampling: first draw a level 𝑖∗ ≤ 𝑘 , then
draw a uniform sample from 𝑋 (ℎ𝑖∗) \𝑋 (ℎ𝑖∗+1). The distribution of
sampling 𝑖∗ also requires a careful design, but we omit this from
the current overview, and focus instead on how to draw a uniform
sample from 𝑋 (ℎ𝑖) \ 𝑋 (ℎ𝑖+1).

Unfortunately, sampling from𝑋 (ℎ𝑖) \𝑋 (ℎ𝑖+1) still requires Ω(Δ)
space in the streaming model, even for 𝑑 = 1. (We prove this reduc-
tion from INDEX in Claim A.2.) In fact, it is even hard to determine
whether 𝑋 (ℎ𝑖) \ 𝑋 (ℎ𝑖+1) = ∅; the difficulty is that ℎ𝑖 is not known
in advance, otherwise it would be easy. We therefore relax the two-
level sampling, and replace sampling from 𝑋 (ℎ𝑖) \𝑋 (ℎ𝑖+1), with its
superset𝑋 \𝑋 (ℎ𝑖+1). This certainly biases the sampling probability,
in fact some probabilities might change by an unbounded factor
(Remark 4.12), nevertheless we prove that the increase in the damp-
ening parameter _ is bounded by an 𝑂 (logΔ) factor (Lemma 4.13),
which we can still afford. This part crucially uses the tree and the
path property of (ℎ1, . . . , ℎ𝑘).

Sampling from Light Parts. The final remaining step is to sample
from 𝑋 \ 𝑋 (ℎ𝑖) for a given 𝑖 ≤ 𝑘 (Lemma 4.14). We can assume
here 𝑋 (ℎ𝑖) contains more than 0.5|𝑋 | points, and thus 𝑋 \ 𝑋 (ℎ𝑖)
is indeed the “light” part, containing few (and possibly no) points.
To let the light points “stand out” in a sampling, we hash the tree
nodes (instead of the points) randomly into two buckets. Since
|𝑋 (ℎ(𝑖)) | > 0.5|𝑋 |, the heavy node ℎ𝑖 always lies in the bucket that
contains more points, and we therefore sample only from the light
bucket. (To implement this in streaming, we actually generate two
samples, one from each bucket, and in parallel estimate the two
buckets’ sizes to know which of the two samples to use.) Typically,
the light bucket contains at least half of the points from 𝑋 \ 𝑋 (ℎ𝑖),
which is enough. Overall, this yields a sampling procedure that
uses space poly(Y−1𝑑 logΔ).

1.3 Related Work

Geometric streaming in the low-dimension regime was studied
much more extensively than in the high-dimensional case that we
investigate here. In [19], apart from the 𝑂 (Y−𝑑 poly logΔ)-space
(1 + Y)-approximation for Max-Cut that we already mentioned,
similar results were obtained also for𝑘-median, maximum spanning
tree, maximum matching and similar maximization problems. For
minimum spanning tree, a (1 + Y)-approximation 𝑂 ((Y−1 logΔ)𝑑)-
space algorithm was devised in [18], alongside several useful tech-
niques for geometric sampling in low dimension. In [5], an𝑂 (Y−1)-
approximation �̃� (ΔY)-space streaming algorithm was obtained for

computing earth-mover distance in dimension 𝑑 = 2. For facility lo-
cation in dimension 𝑑 = 2, a (1+ Y)-approximation poly(Y−1 logΔ)-
space algorithm was designed in [13]. Recently, Steiner forest (a
generalization of Steiner tree, which asks to find a minimum-weight
graph that connects 𝑘 groups of points), was studied in [12] for
dimension 𝑑 = 2, and they obtain 𝑂 (1)-approximation using space
(poly(𝑘 logΔ)).

Our sampling distribution may seem reminiscent of an impor-
tance sampling procedure devised by Schulman [41], however his
results and techniques are not useful in our context. First, the prob-
lem formulation differs, as it asks to approximate the complement
objective of sum of distances inside each cluster (which is only
stronger than our MAX-CUT objective), but the objective function
sums squared Euclidean (rather than Euclidean) distances. Second,
his algorithm is for the offline setting and is not directly applica-
ble in streaming. Third, his analysis does not provide a guarantee
onMax-Cut(𝑋 ′), but rather only on certain cuts of 𝑋 ′ (not all of
them), and his approximation guarantee includes a non-standard
twist.

2 PRELIMINARIES

Consider a metric space (𝑉 , dist). The Euclidean case is 𝑉 = R𝑑

and dist = ℓ2, and the ℓ𝑝 case is 𝑉 = R𝑑 and dist = ℓ𝑝 . For
𝑋 ⊆ 𝑉 , the cut function cut𝑋 : 2𝑋 → R is defined as cut𝑋 (𝑆) :=∑

𝑥∈𝑆,𝑦∈𝑋\𝑆 dist(𝑥,𝑦). The Max-Cut value of a dataset 𝑋 ⊆ 𝑉 is
defined as

Max-Cut(𝑋) := max
𝑆⊆𝑋

cut𝑋 (𝑆).

We shall use the following standard tools as building blocks in our
algorithms. Recall that a turnstile (or dynamic) stream can contain
insertions and deletions of items from some domain [𝑁], and it
naturally defines a frequency vector 𝑥 ∈ R𝑁 , where every possible
item has a coordinate that counts its net frequency, i.e., insertions
minus deletions. In general, this model allows frequencies to be
negative. However, in our setting where 𝑋 ⊂ [Δ]𝑑 is presented as
a dynamic geometric stream, then frequency vector has Δ𝑑 coor-
dinates all in the range {0, 1}, and is just the incidence vector of
𝑋 .

Lemma 2.1 (ℓ0-Norm Estimator [29]). There exists a streaming

algorithm that, given 0 < Y, 𝛿 < 1, integers 𝑁,𝑀 ≥ 1, and a

frequency vector 𝑥 ∈ [−𝑀,𝑀]𝑁 presented as a turnstile stream,

where we denote its support by 𝑋 := {𝑖 ∈ [𝑁] : 𝑥𝑖 ≠ 0}, uses
space poly(Y−1 log(𝛿−1𝑀𝑁)) to return 𝑟∗ ≥ 0, such that Pr[𝑟∗ ∈
(1 ± Y) |𝑋 |] ≥ 1 − 𝛿 .

Lemma 2.2 (ℓ0-Sampler [28]). There exists a streaming algorithm

that, given 0 < 𝛿 < 1, integers 𝑁,𝑀 ≥ 1, and a frequency vector

𝑥 ∈ [−𝑀,𝑀]𝑁 presented as a turnstile stream, where we assume

that its support 𝑋 := {𝑖 ∈ [𝑁] : 𝑥𝑖 ≠ 0} is non-empty, uses space

poly log(𝛿−1𝑀𝑁), to return a sample 𝑖∗ ∈ 𝑋 ∪ {⊥}, such that with

probability at least 1 − 𝛿 ,

∀𝑖 ∈ 𝑋, Pr[𝑖∗ = 𝑖] = 1
|𝑋 | .

173

Streaming Euclidean Max-Cut: Dimension vs Data Reduction STOC ’23, June 20–23, 2023, Orlando, FL, USA

3 APPROXIMATINGMAX-CUT BY

IMPORTANCE SAMPLING

In this section, we consider a general metric space (𝑉 , dist) (which
includes Euclidean spaces by setting 𝑉 = R𝑑 and dist = ℓ2), and
show that a small importance-sample 𝑆 on a dataset 𝑋 ⊆ 𝑉 may be
used to estimate Max-Cut(𝑋) by simply computing Max-Cut(𝑆).

Point-weighted Set [15]. Since we apply importance sampling
(as opposed to using a uniform probability for every point), the
sampled points need to be re-weighted so that the estimation is
unbiased. Hence, we consider the notion of point-weighted sets.
This notion was first considered in [15] to reduce the metric Max-
Cut to Max-Cut in (dense) weighted graphs. Specifically, a point-
weighted set 𝑆 ⊆ 𝑉 is a subset of 𝑉 that is associated with a point-
weight function 𝑤𝑆 : 𝑆 → R+. For a point-weighted set 𝑆 , the
distance dist𝑆 (𝑥,𝑦) between 𝑥,𝑦 ∈ 𝑆 is also re-weighted such that
dist𝑆 (𝑥,𝑦) :=

dist(𝑥,𝑦)
𝑤𝑆 (𝑥)𝑤𝑆 (𝑦) . Under this weighting, when an edge

{𝑥,𝑦} appears in a cut, its contribution is still accounted as𝑤𝑆 (𝑥) ·
𝑤𝑆 (𝑦) · dist𝑆 (𝑥,𝑦) = dist(𝑥,𝑦).

We prove (in Theorem 3.1) that for every dataset 𝑋 ⊆ 𝑉 , if one
construct a point-weighted subset 𝑆 ⊆ 𝑋 by drawing i.i.d. samples
from a distribution on𝑋 , where each 𝑥 ∈ 𝑋 is sampled proportional
to 𝑞(𝑥) = ∑

𝑦∈𝑋 dist(𝑥,𝑦) which is the sum of distances to other
points in 𝑋 , up to an error factor of _, then Max-Cut(𝑆) is (1 + Y)-
approximation toMax-Cut(𝑋) with high probability.

Theorem 3.1. Given Y, 𝛿 > 0, _ ≥ 1, metric space (𝑉 , dist) and
dataset 𝑋 ⊆ 𝑉 , let D be a distribution (𝑝𝑥 : 𝑥 ∈ 𝑋) on 𝑋 such

that ∀𝑥 ∈ 𝑋, 𝑝𝑥 ≥ 1
_
· 𝑞 (𝑥)

𝑄
, where 𝑞(𝑥) = ∑

𝑦∈𝑋 dist(𝑥,𝑦) and
𝑄 =

∑
𝑥∈𝑋 𝑞(𝑥). Let 𝑆 be a point-weighted set that is obtained by an

i.i.d. sample of𝑚 ≥ 2 points from D, weighted by𝑤𝑆 (𝑥) := 𝑝𝑥 such

that 𝑝𝑥 ≤ 𝑝𝑥 ≤ (1 + Y) · 𝑝𝑥 . If𝑚 ≥ 𝑂 (Y−4_−8), then with probabil-

ity at least 0.9, the value Max-Cut(𝑆)
𝑚2 is a (1 + Y)-approximation to

Max-Cut(𝑋).

The 𝑂 (Y−4) dependence on Y of Theorem 3.1 matches a similar
𝑂 (Y−4) sampling complexity bound for unweighted graphs in [4,
40]5. To the best of our knowledge, this 𝑂 (Y−4) is the state-of-the-
art even for the case of unweighted graphs. Although our proof
of Theorem 3.1 is obtained mostly by using the bound in [4, 40]
as a black box, the generalization to metric spaces, as well as the
allowance of _ which is the error in sampling probability, is new.

3.1 Proof of Theorem 3.1

As mentioned, the plan is to apply the sampling bound proved
in [4, 40], which we restate in Lemma 3.2. In fact, the original
statement in [4, 40] was only made for unweighted graphs, i.e.,
edge weights in {0, 1}. However, we observe that only the fact that
the edges weights are between [0, 1] was used in their proof. Hence,
in our statement of Lemma 3.2 we make this stronger claim of [0, 1]
edge weights.

