
Streaming Algorithms for Geometric Steiner Forest
Artur Czumaj !

University of Warwick, Coventry, UK

Shaofeng H.-C. Jiang !

Peking University, Beijing, China

Robert Krauthgamer !

Weizmann Institute of Science, Rehovot, Israel

Pavel Veselý !

Charles University, Prague, Czech Republic

Abstract
We consider an important generalization of the Steiner tree problem, the Steiner forest problem, in the
Euclidean plane: the input is a multiset X ⊆ R2, partitioned into k color classes C1, C2, . . . , Ck ⊆ X.
The goal is to find a minimum-cost Euclidean graph G such that every color class Ci is connected
in G. We study this Steiner forest problem in the streaming setting, where the stream consists of
insertions and deletions of points to X. Each input point x ∈ X arrives with its color color(x) ∈ [k],
and as usual for dynamic geometric streams, the input is restricted to the discrete grid {0, . . . , ∆}2.

We design a single-pass streaming algorithm that uses poly(k · log ∆) space and time, and
estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous
Euclidean Steiner ratio α2 (currently 1.1547 ≤ α2 ≤ 1.214). This approximation guarantee matches
the state of the art bound for streaming Steiner tree, i.e., when k = 1. Our approach relies on a
novel combination of streaming techniques, like sampling and linear sketching, with the classical
Arora-style dynamic-programming framework for geometric optimization problems, which usually
requires large memory and has so far not been applied in the streaming setting.

We complement our streaming algorithm for the Steiner forest problem with simple arguments
showing that any finite approximation requires Ω(k) bits of space.

2012 ACM Subject Classification Theory of computation → Sketching and sampling; Theory of
computation → Streaming models; Theory of computation → Computational geometry

Keywords and phrases Steiner forest, streaming, sublinear algorithms, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.47

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2011.04324

Funding Work partially supported by the National key R & D program of China No. 2021YFA1000900.
Artur Czumaj: Research partially supported by the Centre for Discrete Mathematics and its
Applications (DIMAP), by a Weizmann-UK Making Connections Grant, by an IBM Faculty Award,
and by EPSRC award EP/V01305X/1.
Shaofeng H.-C. Jiang: Part of this work was done when the author was at the Weizmann Institute
of Science and Aalto University. Partially suppported by a startup fund from Peking University,
and the Advanced Institute of Information Technology, Peking University.
Robert Krauthgamer : Work partially supported by ONR Award N00014-18-1-2364, the Israel Science
Foundation grant #1086/18, a Weizmann-UK Making Connections Grant, the Weizmann Data
Science Research Center, and a Minerva Foundation grant.
Pavel Veselý: Part of this work was done when the author was at the University of Warwick.
Partially supported by European Research Council grant ERC-2014-CoG 647557, by a Weizmann-
UK Making Connections Grant, by GA ČR project 19-27871X, and by Charles University project
UNCE/SCI/004.

EA
T

C
S

© Artur Czumaj, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 47; pp. 47:1–47:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:A.Czumaj@warwick.ac.uk
mailto:shaofeng.jiang@pku.edu.cn
https://orcid.org/0000-0001-7972-827X
mailto:robert.krauthgamer@weizmann.ac.il
mailto:vesely@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-1169-7934
https://doi.org/10.4230/LIPIcs.ICALP.2022.47
https://arxiv.org/abs/2011.04324
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Streaming Algorithms for Geometric Steiner Forest

1 Introduction

We study combinatorial optimization problems in dynamic geometric streams, in the classical
framework introduced by Indyk [36]. In this setting, focusing on low dimension d = 2, the
input point set is presented as a stream of insertions and deletions of points restricted to the
discrete grid [∆]2 := {0, . . . , ∆}2. Geometric data is very common in applications and has
been a central object of algorithmic study, from different computational paradigms (like data
streams, property testing and distributed/parallel computing) to different application domains
(like sensor networks and scientific computing). Research on geometric streaming algorithms
has been very fruitful, and in particular, streaming algorithms achieving (1 + ε)-factor
estimation (i.e., approximation of the optimal value) have been obtained for fundamental
geometric problems, such as k-clustering [15, 28, 35], facility location [24, 43], and minimum
spanning tree (MST) [27].