Here, for a graph 𝐺 (𝑉 , 𝐸) with weight function len𝐺 : 𝐸 → R
(len𝐺 (·) = 1 for unweighted graphs), we define the cut function

5A slightly weaker bound of𝑂 (Y−4 poly log(Y−1)) was obtained in [4], and [40] gave
an improved technical lemma which can be directly plugged into [4] to obtain the
𝑂 (Y−4) bound.

for 𝑆 ⊆ 𝑋 ⊆ 𝑉 (as well as Max-Cut) similarly, as cut𝑋 (𝑆) =∑
𝑥∈𝑆,𝑦∈𝑋\𝑆 :{𝑥,𝑦}∈𝐸 len𝐺 (𝑥,𝑦).

Lemma 3.2 ([4, 40]). Consider a weighted graph 𝐺 (𝑉 , 𝐸) with
weights in [0, 1]. Let 𝐷 ⊆ 𝑉 be a uniformly independent sample

from𝑉 (possibly with repetitions) of𝑂 (Y−4) points. Then with proba-

bility at least 0.9,���� 1
|𝐷 |2

Max-Cut(𝐷) − 1
|𝑉 |2

Max-Cut(𝑉)
���� ≤ Y.

Hence, our plan is to define an auxiliary graph 𝐺 ′ whose edge
weights are in [0, 1], such that our importance sampling may be
interpreted as a uniform sampling from vertices in𝐺 ′. Eventually,
our sampling bound would follow from Lemma 3.2.

Defining Auxiliary Graph. Since we focus on approximate solu-
tions, we can assume that 𝑝𝑥 ’s (𝑥 ∈ 𝑋) are of finite precision. Then,
let 𝑁 be a sufficiently large number such that for all 𝑥 ∈ 𝑋 , 𝑁𝑝𝑥
is an integer. We define an auxiliary graph 𝐺 ′ (𝑋 ′, 𝐸′ := 𝑋 ′ × 𝑋 ′),
such that 𝑋 ′ is formed by copying each point 𝑥 ∈ 𝑋 for 𝑁𝑝𝑥

times, and edge weight len𝐺 ′ (𝑥,𝑦) := 1
4_2𝑄 ·

dist(𝑥,𝑦)
𝑝𝑥𝑝𝑦

. Clearly, if
we let 𝑥∗ be a uniform sample from 𝑋 ′, then for every 𝑥 ∈ 𝑋 ,
Pr[𝑥∗ = 𝑥] = 𝑝𝑥 . Hence, this uniform sample 𝑥∗ is identically
distributed as an importance-sample from distribution D on 𝑋 .
Furthermore, for 𝑥,𝑦 ∈ 𝑆 , it holds that

dist𝑆 (𝑥,𝑦) =
dist(𝑥,𝑦)
𝑝𝑥𝑝𝑦

= 4_2𝑄 · len𝐺 ′ (𝑥,𝑦) .

Hence, we conclude the following fact.

Fact 3.3. Let 𝑆 ′ ⊆ 𝑋 ′ be𝑚 uniform samples from𝑋 ′. Then, the value
4_2𝑄 ·Max-Cut(𝑆 ′) and Max-Cut(𝑆) are identically distributed.

Therefore, it suffices to show the 𝑆 ′ from Fact 3.3 satisfies that
4_2𝑄 · Max-Cut(𝑆 ′)

|𝑆 ′ |2 is a (1+Y)-approximation toMax-Cut(𝑋), with
constant probability. Our plan is to apply Lemma 3.2, but we first
need to show, in Lemma 3.4, that the edge weights of𝐺 ′ are in [0, 1],
and in Lemma 3.6 thatMax-Cut(𝑋 ′) is a (1 + Y)-approximation to
Max-Cut(𝑋) up to a scaling.

Lemma 3.4. For all 𝑥,𝑦 ∈ 𝑋 ′, len𝐺 ′ (𝑥,𝑦) ≤ 1.

Proof. We need the following fact from [15] (which was proved
in [15, Lemma 7]).

Lemma 3.5 ([15]). For all 𝑥 ∈ 𝑋 , it holds that

dist(𝑥,𝑦)
𝑞(𝑥)𝑞(𝑥) ≤

4
𝑄
.

Applying Lemma 3.5,

len𝐺 ′ (𝑥,𝑦) =
1

4_2𝑄
· dist(𝑥,𝑦)

𝑝𝑥𝑝𝑦
≤ 1

4_2𝑄
· dist(𝑥,𝑦)

𝑝𝑥𝑝𝑦
≤ 1.

□

Lemma 3.6.
4_2𝑄
𝑁 2 Max-Cut(𝑋 ′) ∈ (1 ± Y) ·Max-Cut(𝑋).

Proof. Let𝑋 be a point-weighted set formed by re-weight points
in 𝑋 with 𝑤

𝑋
(𝑥) = 𝑁𝑝𝑥 . The following lemma from [15] shows

that Max-Cut(𝑋) = Max-Cut(𝑋).

174

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu Chen, Shaofeng H.-C. Jiang, and Robert Krauthgamer

Lemma 3.7 ([15, Lemma 5 and Lemma 6]). Let (𝑈 , dist𝑈) be a
metric space, and𝑊 ⊆ 𝑈 be a dataset. Suppose for every 𝑥 ∈ 𝑊 ,

`𝑥 > 0 is an integer weight. Then the point-weighted set𝑊 ′ obtained
from re-weighting each point 𝑥 ∈𝑊 by `𝑥 , satisfies that

Max-Cut(𝑊 ′) = Max-Cut(𝑊).

Now, we observe that 𝑋 can be naturally interpreted a weighted
complete graph 𝐺 , where we copy 𝑥 ∈ 𝑋 for𝑤

𝑋
times to form the

vertex set, and the edge length is defined as dist
𝑋
(𝑥,𝑦). Notice that

the vertex set of 𝐺 is exactly 𝑋 ′, and that the edge length

dist
𝑋
(𝑥,𝑦) = dist(𝑥,𝑦)

𝑁 2𝑝𝑥𝑝𝑦
∈ (1 ± Y) · 4_

2𝑄

𝑁 2 · len𝐺 ′ (𝑥,𝑦).

Therefore, we conclude thatMax-Cut(𝑋) = Max-Cut(𝑋) ∈ (1 ±
Y) · 4_

2𝑄
𝑁 2 ·Max-Cut(𝑋 ′). This finishes the proof. □

Now, we are ready to apply Lemma 3.2. Let 𝑆 ′ ⊆ 𝑋 ′ such that
|𝑆 ′ | = 𝑂 (Y−4) be the resultant set by applying Lemma 3.2 with
𝐺 = 𝐺 ′ (recalling that the promise of [0, 1] edge weights is proved
in Lemma 3.4). Then

1
|𝑆 ′ |2

Max-Cut(𝑆 ′) ∈ Max-Cut(𝑋 ′)
|𝑋 ′ |2

± Y.

Applying Lemma 3.6, and observe that |𝑋 ′ | = 𝑁 , the above equiva-
lents to

4_2𝑄
|𝑆 ′ |2

Max-Cut(𝑆 ′) ∈ (1 ± Y) ·Max-Cut(𝑋) ± Y · 4_2𝑄

∈ (1 ±𝑂 (_2Y)) ·Max-Cut(𝑋)

where the last inequality follows fromMax-Cut(𝑋) ≥ Ω(𝑄). We
finish the proof by rescaling Y.

4 STREAMING IMPLEMENTATIONS

Theorem 4.1 (Streaming EuclideanMax-Cut). There is a random-

ized streaming algorithm that, given 0 < Y < 1/2, 𝑝 ≥ 1, integers
Δ, 𝑑 ≥ 1, and an input dataset 𝑋 ⊆ [Δ]𝑑 presented as a dynamic

stream, uses space poly(Y−1𝑑 logΔ) and reports an estimate [> 0
that with high probability (at least 2/3) is a (1 + Y)-approximation to

Max-Cut(𝑋) in ℓ𝑝 .

Our algorithm employs importance sampling as formulated in
Theorem 3.1, and thus needs (enough) samples from a distribution
D that corresponds to the input𝑋 ⊆ [Δ]𝑑 with small parameter _ >

0. Given these samples, the algorithm can estimateMax-Cut(𝑋) by
a brute-force search on the (point-weighted) samples, which can be
done using small space. Note that Theorem 3.1 works for a general
metric space, hence it also applies to the ℓ𝑝 case as we require. We
thus focus henceforth on performing importance sampling from a
dataset 𝑋 that is presented as a dynamic stream, as formalized next
in Lemma 4.2.

Lemma 4.2 (Importance-Sampling Algorithm). There is a random-

ized streaming algorithm A that, given 0 < Y < 1/2, 𝑝 ≥ 1, integers
Δ, 𝑑 ≥ 1, and an input dataset 𝑋 ⊆ [Δ]𝑑 presented as a dynamic

stream, it uses space poly(Y−1𝑑 logΔ) and reports 𝑧∗ ∈ 𝑋 ∪ {⊥}
together with 𝑝∗ ∈ [0, 1]. The algorithm has a random initialization

with success probability at least 0.99,6 and conditioned on a successful
initialization, its random output satisfies: (1) with probability at least

1 − 1/poly(Δ𝑑),

∀𝑥 ∈ 𝑋, Pr[𝑧∗ = 𝑥] ≥ 1
_

𝑞(𝑥)
𝑄

,

for 𝑞(𝑥) := ∑
𝑦∈𝑋 dist(𝑥,𝑦), 𝑄 :=

∑
𝑥∈𝑋 𝑞(𝑥), dist = ℓ𝑝 , and _ :=

poly(𝑑 logΔ); and (2) whenever 𝑧∗ ≠⊥,
𝑧∗ = 𝑥 ∈ 𝑋 =⇒ 𝑝∗ ∈ (1 ± Y) · Pr[𝑧∗ = 𝑥] .

The somewhat intricate statement of Lemma 4.2 is very useful
to generate many samples with a large success probability. The
obvious approach to generate 𝑡 samples is to run 𝑡 executions of
this algorithm (all in parallel on the same stream) using indepen-
dent coins, but then the success probability is only 0.99𝑡 . Consider
instead running 𝑡 parallel executions, using the same initialization

coins but otherwise independent coins, which requires total space
𝑡 ·poly(Y−1𝑑 logΔ). Then with probability at least 0.99 the initializa-
tion succeeds, in which case the 𝑡 executions produce 𝑡 independent
samples, each of the form (𝑧∗, 𝑝∗) and satisfies the two guarantees
in the lemma.

4.1 The Importance-Sampling Algorithm (Proof

of Lemma 4.2)

Our plan is to implement the importance sampling on a tree metric
generated by a randomized embedding of the input dataset. The
notion of randomized tree embedding was first proposed in [7]
for arbitrary metric spaces, and the specific embedding that we
employ was given by [24] for ℓ𝑝 metrics presented as a stream of
points. We describe this tree embedding below. We stress that our
algorithm can be easily implemented in low space because it does
not need to compute the entire embedding explicitly; for instance,
the algorithm’s initialization picks random coins, which determine
the embedding but do not require any further computation.