Despite this significant progress, some similarly looking problems are still largely open.
Specifically, for the TSP and Steiner tree problems, which are the cornerstone of combinatorial
optimization, it is a major outstanding question (see, e.g., [50]) whether a streaming algorithm
can match the (1+ε)-approximation known for the offline setting [7, 46]. In fact, the currently
best streaming algorithms known for TSP and Steiner tree only achieve O(1)-approximation,
and follow by a trivial application of the MST streaming algorithm.

While MST is closely related to TSP and Steiner tree – their optimal values are within a
constant factor of each other – it seems unlikely that techniques built around MST could
achieve (1 + ε)-approximation for either problem. Indeed, even in the offline setting, the only
approach known to achieve (1 + ε)-approximation for TSP and/or Steiner tree relies on a
framework devised independently by Arora [7] and Mitchell [46], that combines geometric
decomposition (e.g., a randomly shifted quad-tree) and dynamic programming. These
two techniques have been used separately in the streaming setting in the past: quad-tree
decomposition in [3, 4, 20, 24, 27, 28, 37, 43] and dynamic programming, mainly for string
processing problems, in [13, 16, 22, 25, 31, 48, 51]. However, we are not aware of any successful
application of the Arora/Mitchell framework, which combines these two approaches, for any
geometric optimization problem whatsoever.

We make an important step towards better understanding of these challenges by developing
new techniques that successfully adapt the Arora/Mitchell framework to streaming. To this
end, we consider a generalization of Steiner tree, the classical Steiner Forest Problem
(SFP). In this problem (also called Generalized Steiner tree, see, e.g., [7]), the input is a
multiset of n terminal points X ⊆ [∆]2, partitioned into k color classes X = C1 ⊔ · · · ⊔ Ck,
presented as a dynamic stream. In addition, apart from the coordinates of the point x ∈ X,
its color color(x) ∈ [k] is also revealed upon its arrival in the stream1. The goal is to find a
minimum-cost Euclidean graph G such that every color class Ci is connected in G. Observe
that the Steiner tree problem is a special case of SFP in which all terminal points should
be connected (i.e., k = 1). Similar to the Steiner tree problem, a solution to SFP may use
points other than X; those points are called Steiner points.

▶ Remark. In the literature, the term SFP sometimes refers to the special case where each
color class contains only a pair of points, i.e., each Ci = {si, ti} [11, 12, 14, 17, 33]. It is
not difficult to see (see [49]) that one can reduce one problem into another in the standard
setting of offline algorithms. The special case of pairs is often simpler to present and does

1 The points are arriving and leaving in an arbitrary order; there is no requirement that each color arrives
in a batch, i.e., that its points are inserted/deleted consecutively in the stream.

A. Czumaj, S.-H.-C. Jiang, R. Krauthgamer, and P. Veselý 47:3

not restrict algorithmic generality for offline algorithms, even though the setting considered
here is more natural for applications (see [45]). Nevertheless, the definition used here allows
for better parameterization over the number of colors k.

Background. While one might hope for a streaming algorithm for SFP with o(k) space, we
observe that this task is impossible, even in the one-dimensional case. In Theorem 4.1, we
present a reduction that creates instances of SFP in R such that every streaming algorithm
achieving any finite approximation ratio for SFP must use Ω(k) bits of space. This holds
even for insertion-only algorithms, and even if all color classes are of size at most 2.

Even for k = 1, which is the famous Steiner tree problem, the only known streaming
algorithm is to estimate the cost of a minimum spanning tree (MST) and report it as an
estimate for SFP. It is useful to recall here the Steiner ratio αd, defined as the supremum
over all point sets X ⊆ Rd, of the ratio between the cost of an MST and that of an
optimal Steiner tree. The famous Steiner ratio Gilbert-Pollak Conjecture [29] speculates that
α2 = 2√

3 ≈ 1.1547, but the best upper bound to date is only that α2 ≤ 1.214 [23]. It follows
that employing the streaming algorithm of Frahling, Indyk, and Sohler [27], which (1 + ε)-
approximates the MST cost using space poly(ε−1 log ∆), immediately yields a streaming
algorithm that (α2 + ε)-approximates the Steiner tree cost, with the same space bound.