Initialization Step: Randomized Tree Embedding [7, 9, 24]. Assume
without loss of generality that Δ ≥ 1 is an integral power of 2, and
let 𝐿 := 1 + 𝑑 logΔ. Let {G𝑖 }𝐿𝑖=0 be a recursive partitioning of the
grid [2Δ]𝑑 into squares,7 as follows. Start with G0 being a trivial
partitioning that has one part corresponding to the entire grid
[2Δ]𝑑 , and for each 𝑖 ≥ 0, subdivide every square in G𝑖 into 2𝑑
squares of half the side-length, to obtain a partition G𝑖+1 of the
entire grid [2Δ]𝑑 . Thus, every G𝑖 is a partition into squares of
side-length 2𝑖 . The recursive partitioning {G𝑖 }𝑖 naturally defines a
rooted tree 𝑇 , whose nodes are the squares inside all the G𝑖 ’s, that
if often called a quadtree decomposition (even though every tree
node has 2𝑑 children rather than 4). Finally, make the quadtree 𝑇
random by shifting the entire recursive partitioning by a vector
−𝑣shift, where 𝑣shift is chosen uniformly at random from [Δ]𝑑 . (This
is equivalent to shifting the dataset [Δ]𝑑 by 𝑣shift, which explains
why we defined the recursive partitioning over an extended grid
6It is convenient to separate the random coins of the algorithm into two groups, even
though they can all be tossed before the stream starts. We refer to the coin tosses of the
first group as an initialization step, and condition on their “success” when analyzing
the second group of coins. The algorithm cannot tell whether its initialization was
successful, and thus this event appears only in the analysis (in Lemma 4.4).
7Strictly speaking, these squares are actually hypercubes (sometimes called cells or
grids), but we call them squares for intuition.

175

Streaming Euclidean Max-Cut: Dimension vs Data Reduction STOC ’23, June 20–23, 2023, Orlando, FL, USA

[2Δ]𝑑 .) Every node in 𝑇 has a level (or equivalently, depth), where
the root is at level 1, and the level of every other node is one bigger
than that of its parent node. The scale of a tree node is the side-
length of the corresponding square. Observe that leaves of 𝑇 have
scale 20 and thus correspond to squares that contain a single grid
point; moreover, points 𝑥 ∈ [Δ]𝑑 correspond to distinct leaves in
𝑇 . Define the weight of an edge in 𝑇 between a node 𝑢 at scale 2𝑖

and its parent as 𝑑
1
𝑝 · 2𝑖 (i.e., the diameter of 𝑢’s square). Define

a tree embedding of [Δ]𝑑 by mapping every point 𝑥 ∈ [Δ]𝑑 to its
corresponding leaf in𝑇 , and let the tree distance between two points
𝑥,𝑦 ∈ [Δ]𝑑 , denoted dist𝑇 (𝑥,𝑦), be the distance in 𝑇 between their
corresponding leaves. The following lemma bounds the distortion of
this randomized tree embedding. We remark that a better distortion
of𝑂 (𝑑max{ 1

𝑝
,1− 1

𝑝
} logΔ) may be obtained via a different technique

that is less suitable for streaming [9].

Lemma 4.3 ([24, Fact 1]). Let𝑇 be a randomized tree as above. Then

for all 𝑥,𝑦 ∈ [Δ]𝑑 ,

dist𝑇 (𝑥,𝑦) ≥ dist(𝑥,𝑦);
E[dist𝑇 (𝑥,𝑦)] ≤ 𝑂 (𝑑 logΔ) dist(𝑥,𝑦).

Streaming Implementation of Randomized Tree Embedding. We
emphasize that in our definition of the quadtree 𝑇 is non-standard
as it contains the entire grid [Δ]𝑑 as leaves (the standard approach
is to recursively partition only squares that contain at least one
point from the dataset 𝑋). The advantage of our approach is that
the tree is defined obliviously of the dataset 𝑋 (e.g., of updates to
𝑋). In particular, the leaf-to-root path from a point 𝑥 ∈ [Δ]𝑑 is well-
defined regardless of 𝑋 and can be computed on-the-fly (without
constructing the entire tree 𝑇) using time and space poly(𝑑 logΔ),
providing sufficient information for evaluating the tree distance.

Our streaming algorithm samples such a tree 𝑇 as an initial-
ization step, i.e., before the stream starts, which requires small
space because it can be done implicitly by picking poly(𝑑 logΔ)
random bits that describe the random shift vector 𝑣 . Next, we show
in Lemma 4.4 that this initialization step succeeds with 0.99 prob-
ability, and on success, every distance dist(𝑥,𝑦) for 𝑥,𝑦 ∈ 𝑋 is
well-approximated by its corresponding dist𝑇 (𝑥,𝑦). In this case,
the sampling of points 𝑥 with probability proportional to 𝑞(𝑥) can
be replaced by sampling with probabilities that are derived from
the tree metric. More specifically, the probability of sampling each
𝑥 ∈ 𝑋 deviates from the desired probability 𝑞 (𝑥)

𝑄
by at most a factor

of poly(𝑑 logΔ). We remark that the event of success does depend
on the input 𝑋 , but the algorithm does not need to know whether
the initialization succeeded.

Lemma 4.4. For 𝑥 ∈ 𝑋 , let 𝑞𝑇 (𝑥) :=
∑

𝑦∈𝑋 dist𝑇 (𝑥,𝑦) and let

𝑄𝑇 :=
∑
𝑥∈𝑋 𝑞𝑇 (𝑥). Then

Pr
𝑇

[
∀𝑥 ∈ 𝑋, 𝑞𝑇 (𝑥)

𝑄𝑇
≥ 1

𝑂 (𝑑 logΔ)
𝑞(𝑥)
𝑄

]
≥ 0.99.

Proof. Fix some 𝑥 ∈ 𝑋 . By Lemma 4.3,

𝑞𝑇 (𝑥) =
∑︁
𝑦∈𝑋

dist𝑇 (𝑥,𝑦) ≥
∑︁
𝑦∈𝑋

dist(𝑥,𝑦) = 𝑞(𝑥) (1)

and

E

∑︁
𝑦∈𝑋

𝑞𝑇 (𝑦)
 = E

∑︁

𝑦,𝑦′∈𝑋
dist𝑇 (𝑦,𝑦′)

≤ 𝑂 (𝑑 logΔ)

∑︁
𝑦,𝑦′∈𝑋

E[dist(𝑦,𝑦′)] .

By Markov’s inequality, with high constant probability,∑︁
𝑦∈𝑋

𝑞𝑇 (𝑦) ≤ 𝑂 (𝑑 logΔ)
∑︁

𝑦,𝑦′∈𝑋
E[dist(𝑦,𝑦′)] . (2)

We finish the proof by combining (2) and (1). □

Sampling w.r.t. Tree Distance. In the remainder of the proof, we
assume that the random tree 𝑇 was already picked and condition
on its success as formulated in Lemma 4.4. This lemma shows that
it actually suffices to sample each 𝑥 with probability proportional
to 𝑞𝑇 (𝑥). Next, we provide in Fact 4.5 a different formula for 𝑞𝑇 (𝑥)
that is based on 𝑥 ’s ancestors in the tree 𝑇 , namely, on counting
how many data points (i.e., from 𝑋) are contained in the squares
that correspond to these ancestors. To this end, we need to set up
some basic notation regarding 𝑋 and 𝑇 .

The Input 𝑋 in the Tree 𝑇 . Let 𝑛 := |𝑋 | be the number of input
points at the end of the stream. For a tree node 𝑣 ∈ 𝑇 , let 𝑋 (𝑣) ⊆
𝑋 be the set of points from 𝑋 that are contained in the square
corresponding to 𝑣 . For 𝑥 ∈ 𝑋 and 𝑖 ≥ 1, let anc𝑖 (𝑥) be the level-
𝑖 ancestor of 𝑥 in 𝑇 (recalling that 𝑥 corresponds to a leaf). By
definition, anc𝐿+1 (𝑥) := 𝑥 . For 0 ≤ 𝑖 ≤ 𝐿, let 𝛽𝑖 := 𝑑

1
𝑝 · 2𝐿+1−𝑖 ,

which is the edge-length between a level-𝑖 node 𝑢 and its parent
(since the scale of a level-𝑖 node is 2𝐿+1−𝑖). Due to the tree structure,
we have the following representation of 𝑞𝑇 (𝑥).

Fact 4.5. For every 𝑥 ∈ 𝑋 , we have 𝑞𝑇 (𝑥) = 2
∑𝐿
𝑖=0 𝛽𝑖 · (𝑛 −

|𝑋 (anc𝑖 (𝑥)) |).
For each level 𝑖 , let ℎ𝑖 be a level-𝑖 node whose corresponding

square contains the most points from 𝑋 , breaking ties arbitrarily.
Next, wewish to identify a critical level𝑘 ; ideally, this is the last level
going down from the root, i.e., largest 𝑖 , such that |𝑋 (ℎ𝑖) | ≥ 0.6𝑛
(the constant 0.6 is somewhat arbitrary). However, it is difficult
to find this 𝑘 exactly in a streaming algorithm, and thus we use
instead a level �̃� that satisfies a relaxed guarantee that only requires
estimates on different |𝑋 (ℎ𝑖) |, as follows. Let us fix henceforth two
constants 0.5 < 𝜎− ≤ 𝜎+ ≤ 1.

Definition 4.6 (Critical Level). Level 1 ≤ �̃� < 𝐿 + 1 is called
(𝜎−, 𝜎+)-critical, if |𝑋 (ℎ

�̃�
) | ≥ 𝜎−𝑛 and |𝑋 (ℎ

�̃�+1) | ≤ 𝜎+𝑛.

Suppose henceforth that �̃� is a (𝜎−, 𝜎+)-critical level. (Such a
critical level clearly exists, although its value need not be unique.)
Since |𝑋 (ℎ𝑖) | ≥ |𝑋 (ℎ𝑖+1) | for every 𝑖 < �̃� (because ℎ𝑖 contains the
most points from 𝑋 at level 𝑖), we know that |𝑋 (ℎ𝑖) | ≥ 𝜎−𝑛 for
every 𝑖 ≤ �̃� (not only for 𝑖 = �̃�), and |𝑋 (ℎ𝑖) | ≤ 𝜎+𝑛 for every 𝑖 > �̃� .

Fact 4.7. Each ℎ𝑖 is the parent of ℎ𝑖+1 for 1 ≤ 𝑖 ≤ �̃� − 1, hence
(ℎ1, . . . , ℎ�̃�) forms a path from the root of 𝑇 .

Next, we further “simplify” the representation of 𝑞𝑇 (𝑥), by in-
troducing an approximate version of it that requires even less in-
formation about 𝑥 . Specifically, we introduce in Definition 4.8 a

176

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu Chen, Shaofeng H.-C. Jiang, and Robert Krauthgamer

sequence of 𝑂 (𝐿) values that are independent of 𝑥 , namely, one
value 𝑞𝑖 for each level 𝑖 ≤ �̃� , and then we show in Lemma 4.9 that
for every 𝑥 ∈ 𝑋 , we can approximate 𝑞𝑇 (𝑥) by one of these 𝑂 (𝐿)
values, namely, by 𝑞𝑖 for a suitable level 𝑖 = ℓ (𝑥).

Definition 4.8 (Estimator for 𝑞𝑇). For 1 ≤ 𝑖 ≤ �̃� , define

𝑞𝑖 := 𝑛𝛽𝑖 +
∑︁
𝑗≤𝑖

𝛽 𝑗 · (𝑛 − |𝑋 (ℎ 𝑗) |).

Relating 𝑞𝑇 and 𝑞. For 𝑥 ∈ 𝑋 , let ℓ (𝑥) be the maximum level
1 ≤ 𝑗 ≤ �̃� such that anc𝑗 (𝑥) = ℎ 𝑗 . This is well-defined, because
𝑗 = 1 always satisfies that anc𝑗 (𝑥) = ℎ 𝑗 . The next lemma shows
that 𝑞𝑇 (𝑥) can be approximated by 𝑞𝑖 for 𝑖 = ℓ (𝑥).