1.1 Our Contribution
Our main result is a space and time efficient, single-pass streaming algorithm that estimates
the optimal cost OPT for SFP within (α2 + ε) factor. Our space bound is nearly optimal in
terms of the dependence in k, since any finite approximation for SFP requires space Ω(k)
(Theorem 4.1), and our ratio matches the state of the art for Steiner tree (i.e., k = 1).

▶ Theorem 1.1 (Informal Version of Theorem 3.1). For any integers k, ∆ ≥ 1 and any
fixed ε > 0, one can with high probability (α2 + ε)-approximate the SFP cost of an input
X ⊆ [∆]2 presented as a dynamic stream, using space and query/update times bounded by
poly(k · log ∆).

We notice that while the algorithm in Theorem 1.1 returns only an approximate cost of
the optimal solution and it cannot return the entire approximate solution (since the output
is of size Ω(n)), an additional desirable feature of our algorithm in Theorem 1.1 is that it
can return information about the colors in the trees in an approximate solution. That is,
our algorithm can maintain a partition of the colors used in X into I1, . . . , Ir ⊆ {1, . . . , k},
so that the sum of the costs of the minimum-cost Steiner trees for sets

⋃
i∈Ij

Ci is an
(α2 + ε)-approximation of SFP. It is worth noting that in estimating the optimal cost, our
algorithm does use Steiner points. This means that the MST costs for sets

⋃
i∈Ij

Ci of the
aforementioned partition may be by an O(1) factor larger than the estimate of the algorithm.

Comparison to a Simple Exponential-time Approach. As we shall discuss in Section 1.2, a
simple brute force enumeration combined with linear sketching techniques yields a streaming
algorithm also with near-optimal space, but significantly worse running time that is expo-
nential in k. Technically, while this approach demonstrates the amazing power of linear
sketching, its core is exhaustive search rather than an algorithmic insight, and thus it is quite
limited, offering no path for improvements or extensions. Furthermore, the poly(k) running
time in Theorem 1.1 is exponentially better than the exhaustive search, which seems to be a
limit of what linear sketching could possibly achieve. Therefore even though the primary
focus of streaming algorithms is on their space complexity, the improvement of the running

ICALP 2022

47:4 Streaming Algorithms for Geometric Steiner Forest

time is critical in terms of pursuing efficient algorithms and making our techniques broadly
applicable. Indeed, similar exponential improvements of running time have been of key
importance in the advances of various other fundamental streaming problems, for instance,
for moment estimation the query time was improved from poly(ε−1) to poly log(ε−1) [40],
and for heavy hitters from poly(n) to poly log(n) [44].

1.1.1 Technical Contribution: Adapting Arora’s Framework to Streaming
We introduce a method for efficient streaming implementation of an offline Arora-style [7]
dynamic-programming framework based on the quad-tree decomposition. This method, which
is probably the first of its kind for geometric streams, is our main technical contribution.

In the offline setting, Borradaile, Klein, and Mathieu [14] and then Bateni and Hajiaghayi
[11] extended the Arora’s approach to obtain a polynomial-time approximation scheme
(PTAS) for SFP. The key insight of these works is that one can tweak the optimal solution so
that its cost remains nearly optimal, but it satisfies certain structural properties that allow
for designing a suitable dynamic program. In Section 2, we review the structural theorem
and the dynamic-programming approach for SFP from [11, 14] in more detail.

The main difficulty of using the Arora-style approach in low-space streaming is that
in general, such approach requires access to all input points, that is, Ω(n) space to store
Ω(n) leaves at the bottom of the quad-tree input decomposition that have to be considered
as basic subproblems. In order to ensure a low-space implementation of the Arora-style
framework in the streaming setting, we will use only O(k log ∆) non-uniform leaf nodes of
the quad-tree, each corresponding to a square. The definition of these leaf nodes is one of
the novel ideas needed to make the dynamic-programming approach work in the streaming
setting. Moreover, since each internal node in the quad-tree has degree 4, the total number
of quad-tree squares to consider is thus O(k · log ∆).