Lemma 4.9. Let �̃� be a (𝜎−, 𝜎+)-critical level. Then
∀𝑥 ∈ 𝑋, 𝑞ℓ (𝑥) = Θ(1) · 𝑞𝑇 (𝑥) .

Proof.

1
2
𝑞𝑇 (𝑥) =

𝐿∑︁
𝑖=0

𝛽𝑖 · (𝑛 − |𝑋 (anc𝑖 (𝑥)) |)

=
∑︁

𝑖≤ℓ (𝑥)
𝛽𝑖 · (𝑛 − |𝑋 (ℎ𝑖) |) +

∑︁
𝑖>ℓ (𝑥)

𝛽𝑖 · (𝑛 − |𝑋 (anc𝑖 (𝑥)) |)

(3)

∈
∑︁

𝑖≤ℓ (𝑥)
𝛽𝑖 · (𝑛 − |𝑋 (ℎ𝑖) |)

+ [min{𝜎−, 1 − 𝜎+}, 1] · 𝑛
∑︁

𝑖>ℓ (𝑥)
𝛽𝑖 (4)

∈
∑︁

𝑖≤ℓ (𝑥)
𝛽𝑖 · (𝑛 − |𝑋 (ℎ𝑖) |) + [min{𝜎−, 1 − 𝜎+}, 1] · 𝑛𝛽ℓ (𝑥)

∈ [min{𝜎−, 1 − 𝜎+}, 1] · 𝑞ℓ (𝑥) .

In the above, (3) follows from the fact that anc𝑖 (𝑥) = ℎ𝑖 for 𝑖 ≤ ℓ (𝑥)
(by the definition of ℓ (𝑥) and the property that (ℎ1, . . . , ℎ�̃�) forms a
path from Fact 4.7). (4) follows from the definition of (𝜎, `)-critical
and the definition of ℓ . □

The next lemma shows that the sequence 𝑞1, . . . , 𝑞�̃� is non-
increasing.

Fact 4.10. 𝑞1 = 𝛽1𝑛, and for every 2 ≤ 𝑖 ≤ �̃� , we have 𝑞𝑖 ≤ 𝑞𝑖−1.

Proof. The fact for 𝑖 = 1 is immediate. Now consider 𝑖 ≥ 2. We
have

𝑞𝑖−1 − 𝑞𝑖 = 𝑛(𝛽𝑖−1 − 𝛽𝑖) − 𝛽𝑖 · (𝑛 − |𝑋 (ℎ𝑖) |) = 𝛽𝑖 · |𝑋 (ℎ𝑖) | ≥ 0,

which verifies the lemma. □

Alternative Sampling Procedure. Recall that level �̃� is assumed
to be (𝜎−, 𝜎+)-critical for fixed constants 0.5 < 𝜎− ≤ 𝜎+ ≤ 1. We
plan to sample 𝑥 ∈ 𝑋 with probability proportional to 𝑞ℓ (𝑥) , and
by Lemma 4.9 this only loses an 𝑂 (1) factor in the bound _ needed
for importance sampling (as in Lemma 4.2). For 1 ≤ 𝑖 ≤ �̃� , define
𝑋𝑖 := {𝑥 ∈ 𝑋 | ℓ (𝑥) = 𝑖}. Notice that {𝑋𝑖 }�̃�𝑖=1 forms a partition of
𝑋 , and

𝑋𝑖 =

{
𝑋 (ℎ𝑖) \ 𝑋 (ℎ𝑖+1) if 1 ≤ 𝑖 ≤ �̃� − 1;
𝑋 (ℎ

�̃�
) if 𝑖 = �̃� .

(5)

By definition, points in the same 𝑋𝑖 have the same 𝑞ℓ (𝑥) , and thus
also the same sampling probability. A natural approach to sampling
a point from𝑋 with the desired probabilities is to first pick a random
𝑖 ∈ [�̃�] (non-uniformly) and then sample uniformly a point from
that 𝑋𝑖 . But unfortunately, it is impossible to sample uniformly
from 𝑋𝑖 in streaming (this is justified in Claim A.2), and thus we
shall sample instead from an “extended” set 𝑋 ext

𝑖
⊇ 𝑋𝑖 , defined as

follows.

𝑋 ext
𝑖 :=

{
𝑋 \ 𝑋 (ℎ𝑖+1) if 1 ≤ 𝑖 ≤ �̃� − 1;
𝑋 (ℎ

�̃�
) if 𝑖 = �̃� .

(6)

The path structure of {ℎ𝑖 }𝑖 (Fact 4.7) implies the following.

Fact 4.11. For every 1 ≤ 𝑖 < �̃� , we have 𝑋 ext
𝑖

= 𝑋1 ∪ . . . ∪ 𝑋𝑖 .
We describe in Algorithm 1 a procedure for sampling 𝑥 ∈ 𝑋 with

probability proportional to 𝑞ℓ (𝑥) , based on the above approach
of picking a random 𝑖 ∈ [�̃�] (from a suitable distribution) and
then sampling uniformly a point from that 𝑋 ext

𝑖
. We then prove in

Lemma 4.13 that this procedure samples from 𝑋 with probabilities
proportional to 𝑞ℓ (𝑥) , up to an 𝑂 (𝐿) factor.
Remark 4.12. Sampling from the extended sets (𝑋 ext

𝑖
instead of

𝑋𝑖) can significantly bias the sampling probabilities, because the
“contribution” of a point 𝑥 ∈ 𝑋 can increase by an unbounded
factor. On the one hand, this can increase the sampling probability
of that 𝑥 , which is not a problem at all. On the other hand, it might
increase the total contribution of all points (and thus decrease some
individual sampling probabilities), but our analysis shows that this
effect is bounded by an 𝑂 (𝐿) factor. The intuition here is that 𝑞(𝑥)
represents the sum of distances from 𝑥 to all other points 𝑦 ∈ 𝑋 ,
and we can rearrange their total

∑
𝑥 𝑞(𝑥) by the “other” point𝑦 ∈ 𝑋 ,

and the crux now is that the contribution of each 𝑦 ∈ 𝑋 increases
by at most 𝑂 (𝐿) factor.

Algorithm 1 Alternative sampling procedure (offline)

1: draw a random 𝑖∗ where each 1 ≤ 𝑖 ≤ �̃� is picked with proba-
bility 𝑟𝑖 :=

|𝑋 ext
𝑖
|�̃�𝑖∑�̃�

𝑗=1 |𝑋 ext
𝑗
|�̃� 𝑗

2: draw 𝑥 ∈ 𝑋 ext
𝑖

uniformly at random

3: return 𝑧∗ = 𝑥 as the sample, together with 𝑝∗ =
∑�̃�
𝑖=ℓ (𝑥)

𝑟𝑖
|𝑋 ext

𝑖
|

as its sampling probability

Lemma 4.13. Algorithm 1 samples every 𝑥 ∈ 𝑋 with probability

Pr[𝑧∗ = 𝑥] = ∑�̃�
𝑖=ℓ (𝑥)

𝑟𝑖
|𝑋 ext

𝑖
| , exactly as line 3 reports in 𝑝∗, and

furthermore this is bounded by Pr[𝑧∗ = 𝑥] ≥ Ω
(
1
𝐿

)
�̃�ℓ (𝑥)∑

𝑥 ∈𝑋 �̃�ℓ (𝑥)
.

Proof. Observe that 𝑥 ∈ 𝑋ℓ (𝑥) , and by Fact 4.11, this point
𝑥 can only be sampled for 𝑖 ≥ ℓ (𝑥). Therefore, Pr[𝑧∗ = 𝑥] =∑�̃�
𝑖=ℓ (𝑥)

𝑟𝑖
|𝑋 ext

𝑖
| = 𝑝∗. We bound this probability by

Pr[𝑧∗ = 𝑥] =
∑︁

𝑖≥ℓ (𝑥)

𝑟𝑖

|𝑋 ext
𝑖
|
=

∑︁
𝑖≥ℓ (𝑥)

𝑞𝑖∑�̃�
𝑗=1 |𝑋 ext

𝑗
|𝑞 𝑗

=

∑
𝑖≥ℓ (𝑥) 𝑞𝑖∑�̃�

𝑗=1 |𝑋 ext
𝑗
|𝑞 𝑗
≥

𝑞ℓ (𝑥)∑�̃�
𝑗=1 |𝑋 ext

𝑗
|𝑞 𝑗

. (7)

177

Streaming Euclidean Max-Cut: Dimension vs Data Reduction STOC ’23, June 20–23, 2023, Orlando, FL, USA

Next, to bound the denominator
∑�̃�

𝑗=1 |𝑋 ext
𝑗
|𝑞 𝑗 , observe that |𝑋 ext

𝑗
| =∑𝑗

𝑖=1 |𝑋𝑖 | for all 𝑗 < �̃� (by Fact 4.11), and therefore

�̃�∑︁
𝑗=1
|𝑋 ext

𝑗 |𝑞 𝑗 = |𝑋�̃� |𝑞�̃� +
�̃�−1∑︁
𝑗=1

𝑗∑︁
𝑖=1
|𝑋𝑖 |𝑞 𝑗

= |𝑋
�̃�
|𝑞
�̃�
+
�̃�−1∑︁
𝑖=1

�̃�−1∑︁
𝑗=𝑖

|𝑋𝑖 |𝑞 𝑗

≤ |𝑋
�̃�
|𝑞
�̃�
+ �̃� ·

�̃�−1∑︁
𝑖=1
|𝑋𝑖 |𝑞𝑖

≤ (𝐿 + 1)
�̃�∑︁
𝑖=1
|𝑋𝑖 |𝑞𝑖 = (𝐿 + 1)

∑︁
𝑥∈𝑋

𝑞ℓ (𝑥) ,

where the first inequality is by the monotonicity of 𝑞𝑖 ’s (Fact 4.10).
Combining this with (7), the lemma follows. □

Implementing Algorithm 1 in Streaming. To implement Algo-
rithm 1 in streaming, we first need a streaming algorithm that finds
a critical level �̃� using space𝑂 (poly(𝑑 logΔ)). We discuss this next.

Finding �̃� . For each level 𝑖 , we draw poly(𝑑 logΔ) samples 𝑆𝑖 ⊆
𝑋 uniformly at random from 𝑋 . We then count the number of
samples that lie in each tree node (square) at level 𝑖 , and let 𝑚𝑖

be the maximum count. We let �̃� be the largest level 𝑖 such that
𝑚𝑖

|𝑆𝑖 | ≥ 0.6. By a standard application of Chernoff bound, with
probability at least 1 − poly(Δ𝑑), this level �̃� is (0.55, 0.65)-critical.
Moreover, this process can be implemented in streaming using
space poly(𝑑 logΔ), by maintaining, for each level 𝑖 , only |𝑆𝑖 | =
poly(𝑑 logΔ) independent ℓ0-samplers (Lemma 2.2) on the domain
[Δ]𝑑 . A similar approach can be used to (1 + Y)-approximate the
size of 𝑋 (ℎ𝑖) for every 𝑖 ≤ �̃� , and also sample uniformly from these
sets, using space 𝑂 (poly(Y−1𝑑 logΔ)) and with failure probability
1 − 1/poly(Δ𝑑) (by using Lemmas 2.1 and 2.2).

Estimating and Sampling from𝑋\𝑋 (ℎ𝑖). Wealso need to estimate
𝑞𝑖 and |𝑋 ext

𝑖
|, and to sample uniformly at random from 𝑋 ext

𝑖
, for

every 𝑖 ≤ �̃� . The case 𝑖 = �̃� was already discussed, because 𝑋 ext
�̃�

=

𝑋 (ℎ
�̃�
). It remains to consider 𝑖 < �̃� , in which case we need to (1±Y)-

approximate the size of 𝑋 \ 𝑋 (ℎ𝑖), and also to sample uniformly at
random from that set, and we can assume that |𝑋 (ℎ𝑖) | > 0.5𝑛. We
provide such a streaming algorithm in Lemma 4.14 below, which
we prove in Section 4.2. This lemma is stated in a more general form
that may be of independent interest, where the input is a frequency
vector 𝑥 ∈ R𝑁 (i.e., a stream of insertions and deletions of items
from domain [𝑁]) and access to a function P : [𝑁] → [𝑁 ′], for
𝑁 ′ ≤ 𝑁 , that can be viewed as a partition of the domain into 𝑁 ′

parts. In our intended application, the domain [𝑁] will be the grid
[Δ]𝑑 , and the partition P will be its partition into squares of a given
level 𝑖; observe that it is easy to implement P as a function that
maps each grid point to its level-𝑖 square. Roughly speaking, the
streaming algorithm in Lemma 4.14 samples uniformly from the
support set supp(𝑥) = {𝑖 ∈ [𝑁] : 𝑥𝑖 ≠ 0}, but excluding indices that
lie in the part of P that is heaviest, i.e., has most nonzero indices,
assuming it is sufficiently heavy. In our intended application, this

method samples uniformly from the input 𝑋 ⊂ [Δ]𝑑 but excluding
points that lie in the heaviest square, i.e., uniformly from 𝑋 \𝑋 (ℎ𝑖).
(square with the largest number of input points).

Lemma 4.14 (Sampling from Light Parts). There exists a streaming

algorithm, that given 0 < Y, 𝛿, 𝜎 < 0.5, integers 𝑁, 𝑁 ′, 𝑀 ≥ 1, a
mapping P : [𝑁] → [𝑁 ′], and a frequency vector 𝑥 ∈ [−𝑀,𝑀]𝑁
that is presented as a stream of additive updates, uses space

𝑂 (poly(Y−1𝜎−1 log(𝛿−1𝑀𝑁))),
and reports a sample 𝑖∗ ∈ [𝑁] ∪ {⊥} and a value 𝑟∗ ≥ 0. Let
𝑋 := {𝑖 ∈ [𝑁] | 𝑥𝑖 ≠ 0} be the support of 𝑥 , and let 𝑗max :=
argmax𝑗∈[𝑁 ′] |P−1 (𝑗) ∩ 𝑋 | be the heaviest P with respect to 𝑋 . If

𝑋heavy := P−1 (𝑗max) ∩𝑋 satisfies |𝑋heavy | ≥ (0.5+𝜎) |𝑋 |, then with
probability at least 1 − 𝛿 ,
• 𝑟∗ ∈ (1 ± Y) · |𝑋light | where 𝑋light := 𝑋 \ 𝑋heavy, and
• unless 𝑋light is empty, 𝑖∗ ∈ 𝑋light and moreover for all 𝑖 ∈
𝑋light, it holds that Pr[𝑖∗ = 𝑖] = 1

|𝑋light | (provided that |𝑋light | ≠
0).

In our application, we will apply Lemma 4.14 in parallel for every
level 𝑖 , with 𝑁 = Δ𝑑 , i.e., the items being inserted and deleted are
points in [Δ]𝑑 , and a mapping P defined by the level-𝑖 squares (tree
nodes), i.e., for 𝑥 ∈ [Δ]𝑑 we define P(𝑥) as the level-𝑖 node that
contains 𝑥 . We will set the failure probability to be 𝛿 = 1/poly(Δ𝑑)
and a fixed 𝜎 = 0.05. This way, conditioning on the success of
Lemma 4.14, we can compute 𝑞𝑖 , |𝑋 ext

𝑖
| with error (1 ± Y), and

sampled from 𝑋 ext
𝑖

uniformly.

Concluding Lemma 4.2. In conclusion, our streaming algorithm
initializes with sampling a randomly-shifted quadtree 𝑇 which
defines a tree embedding, all in an implicit way. Then, assume 𝑇 is
obtained and condition on the success of it, specifically Lemma 4.4
(with probability 0.99), we use the streaming implementation of
Algorithm 1, as outlined above. The resultant 𝑧∗ and 𝑝∗ are the
return value. The error bound on 𝑧∗ and 𝑝∗ and the bound of _ =

𝑂 (poly(𝑑 logΔ)) follow by Lemma 4.4 and Lemma 4.13, plus an
additional error and failure probability introduced by streaming,
which is bounded in the previous paragraphs. This finishes the
proof.

4.2 Sampling from The Light Parts (Proof of

Lemma 4.14)

An Offline Algorithm. Notice that {P−1 (𝑦)}𝑦∈[𝑁 ′] defines a par-
tition of [𝑁]. In our proof, we interpret P = {𝑃𝑖 }𝑖 as such a parti-
tion. Let 𝑃max := P−1 (𝑦max) be the part of P that contains the most
from 𝑋 , so 𝑋heavy = 𝑃max ∩ 𝑋 . We start with an offline algorithm,
summarized in Algorithm 2. In the algorithm, we consider a set of
𝑠 = Θ(log(𝑁𝛿−1)) random hash functions ℎ1, . . . , ℎ𝑠 that randomly
map each part in P to one of 𝑢 = 2 buckets (as in line 2).

Then, consider some ℎ𝑡 for 𝑡 ∈ [𝑠]. Let 𝐵 𝑗 (𝑗 ∈ [𝑢]) be the
elements from all parts that are mapped by ℎ𝑡 to the bucket 𝑗 (in
line 4). We find 𝑗∗ as the bucket that contains the most elements
from𝑋 (in line 5). Since we assume |𝑋heavy | ≥ (0.5+𝜎) |𝑋 | > 0.5|𝑋 |,
we know the bucket ℎ𝑡 (𝑃max) contains more than 0.5|𝑋 | elements
form 𝑋 (recalling that 𝑃max = P−1 (𝑦max) is the part that contains
the most from 𝑋), and this implies ℎ𝑡 (𝑃max) must be the bucket

178

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu Chen, Shaofeng H.-C. Jiang, and Robert Krauthgamer

Algorithm 2 Sampling and estimating from the light part (offline)

1: let 𝑢 ← 2, 𝑠 ← Θ(log(𝑁𝛿−1))
2: let H ← {ℎ1, . . . , ℎ𝑠 } be a collection of independent random

hash functions, where each ℎ ∈ H (ℎ : P → [𝑢]) satisfies
∀𝑃 ≠ 𝑃 ′, Pr[ℎ(𝑃) = ℎ(𝑃 ′)] ≤ 1/𝑢

3: for 𝑡 ∈ [𝑠] do
4: for 𝑗 ∈ [𝑢], let 𝐵 𝑗 ←

(⋃
𝑃∈P:ℎ𝑡 (𝑃)=𝑗 𝑃

)
∩ 𝑋

5: let 𝑗∗ ← argmax𝑗 |𝐵 𝑗 |
6: let 𝐷𝑡 ← 𝑋 \⋃𝑃∈P:ℎ𝑡 (𝑃)=𝑗∗ 𝑃
7: end for

8: compute 𝐷all ←
⋃

𝑡 ∈[𝑠] 𝐷𝑡

9: return a uniform sample 𝑖∗ ∈ 𝐷all, and report 𝑟∗ := |𝐷all | as
the estimate for |𝑋light |

that contains the most elements from 𝑋 . Hence,

𝑗∗ = ℎ𝑡 (𝑃max). (8)

Next, we drop the elements that lie in the bucket 𝑗∗, and take the
remaining elements, as 𝐷𝑡 (in line 6). While 𝐷𝑡 certainly does not
contain any element from 𝑋heavy (by (8) and the definition of 𝐷𝑡 ’s),
𝐷𝑡 is only a subset of 𝑋light. Hence, we take the union of all 𝐷𝑡 ’s
(over 𝑡 ∈ [𝑠]), denoted as 𝐷all (in line 8), which equals 𝑋light with
high probability.

Analysis of 𝐷all. For every 𝑖 ∈ 𝑋light, every 𝑡 ∈ [𝑠],

Pr[𝑖 ∉ 𝐷𝑡] = Pr[ℎ𝑡 (𝑃𝑖) = ℎ𝑡 (𝑃max)] ≤
1
𝑢
=

1
2
,

where 𝑃𝑖 ∈ P is the part that 𝑖 belongs to. Therefore, by the inde-
pendence of ℎ𝑡 ’s, we know for every 𝑖 ∈ 𝑋light,

Pr[𝑖 ∉ 𝐷all] = Pr[∀𝑡 ∈ [𝑠], 𝑖 ∉ 𝐷𝑡] ≤
1
2𝑠

=
𝛿

poly(𝑁) .

Taking a union bound over 𝑖 ∈ 𝑋light, we have

Pr[∃𝑖 ∈ 𝑋light, 𝑖 ∉ 𝐷all] ≤
𝛿

poly(𝑁) |𝑋light | ≤ 𝛿.

Hence, we conclude that

Pr[𝐷all = 𝑋light] ≥ 1 − 𝛿.
Conditioning on the event that 𝐷all = 𝑋light, we conclude that 𝑟∗ =
|𝐷all | = |𝑋light |, and that ∀𝑖 ∈ 𝑋light, Pr[𝑖∗ = 𝑖] = 1

|𝐷all | =
1

|𝑋light | .

Streaming Algorithm. It remains to give a streaming implementa-
tion for Algorithm 2. Before the stream starts, we initialize several
streaming data structures. We start with building the hash functions
H , and this can be implemented using space poly(log𝑁), by using
hash families of limited independence. Next, we maintain for every
𝑡 ∈ [𝑠], for every bucket 𝑗 ∈ [𝑢], an ℓ0-sampler L (𝑡)

𝑗
(Lemma 2.2)

with failure probability 𝑂 (𝛿𝑢𝑠), as well as an ℓ0-norm estimator
K (𝑡)

𝑗
(Lemma 2.1) with failure probability 𝑂 (𝛿𝑢𝑠) and error guaran-

tee Y𝜎 ≤ min{Y, 𝜎}, both on domain [𝑛]. The setup of the failure
probabilities immediately implies that with probability 1 − 𝛿 , all
data structures succeed simultaneously, and we condition on their
success in the following argument. Since we need to combine the
linear sketches L (𝑡)

𝑗
’s in later steps, for every 𝑡 ∈ [𝑠] and 𝑗 ∈ [𝑢],

we use the same random seeds among all ℓ0-samplers {L (𝑡)
𝑗
}’s, so

that they can be “combined” by simply adding up. Also do the same
for K (𝑡)

𝑗
’s. Another detail is that, strictly speaking, we need 𝑂 (1)

independent “copies” of every K and L, since we need to query
each of them𝑂 (1) times. As this only enlarges the space by an𝑂 (1)
factor, we omit this detail for the sake of presentation.