The next challenge is that for the dynamic program to run, we need to find an (α2 + ε)-
approximate estimation for each new leaf and each dynamic-programming subproblem
associated with it. The definition of leaf squares will enable us to reduce it to estimating the
MST cost for a certain subset of points inside the square. It would then be natural to just
employ the MST sketch designed in [27] to estimate the MST cost, in a black box manner.
However, the leaf squares are not known in advance as we can only find them after processing
the stream and thus, it is impossible to build the MST sketch for each leaf square and each
subproblem associated with it. To overcome this, we observe that in essence, the MST sketch
consists of uniformly sampled points (with suitably rounded coordinates). We thus obtain
the MST sketch for each color separately and only use the sampled points that are relevant
for the subproblem to estimate the MST cost for the subproblem, in a way similar to [27].

However, due to restricting the attention to a single subproblem, the original analysis of
the MST sketch in [27] has to be modified to deal with additional technical challenges. For
instance, we may not sample any point relevant to a leaf square in case there are relatively
few points in it. We need to account for the error arising from this case in a global way, by
observing that then the MST cost inside the leaf square is a small fraction of the overall cost.

Further, to be able to accurately enumerate the subproblems for a leaf square, we need
to know the set of color classes that intersect every leaf square, but unfortunately doing
so exactly is impossible in the streaming setting. To this end, we employ a δ-net for a
small-enough δ, so that the intersection test can be approximately done by only looking at
the nearby net points. We show that this only introduces a small error for SFP, and that this
δ-net can be constructed in a dynamic stream, using space by only a factor of poly log(∆)
larger than the net. Finally, we apply the dynamic program using our leaf nodes as basic
subproblems to obtain the estimation.

A. Czumaj, S.-H.-C. Jiang, R. Krauthgamer, and P. Veselý 47:5

1.2 Could Other Approaches Work?
A Simple Exponential-time Streaming Algorithm Based on Linear Sketching. An obvious
challenge in solving SFP is to determine the connected components of an optimal (or
approximate) solution. Each color class must be connected, hence the crucial information
is which colors are connected together (even though they do not have to be). Suppose
momentarily that the algorithm receives an advice with this information, which can be
represented as a partition of the color set [k] = P1 ⊔ · · · ⊔ Pl. Then a straightforward
approach for SFP is to solve the Steiner tree problem separately on each part Pj (i.e., the
union of some color classes), and report their total cost. In our streaming model, we could
apply the aforementioned MST-based algorithm [27], using space poly(ε−1 log ∆), to achieve
(α2 + ε)-approximation, and we would need l ≤ k parallel executions of it (one for each Pj).
An algorithm can bypass having such an advice by enumeration, i.e., by trying in parallel
all the kk partitions of [k] and reporting the minimum of all their outcomes. This would
still achieve (α2 + ε)-approximation, because each possible partition gives rise to a feasible
SFP solution (in fact, this algorithm optimizes the sum-of-MST objective). However, this
naive enumeration increases the space and time complexities by a factor of O(kk). We can
drastically improve the space complexity by the powerful fact that the MST algorithm of [27]
is based on a linear sketch, i.e., its memory contents is obtained by applying a (randomized)
linear mapping to the input X. The huge advantage is that linear sketches of several point
sets are mergeable. In our context, one can compute a linear sketch for each color class Ci,
and then obtain a sketch for the union of some color classes, say some Pj , by simply adding
up their linear sketches. These sketches are randomized, and hence, one has to make sure
they use the same random coins (same linear mapping), and also to amplify the success
probability of the sketches so as to withstand a union bound over all 2k subsets Pj ⊆ [k]. This
technique improves the space complexity and update time to be basically poly(kε−1 log ∆),
however the query time is still exponential in k. We state this result as follows, and its formal
proof can be found in the full version.

▶ Theorem 1.2. For any integers k, ∆ ≥ 1 and any 0 < ε < 1/2, one can with high
probability (α2 + ε)-approximate SFP cost of an input X ⊆ [∆]2 presented as a dynamic
geometric stream, using space and update time of O(k2 · poly(ε−1 · log ∆)) and with query
time O(kk) · poly(ε−1 · log ∆).

Tree Embedding. Indyk [36] incorporated the low-distortion tree embedding approach of
Bartal [9] to obtain dynamic streaming algorithms with O(log ∆) ratio for several geometric
problems. This technique can be easily applied to SFP as well, but the approximation ratio
is O(log ∆) which is far from what we are aiming at.