Whenever an update for element 𝑖 ∈ [𝑛] is received, we update
L (𝑡)

𝑗𝑖
and K (𝑡)

𝑗𝑖
for every 𝑡 ∈ [𝑠], where 𝑗𝑖 := ℎ𝑡 (𝑃𝑖), and 𝑃𝑖 ∈ P is

the unique part that contains 𝑖 .
When the stream terminates, we proceed to generate the sample

𝑖∗ ∈ 𝑋light and the estimate 𝑟∗ for 𝑋light. For 𝑡 ∈ [𝑠], 𝑗 ∈ [𝑢],
query K (𝑡)

𝑗
to obtain an estimator for |𝐵 𝑗 | (line 4) within (1 ± Y𝜎)

factor. Use these estimations to find 𝑗∗ (line 5). Note that this 𝑗∗

is the same as computing using exact |𝐵 𝑗 | values. To see this, the
key observation is that, |𝑋heavy | ≥ (0.5 + 𝜎) |𝑋 |, while for every
𝑃 ∈ P \ 𝑃max we have |𝑃 | ≤ (0.5 − 𝜎) |𝑋 |. Hence, to precisely
find 𝑗∗, it suffices to distinguish between subsets 𝑃 , 𝑃 ′ such that
|𝑃 | ≥ (0.5+𝜎) |𝑋 | and |𝑃 ′ | ≤ (0.5−𝜎) |𝑋 |. Even with a (1±Y𝜎) error
(which is the error of our K’s), this gap is still 0.5+𝜎

0.5−𝜎 ·
1+Y𝜎
1−Y𝜎 > 1

which is large enough.
Next, compute L (𝑡) := ∑

𝑗∈[𝑢]\{ 𝑗∗ } L
(𝑡)
𝑗

as the ℓ0-sampler that

corresponds to 𝐷𝑡 (line 6), and obtain K (𝑡) := ∑
𝑗∈[𝑢]\{ 𝑗∗ } K

(𝑡)
𝑗

similarly. We can do this since we use the same random seeds
among L (𝑡)

𝑗
’s (and the same has been done to K). We further

compute L :=
∑
𝑡 ∈[𝑠] L (𝑡) whose support corresponds to 𝐷all.

Define K :=
∑
𝑡 ∈[𝑠] K (𝑡) similarly. The final return values 𝑖∗ and

𝑟∗ are given by querying L and K . Note that on the success of the
ℓ0-samplerL, the probability for 𝑖∗ = 𝑖 for each 𝑖 ∈𝑊 is exactly 1

|𝑊 |
(Lemma 2.2). However, the 𝑟∗ deviates from |𝑊 | by a multiplicative
(1 ± Y) factor.

In conclusion, the analysis of Algorithm 2 still goes through by
using the estimated values as in the above procedure, except that
one needs to rescale Y and 𝛿 by a constant factor, to compensate
the error and failure probability introduced by the streaming data
structures. This finishes the proof of Lemma 4.14.

Acknowledgments

We thank Christian Sohler for pointing us to the dimension reduc-
tion result in [34, 35]. We also thank an anonymous reviewer for
pointing out how to simplify our proof of this result (Theorem B.1).

A LOWER BOUNDS BASED ON INDEX

Definition A.1 (INDEX Problem). Alice is given a message 𝑥 ∈
{0, 1}𝑛 , and Bob is given an index 𝑖 ∈ [𝑛]. Alice can send Bob
exactly one message𝑀 , and Bob needs to use his input 𝑖 and this
message𝑀 , to compute 𝑥𝑖 ∈ {0, 1}.

It is well known that the INDEX problem requires Ω(𝑛) com-
bination to succeed with constant probability, i.e.,𝑀 = Ω(𝑛) (see
e.g., [26, 32, 33]).

Claim A.2. For every integer Δ ≥ 1, given access to a quadtree

𝑇 on [Δ], any streaming algorithm that tests with constant success

probability whether 𝑋 (ℎ𝑖∗) \𝑋 (ℎ𝑖∗+1) = ∅ for every 𝑋 ⊆ [Δ] and 𝑖∗
presented as an insertion-only point stream must use space Ω(

√
Δ),

179

Streaming Euclidean Max-Cut: Dimension vs Data Reduction STOC ’23, June 20–23, 2023, Orlando, FL, USA

where ℎ𝑖 is defined as in Section 4 which is the level-𝑖 node of 𝑇 that

contains the most from 𝑋 , and it is promised that both |𝑋 (ℎ𝑖∗) | and
|𝑋 (ℎ𝑖∗+1) | is larger than 0.5|𝑋 |.

Proof. Pick the level 𝑖∗ in𝑇 such that the squares (i.e., intervals)
are of side-length 𝑚 := 10

√
Δ. We reduce to INDEX with 𝑛 :=

Δ/𝑚 = 1
10
√
Δ, corresponding to the level-𝑖∗ nodes. (Note that 𝑖∗ is

public knowledge between Alice and Bob). Suppose Alice receives
𝑥 ∈ {0, 1}𝑛 . For 𝑗 ∈ [𝑛], if 𝑥 𝑗 = 1, insert a point at coordinate
(𝑗 − 1) ·𝑚 + 1, which is the first coordinate in the 𝑗-th interval at
level 𝑖∗, and do nothing if 𝑥 𝑗 = 0. Feed this input to the algorithm,
and send the internal state of the algorithm to Bob.

When Bob receives 𝑖 ∈ [𝑛], Bob inserts one point to each coor-
dinate in the right/larger sub-interval of the 𝑖-th level-𝑖∗ interval,
namely, ((𝑖 − 1) · 𝑚 + 𝑚

2 , 𝑖 · 𝑚 − 1]. Clearly, ℎ𝑖∗ is this 𝑖-th in-
terval at level 𝑖∗, ℎ𝑖∗+1 is the right sub-interval of ℎ𝑖∗ , and both
|𝑋 (ℎ𝑖∗) | and |𝑋 (ℎ𝑖∗+1) | contain more than 0.5|𝑋 | points. Observe
that 𝑋 (ℎ𝑖∗) \ 𝑋 (ℎ𝑖∗+1) = ∅ if and only if 𝑥𝑖 = 0. This finishes the
proof. □

Claim A.3. For every integer Δ ≥ 1, any algorithm that with con-

stant success probability computes Max-Cut(𝑋) exactly for every

𝑋 ⊆ [Δ] presented as an insertion-only point stream must use space

Ω(poly(Δ)).

Proof. In our proof, we assume an algorithm A returns [≥ 0,
such that for every 𝑋 ⊆ [Δ],

Pr[[= Max-Cut(𝑋)] ≥ 1 − 1/Δ𝑐 ,

for some sufficiently large 𝑐 ≥ 1. We show such A must use space
Ω(poly(Δ)). Note that the assumption about the 1/Δ𝑐 probability
is without loss of generality.

We reduce to INDEX with 𝑛 := Δ0.1. Let𝑚 := Δ
𝑛 = Δ0.9 = 𝑛9.

Suppose Alice receives 𝑥 ∈ {0, 1}𝑛 . For 𝑗 ∈ [𝑛], if 𝑥 𝑗 = 1, insert a
point at coordinate (𝑗 − 1)𝑚. 8 If 𝑥 𝑗 = 0 do nothing. Alice feeds this
input to A, and sends the internal state of A to Bob.

Now, suppose Bob receives 𝑖 ∈ [𝑛]. Bob resumes algorithm A,
and useA to do the following: for every 𝑗 ∈ [𝑛], insert to the stream
𝑃 𝑗 := {(𝑗 −1)𝑚+𝑚2 +𝑡 | 1 ≤ 𝑡 ≤ 𝑛3} and query theMax-Cut value.
Restore to the initial received states of A after every iteration of 𝑗 .
This may be done, by saving the received state, insert the points 𝑃 𝑗
for one 𝑗 , query, and fall back to the saved state. Eventually, sinceA
succeeds with probability 1−1/Δ𝑐 , by a union bound, with constant
probability, all the queries are answered correctly simultaneously.
We condition on this constant-probability event.

Let 𝑋 := {𝑖 ∈ [𝑛] | 𝑥𝑖 ≠ 0} be the support of Alice’s input
𝑥 , and let 𝑋 ′ := {(𝑖 − 1)𝑚 | 𝑖 ∈ 𝑋 } be the set of points inserted
by Alice. Let 𝑋 𝑗 := 𝑋 ′ ∪ 𝑃 𝑗 . Notice that now we have the exact
value of Max-Cut(𝑋 𝑗) for every 𝑗 ∈ [𝑛]. It remains to show this
information suffices to deduce the 𝑥𝑖 value, which the INDEX prob-
lem asks for. To this end, we need to show the following lemma,
that gives the (rough) value of Max-Cut(𝑋 𝑗), which is basically∑
𝑖∈𝑋 |𝑖 − 𝑗 − 0.5| (up to scaling and a neglectable additive error).

8Here we may insert a point at 0 which is not in [Δ]. This may be resolved by e.g.,
enlarging Δ by 1 and shifting the coordinates, but we omit this detail for the sake of
presentation.

Lemma A.4. For every 𝑗 ∈ [𝑛], Max-Cut(𝑋 𝑗) ∈ 𝑛12
∑
𝑖∈𝑋 |𝑖 − 𝑗 −

0.5| ±𝑂 (𝑛4).

Proof. Fix some 𝑗 . Note that 𝑃 𝑗 ∩ 𝑋 ′ = ∅. Observe that the cut
value of the cut (𝑋 ′, 𝑃 𝑗) is∑︁
𝑥∈𝑋 ′,𝑦∈𝑃 𝑗

dist(𝑥,𝑦) =
∑︁
𝑖∈𝑋

∑︁
𝑡 ∈[𝑛3]

���(𝑖 − 1)𝑚 − (𝑗 − 1)𝑚 − 𝑚

2
− 𝑡

���
=
∑︁
𝑖∈𝑋

∑︁
𝑡 ∈[𝑛3]

| (𝑖 − 𝑗 − 0.5)𝑛9 − 𝑡 |

∈
∑︁
𝑖∈𝑋

∑︁
𝑡 ∈[𝑛3]

|𝑖 − 𝑗 − 0.5| · 𝑛9 ± 𝑡

∈
∑︁
𝑖∈𝑋
|𝑖 − 𝑗 − 0.5| · 𝑛12 ±𝑂 (𝑛4) .

It suffices to show the cut (𝑃 𝑗 , 𝑋 ′) achieves Max-Cut(𝑋 𝑗). Define
the notation cut(𝑊,𝑍) :=

∑
𝑥∈𝑊,𝑦∈𝑍 dist(𝑥,𝑦). Consider a cut

(𝑆,𝑇) of 𝑋 𝑗 such that 𝑆 ≠ 𝑃 𝑗 and 𝑇 ≠ 𝑋 ′, and we show cut(𝑆,𝑇) <
cut(𝑋 ′, 𝑃 𝑗). A useful fact which follows from the definition is that
dist(𝑋 ′, 𝑃 𝑗) ≥ 𝑚

2 .

Easy Case. First, we consider the (easy) case such that 𝑆 ⊆ 𝑃 𝑗
or 𝑇 ⊆ 𝑃 𝑗 . In this case, there is some ∅ ≠ 𝑊 ⊂ 𝑃 𝑗 such that
cut(𝑆,𝑇) = cut(𝑃 𝑗 \𝑊,𝑋 ′ ∪𝑊). Then,
cut(𝑆,𝑇) = cut(𝑃 𝑗 \𝑊,𝑋 ′ ∪𝑊) = cut(𝑃 𝑗 \𝑊,𝑋 ′) + cut(𝑃 𝑗 ,𝑊)

< cut(𝑃 𝑗 \𝑊,𝑋 ′) +
|𝑃 𝑗 |2

4
· 𝑛3

= cut(𝑃 𝑗 , 𝑋 ′) − cut(𝑊,𝑋) + 𝑛
9

4

≤ cut(𝑃 𝑗 , 𝑋 ′) −
𝑚

2
+ 𝑛

9

4
< cut(𝑃 𝑗 , 𝑋 ′).

General Case. Now, we handle the remaining case where neither
𝑆 nor 𝑇 is a subset of 𝑃 𝑗 . Then |𝑆 ∩ 𝑋 ′ | > 0 and |𝑇 ∩ 𝑋 ′ | > 0.
Combining these facts and assumptions, we have

cut(𝑃 𝑗 , 𝑋 ′) − cut(𝑆,𝑇)
= cut(𝑃 𝑗 , 𝑋 ′) − cut(𝑆 ∩ 𝑃 𝑗 ,𝑇 ∩ 𝑋 ′) − cut(𝑆 ∩ 𝑋 ′,𝑇 ∩ 𝑃 𝑗)

− cut(𝑆 ∩ 𝑋 ′,𝑇 ∩ 𝑋 ′) − cut(𝑆 ∩ 𝑃 𝑗 ,𝑇 ∩ 𝑃 𝑗)

> cut(𝑆 ∩ 𝑃 𝑗 , 𝑆 ∩ 𝑋 ′) + cut(𝑇 ∩ 𝑃 𝑗 ,𝑇 ∩ 𝑋 ′) −
|𝑋 ′ |2
4
· Δ − |𝑃 𝑗 |2 · 𝑛3

≥ 𝑚

2
· (|𝑆 ∩ 𝑋 ′ | · |𝑆 ∩ 𝑃 𝑗 | + |𝑇 ∩ 𝑋 ′ | · |𝑇 ∩ 𝑃 𝑗 |) −

𝑛12

4
− 𝑛9

≥ 𝑚

2
· (|𝑆 ∩ 𝑃 𝑗 | + |𝑇 ∩ 𝑃 𝑗 |) −

𝑛12

4
− 𝑛9

=
𝑛12

4
− 𝑛9 > 0.

This finishes the proof of Lemma A.4. □

Observe that, the function 𝑓 : [𝑛] → R+ such that 𝑓 (𝑗) :=
2
∑
𝑖∈𝑋 |𝑖 − 𝑗 − 0.5| is integer-valued, so 2𝑛12

∑
𝑖∈𝑋 |𝑖 − 𝑗 − 0.5|

must be a multiple of 𝑛12. Therefore, by Lemma A.4, we round the
value of 2 · Max-Cut(𝑋 𝑗) to the nearest multiple of 𝑛12 (so that
the additive error 𝑂 (𝑛4) in Lemma A.4 is ignored), and we obtain
the exact value of 2𝑛12

∑
𝑖∈𝑋 |𝑖 − 𝑗 − 0.5|. In other words, we know

180

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu Chen, Shaofeng H.-C. Jiang, and Robert Krauthgamer

the value of 𝑓 (𝑗) for all 𝑗 ∈ [𝑛]. Finally, because of the piece-wise
linear structure of 𝑓 , one can make use of all the 𝑓 (𝑗) values to
recover all of 𝑋 . This finishes the proof of Claim A.3. □

B DIMENSION REDUCTION FORMAX-CUT

For completeness, we prove below a dimension reduction for Max-
Cut, similarly to the one given in [35], with proof details appearing
in [34].

TheoremB.1. Let𝑋 ⊂ R𝑑 be a finite set, 0 < Y, 𝛿 < 1 and 𝜋 : R𝑑 →
R𝑑
′
be a JL Transform as in Definition B.2 with target dimension

𝑑′ = 𝑂
(
Y−2log(Y−1𝛿−1)

)
. Then with probability 1 − 𝛿 ,

Max-Cut(𝜋 (𝑋)) ∈ (1 ± Y) ·Max-Cut(𝑋). (9)

Our bound is not directly comparable with that in [34, 35], since
we improve the dependence on 𝛿 from𝑂 (𝛿−2) to𝑂 (log(𝛿−1)), but
we also introduced an additional log(Y−1) factor. Our argument is
simpler, achieved by making use of a certain formulation of the
Johnson-Lindenstrauss (JL) transform [27], that differs from the
one used in [34, 35].

The JL transform formulation that we use (see Definition B.2)
is similar to the one previously used in [38], to obtain dimension
reduction results for clustering problems. Its second property (the
expectation bound), may not hold for all constructions of the JL
transform (and was not used in [34, 35]), but it can be realized by a
random matrix with independent sub-Gaussian entries.

Definition B.2 (JL Transform [27, 38]). For every integer 𝑑,𝑑′ ≥ 1,
there exists a randomized mapping 𝜋 : R𝑑 → R𝑑 ′ such that for all
𝑥 ≠ 𝑦 ∈ R𝑑 ,

Pr
𝜋

[
dist(𝜋 (𝑥), 𝜋 (𝑦)) ∉ (1 ± Y) · dist(𝑥,𝑦)

]
≤ 𝑒−𝐶𝑑

′Y2 (10)

E
𝜋

[
max

{����dist(𝜋 (𝑥), 𝜋 (𝑦))dist(𝑥,𝑦) − 1
���� − Y, 0}] ≤ 𝑒−𝐶𝑑

′Y2 , (11)

for some universal constant 𝐶 > 0.

Our version is similar but not identical to that in [38], because
we introduce an absolute value (to bound the error from both sides),
but the proof is similar.

Proof of Theorem B.1. Observe that it suffices to show with
probability 1 − 𝛿 ,∑︁
𝑥,𝑦∈𝑋

| dist(𝜋 (𝑥), 𝜋 (𝑦)) − dist(𝑥,𝑦) | ≤ 𝑂 (Y)
∑︁

𝑥,𝑦∈𝑋
dist(𝑥,𝑦) . (12)

Let 𝑃 := {(𝑥,𝑦) ∈ 𝑋 : | dist(𝜋 (𝑥), 𝜋 (𝑦)) − dist(𝑥,𝑦) | > Y dist(𝑥,𝑦)}
be the set of “bad” point pairs whose distances are distorted by
more than Y error. Since by definition we have (with probability 1)∑︁
(𝑥,𝑦) ∈𝑋×𝑋\𝑃

| dist(𝜋 (𝑥), 𝜋 (𝑦)) − dist(𝑥,𝑦) | ≤ Y ·
∑︁

𝑥,𝑦∈𝑋
dist(𝑥,𝑦),

hence, it remains to show the following holds with probability 1−𝛿∑︁
(𝑥,𝑦) ∈𝑃

| dist(𝜋 (𝑥), 𝜋 (𝑦)) − dist(𝑥,𝑦) | ≤ Y
∑︁

𝑥,𝑦∈𝑋
dist(𝑥,𝑦). (13)

By the guarantee of Definition B.2, we have

E[
∑︁
(𝑥,𝑦) ∈𝑃

| dist(𝜋 (𝑥), 𝜋 (𝑦)) − dist(𝑥,𝑦) | − Y dist(𝑥,𝑦)]

=E[
∑︁

𝑥,𝑦∈𝑃
max{| dist(𝜋 (𝑥), 𝜋 (𝑦)) − dist(𝑥,𝑦) | − Y dist(𝑥,𝑦), 0}]

≤ E[
∑︁

𝑥,𝑦∈𝑋
max{| dist(𝜋 (𝑥), 𝜋 (𝑦)) − dist(𝑥,𝑦) | − Y dist(𝑥,𝑦), 0}]

≤𝑒−𝐶𝑑
′Y2

∑︁
𝑥,𝑦∈𝑋

dist(𝑥,𝑦) ≤ Y𝛿
∑︁

𝑥,𝑦∈𝑋
dist(𝑥,𝑦).

Therefore, by Markov’s inequality, we conclude that (13) holds with
probability 1 − 𝛿 . This finishes the proof. □

Theorem B.1 implies the corollary below about a streaming algo-
rithm that reports an encoding of a near-optimal cut (and not just
its value). The most natural way to report a cut of 𝑋 is to somehow
represent of a 2-partition of 𝑋 , but this is not possible because that
contains 𝑋 itself, which requires Ω(𝑛) bits to store. Instead, we let
the algorithm report a function 𝑓 : R𝑑 → {0, 1} (using some encod-
ing), and then 𝑓 implicitly defines the cut (𝑋 ∩ 𝑓 −1 (0), 𝑋 ∩ 𝑓 −1 (1)).
In other words, the algorithm essentially reports an “oracle” that
does not know 𝑋 , but can determine, for each input point 𝑥 ∈ 𝑋 ,
its side in the cut. This formulation was suggested by [19], and in
fact we rely on their solution and combine it with our dimension
reduction.

Corollary B.3 (Cut Oracle). There is a randomized streaming al-

gorithm that, given 0 < Y < 1/2, integers Δ, 𝑑 ≥ 1, and an input

dataset 𝑋 ⊆ [Δ]𝑑 presented as a dynamic stream, the algorithm uses

space exp(poly(Y−1)) poly(𝑑 logΔ), and reports (an encoding of) a

mapping 𝑓 : R𝑑 → {0, 1}, such that with constant probability (at

least 2/3), cut𝑋 (𝑋 ∩ 𝑓 −1 (0)) ≥ (1 − Y) ·Max-Cut(𝑋).

Proof. As noted in [19], there exists an algorithm A that finds
an 𝑓 with the same guarantee and failure probability, except that
the space usage is Y−𝑂 (𝑑) · poly(logΔ). Hence, we can use this A
as a black with Theorem B.1 to conclude the theorem.

Specifically, let 𝜋 : R𝑑 → R𝑑 ′ such that 𝑑′ = 𝑂 (Y−2 log(Y−1))
be a mapping that satisfies Theorem B.1. Then, for every update
of point 𝑥 ∈ [Δ]𝑑 in the stream, we map it to 𝜋 (𝑥) and feed it
to A. When the stream terminates, we use A to compute an 𝑓 ′ :
R𝑑
′ → {0, 1}. Then, to define the final 𝑓 : R𝑑 → {0, 1} is defined

as 𝑓 (𝑥) := 𝑓 ′ (𝜋 (𝑥)). This finishes the proof. □

REFERENCES

[1] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. 2004. Ap-
proximating Extent Measures of Points. J. ACM 51, 4 (2004), 606–635. https:
//doi.org/10.1145/1008731.1008736

[2] Pankaj K. Agarwal and R. Sharathkumar. 2015. Streaming Algorithms for Extent
Problems in High Dimensions. Algorithmica 72, 1 (2015), 83–98. https://doi.org/
10.1007/s00453-013-9846-4

[3] Kook Jin Ahn and Sudipto Guha. 2009. Graph Sparsification in the Semi-streaming
Model. In ICALP (2) (Lecture Notes in Computer Science, Vol. 5556). Springer, 328–
338. https://doi.org/10.1007/978-3-642-02930-1_27

[4] Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski.
2003. Random sampling and approximation of MAX-CSPs. J. Comput. Syst. Sci.

67, 2 (2003), 212–243. https://doi.org/10.1016/S0022-0000(03)00008-4
[5] Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David P. Woodruff. 2009. Ef-

ficient Sketches for Earth-Mover Distance, with Applications. In FOCS. IEEE
Computer Society, 324–330. https://doi.org/10.1109/FOCS.2009.25

181

https://doi.org/10.1145/1008731.1008736
https://doi.org/10.1145/1008731.1008736
https://doi.org/10.1007/s00453-013-9846-4
https://doi.org/10.1007/s00453-013-9846-4
https://doi.org/10.1007/978-3-642-02930-1_27
https://doi.org/10.1016/S0022-0000(03)00008-4
https://doi.org/10.1109/FOCS.2009.25

Streaming Euclidean Max-Cut: Dimension vs Data Reduction STOC ’23, June 20–23, 2023, Orlando, FL, USA

[6] Sanjeev Arora. 1998. Polynomial Time Approximation Schemes for Euclidean
Traveling Salesman and other Geometric Problems. J. ACM 45, 5 (1998), 753–782.
https://doi.org/10.1145/290179.290180

[7] Yair Bartal. 1996. Probabilistic Approximations of Metric Spaces and Its Al-
gorithmic Applications. In FOCS. IEEE Computer Society, 184–193. https:
//doi.org/10.1109/SFCS.1996.548477

[8] Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler, and Lin F.
Yang. 2017. Clustering High Dimensional Dynamic Data Streams. In ICML

(Proceedings of Machine Learning Research, Vol. 70). PMLR, 576–585. http://
proceedings.mlr.press/v70/braverman17a.html

[9] Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge A.
Plotkin. 1998. Approximating a Finite Metric by a Small Number of Tree Metrics.
In FOCS. IEEE Computer Society, 379–388. https://doi.org/10.1109/SFCS.1998.
743488

[10] Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. 2022. New streaming
algorithms for high dimensional EMD and MST. In STOC. ACM, 222–233. https:
//doi.org/10.1145/3519935.3519979

[11] Artur Czumaj, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý.
2022. Streaming Algorithms for Geometric Steiner Forest. In ICALP (LIPIcs,

Vol. 229). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 47:1–47:20. https:
//doi.org/10.4230/LIPIcs.ICALP.2022.47

[12] Artur Czumaj, Shaofeng H.-C. Jiang, Robert Krauthgamer, Pavel Veselý, andMing-
wei Yang. 2022. Streaming Facility Location in High Dimension via Geometric
Hashing. In FOCS. IEEE, 450–461. https://doi.org/10.1109/FOCS54457.2022.00050

[13] Artur Czumaj, Christiane Lammersen, Morteza Monemizadeh, and Christian
Sohler. 2013. (1 + Y)-approximation for facility location in data streams. In SODA.
SIAM, 1710–1728. https://doi.org/10.1137/1.9781611973105.123

[14] Wenceslas Fernandez de la Vega and Marek Karpinski. 2000. Polynomial time
approximation of dense weighted instances of MAX-CUT. Random Struct. Algo-

rithms 16, 4 (2000), 314–332.
[15] Wenceslas Fernandez de la Vega and Claire Kenyon. 2001. A Randomized Ap-

proximation Scheme for Metric MAX-CUT. J. Comput. Syst. Sci. 63, 4 (dec 2001),
531–541. https://doi.org/10.1006/jcss.2001.1772

[16] Dan Feldman and Michael Langberg. 2011. A unified framework for approxi-
mating and clustering data. In STOC. ACM, 569–578. https://doi.org/10.1145/
1993636.1993712

[17] Dan Feldman, Melanie Schmidt, and Christian Sohler. 2020. Turning Big Data Into
Tiny Data: Constant-Size Coresets for 𝑘-Means, PCA, and Projective Clustering.
SIAM J. Comput. 49, 3 (2020), 601–657. https://doi.org/10.1137/18M1209854

[18] Gereon Frahling, Piotr Indyk, and Christian Sohler. 2008. Sampling in Dynamic
Data Streams and Applications. Int. J. Comput. Geom. Appl. 18, 1/2 (2008), 3–28.
https://doi.org/10.1142/S0218195908002520

[19] Gereon Frahling and Christian Sohler. 2005. Coresets in dynamic geometric data
streams. In STOC. ACM, 209–217. https://doi.org/10.1145/1060590.1060622

[20] Michel X. Goemans and David P. Williamson. 1995. Improved Approximation
Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite
Programming. J. ACM 42, 6 (1995), 1115–1145. https://doi.org/10.1145/227683.
227684

[21] Oded Goldreich, Shafi Goldwasser, and Dana Ron. 1998. Property Testing and
its Connection to Learning and Approximation. J. ACM 45, 4 (1998), 653–750.
https://doi.org/10.1145/285055.285060

[22] Sariel Har-Peled and Soham Mazumdar. 2004. On coresets for 𝑘-means and
𝑘-median clustering. In STOC. ACM, 291–300. https://doi.org/10.1145/1007352.
1007400

[23] Wei Hu, Zhao Song, Lin F. Yang, and Peilin Zhong. 2018. Nearly Optimal Dynamic
𝑘-Means Clustering for High-Dimensional Data. CoRR abs/1802.00459 (2018).

[24] Piotr Indyk. 2004. Algorithms for dynamic geometric problems over data streams.
In STOC. ACM, 373–380. https://doi.org/10.1145/1007352.1007413

[25] Rajesh Jayaram and David Woodruff. 2021. Perfect 𝐿𝑝 Sampling in a Data Stream.
SIAM J. Comput. 50, 2 (2021), 382–439. https://doi.org/10.1137/18M1229912

[26] T. S. Jayram, Ravi Kumar, and D. Sivakumar. 2008. The One-Way Communication
Complexity of Hamming Distance. Theory Comput. 4, 1 (2008), 129–135. https:
//doi.org/10.4086/toc.2008.v004a006

[27] W. B. Johnson and J. Lindenstrauss. 1984. Extensions of Lipschitz mappings into
a Hilbert space. In Conference in modern analysis and probability (New Haven,

Conn., 1982). Amer. Math. Soc., 189–206.
[28] Hossein Jowhari, Mert Saglam, and Gábor Tardos. 2011. Tight bounds for 𝐿𝑝

samplers, finding duplicates in streams, and related problems. In PODS. ACM,
49–58. https://doi.org/10.1145/1989284.1989289

[29] Daniel M. Kane, Jelani Nelson, and David P.Woodruff. 2010. An optimal algorithm
for the distinct elements problem. In PODS. ACM, 41–52. https://doi.org/10.1145/
1807085.1807094

[30] Michael Kapralov and Dmitry Krachun. 2019. An optimal space lower bound
for approximating MAX-CUT. In STOC. ACM, 277–288. https://doi.org/10.1145/
3313276.3316364

[31] Subhash Khot, Guy Kindler, ElchananMossel, and Ryan O’Donnell. 2007. Optimal
Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? SIAM J.

Comput. 37, 1 (2007), 319–357. https://doi.org/10.1137/S0097539705447372
[32] Ilan Kremer, Noam Nisan, and Dana Ron. 1999. On Randomized One-Round

Communication Complexity. Comput. Complex. 8, 1 (1999), 21–49. https://doi.
org/10.1007/s000370050018

[33] Eyal Kushilevitz and Noam Nisan. 1997. Communication Complexity. Cambridge
University Press.

[34] Christiane Lammersen. 2011. Approximation Techniques for Facility Location

and Their Applications in Metric Embeddings. Ph. D. Dissertation. TU Dortmund.
https://doi.org/10.17877/DE290R-8506

[35] Christiane Lammersen, Anastasios Sidiropoulos, and Christian Sohler. 2009.
Streaming Embeddings with Slack. In WADS (Lecture Notes in Computer Sci-

ence, Vol. 5664). Springer, 483–494. https://doi.org/10.1007/978-3-642-03367-4_42
[36] Christiane Lammersen and Christian Sohler. 2008. Facility Location in Dynamic

Geometric Data Streams. In ESA (Lecture Notes in Computer Science, Vol. 5193).
Springer, 660–671. https://doi.org/10.1007/978-3-540-87744-8_55

[37] Sepideh Mahabadi, Ilya P. Razenshteyn, David P. Woodruff, and Samson Zhou.
2020. Non-adaptive adaptive sampling on turnstile streams. In Proccedings of

the 52nd Annual ACM Symposium on Theory of Computing, STOC 2020. ACM,
1251–1264. https://doi.org/10.1145/3357713.3384331

[38] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. 2019. Per-
formance of Johnson-Lindenstrauss transform for 𝑘-means and 𝑘-medians clus-
tering. In STOC. ACM, 1027–1038. https://doi.org/10.1145/3313276.3316350

[39] Morteza Monemizadeh and David P. Woodruff. 2010. 1-Pass Relative-Error 𝐿𝑝 -
Sampling with Applications. In Twenty-First Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA ’10). SIAM, 1143–1160. https://doi.org/10.1137/1.
9781611973075.92

[40] Mark Rudelson and Roman Vershynin. 2007. Sampling from large matrices:
An approach through geometric functional analysis. J. ACM 54, 4 (2007), 21.
https://doi.org/10.1145/1255443.1255449

[41] L. J. Schulman. 2000. Clustering for edge-cost minimization. In 32nd Annual ACM

Symposium on Theory of Computing (Portland, Oregon, United States). ACM,
547–555. https://doi.org/10.1145/335305.335373

[42] David P. Woodruff and Taisuke Yasuda. 2022. High-Dimensional Geometric
Streaming in Polynomial Space. In FOCS. IEEE, 732–743. https://doi.org/10.1109/
FOCS54457.2022.00075

[43] Hamid Zarrabi-Zadeh. 2011. An Almost Space-Optimal Streaming Algorithm
for Coresets in Fixed Dimensions. Algorithmica 60, 1 (2011), 46–59. https:
//doi.org/10.1007/s00453-010-9392-2

Received 2022-11-07; accepted 2023-02-06

182

https://doi.org/10.1145/290179.290180
https://doi.org/10.1109/SFCS.1996.548477
https://doi.org/10.1109/SFCS.1996.548477
http://proceedings.mlr.press/v70/braverman17a.html
http://proceedings.mlr.press/v70/braverman17a.html
https://doi.org/10.1109/SFCS.1998.743488
https://doi.org/10.1109/SFCS.1998.743488
https://doi.org/10.1145/3519935.3519979
https://doi.org/10.1145/3519935.3519979
https://doi.org/10.4230/LIPIcs.ICALP.2022.47
https://doi.org/10.4230/LIPIcs.ICALP.2022.47
https://doi.org/10.1109/FOCS54457.2022.00050
https://doi.org/10.1137/1.9781611973105.123
https://doi.org/10.1006/jcss.2001.1772
https://doi.org/10.1145/1993636.1993712
https://doi.org/10.1145/1993636.1993712
https://doi.org/10.1137/18M1209854
https://doi.org/10.1142/S0218195908002520
https://doi.org/10.1145/1060590.1060622
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1145/1007352.1007413
https://doi.org/10.1137/18M1229912
https://doi.org/10.4086/toc.2008.v004a006
https://doi.org/10.4086/toc.2008.v004a006
https://doi.org/10.1145/1989284.1989289
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.1145/3313276.3316364
https://doi.org/10.1145/3313276.3316364
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1007/s000370050018
https://doi.org/10.1007/s000370050018
https://doi.org/10.17877/DE290R-8506
https://doi.org/10.1007/978-3-642-03367-4_42
https://doi.org/10.1007/978-3-540-87744-8_55
https://doi.org/10.1145/3357713.3384331
https://doi.org/10.1145/3313276.3316350
https://doi.org/10.1137/1.9781611973075.92
https://doi.org/10.1137/1.9781611973075.92
https://doi.org/10.1145/1255443.1255449
https://doi.org/10.1145/335305.335373
https://doi.org/10.1109/FOCS54457.2022.00075
https://doi.org/10.1109/FOCS54457.2022.00075
https://doi.org/10.1007/s00453-010-9392-2
https://doi.org/10.1007/s00453-010-9392-2

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	3 Approximating Max-Cut by Importance Sampling
	3.1 Proof of thm:sampling

	4 Streaming Implementations
	4.1 The Importance-Sampling Algorithm (Proof of lem:importancesamplingalgorithm)
	4.2 Sampling from The Light Parts (Proof of lemma:streaminglight)

	A Lower Bounds Based on INDEX
	B Dimension Reduction for Max-Cut
	References