Other O(1)-Approximate Offline Approaches. In the regime of O(1)-approximation, SFP
has been extensively studied using various other techniques, not only dynamic programming.
For example, in the offline setting there are several 2-approximation algorithms for SFP
using the primal-dual approach and linear programming relaxations [1, 30, 38], and there is
also a combinatorial (greedy-type) constant-factor algorithm called gluttonous [33]. Both of
these approaches work in the general metric setting. While there are no known methods to
turn the LP approach into low-space streaming algorithms, the gluttonous algorithm of [33]
might seem amenable to streaming. Indeed, it works similarly to Kruskal’s MST algorithm
as it also builds components by considering edges in the sorted order by length, and the
MST cost estimation in [27] is similar in flavor to Kruskal’s algorithm. However, a crucial

ICALP 2022

47:6 Streaming Algorithms for Geometric Steiner Forest

difference is that the gluttonous algorithm stops growing a component once all terminals
inside the component are satisfied, i.e., for each color i, the component either contains all
points of Ci, or no point from Ci. This creates a difficulty that the algorithm must know
for each component whether or not it is “active” (i.e., not satisfied), and there are up to n

components, requiring overall Ω(n) bits of space. This information is crucial because “inactive”
components do not have to be connected to anything else, but they may help to connect
two still “active” components in a much cheaper way than by connecting them directly.
Furthermore, we have a simple one-dimensional example showing that the approximation
ratio of the gluttonous algorithm cannot be better than 2 (moreover, its approximation
guarantee in [33] is significantly larger than 2). In comparison, our dynamic-programming
approach gives a substantially better ratio of α2 + ε. Nevertheless, an interesting open
question is whether the gluttonous algorithm admits a low-space streaming implementation.

1.3 Related Work
SFP has been extensively studied in operations research and algorithmic communities for
several decades. This problem has been also frequently considered as a part of a more general
network design problem (see, e.g., [1, 30, 38, 45]), where one could require for some subsets
of vertices to maintain some higher inter-connectivity.

In the classical, offline setting, it is known that the Steiner tree problem is APX-hard in
general graphs and in high-dimensional Euclidean spaces, and the same thus holds for SFP as
it is more general. In general graphs, a 2-approximation algorithm is known due to Agrawal
et al. [1] (see also [30, 38]). These 2-approximation algorithms rely on linear-programming
relaxations, and the only two combinatorial constant-factor approximations for SFP were
recently devised by Gupta and Kumar [33] and by Groß et al. [32]. For low-dimensional
Euclidean space, which is the main focus of our paper, Borradaile et al. [14] and then Bateni
and Hajiaghayi [11] obtained a (1 + ε)-approximation by applying dynamic programming and
geometric space decomposition, significantly extending the approach of Arora [7]. Further
extensions of the dynamic-programming approach have led to a PTAS for metrics of bounded
doubling dimension [17], planar graphs, and graphs of bounded treewidth [12].

There has been also extensive work for geometric optimization problems in the dynamic
(turnstile) streaming setting, with low space. Indyk [36] designed O(log ∆)-approximate
algorithms for several basic problems, like MST and matching. Follow-up papers presented a
number of streaming algorithms achieving approximation ratio of 1 + ε or O(1) to the cost of
Euclidean MST [27], various clustering problems [28, 34], geometric facility location [24, 43],
earth-mover distance [3, 36], and various geometric primitives (see, e.g., [5, 18, 19, 26]). Some
papers have studied geometric problems with superlogarithmic but still sublinear space and
in the multipass setting (see, e.g., [6]). We are not aware of prior results for the (Euclidean)
Steiner tree problem nor SFP in the streaming context, although (1 + ε)-approximation of
the MST cost [27] immediately gives a (α2 + ε)-approximation of the Euclidean Steiner tree.

2 Preliminaries

For x, y ∈ R2, let dist(x, y) := ∥x−y∥2. For S, T ⊆ R2, let dist(S, T) := minx∈S,y∈T dist(x, y).
For S ⊆ R2, let diam(S) := maxx,y∈S dist(x, y). A ρ-packing S ⊆ R2 is a point set such that
∀x, y ∈ S, dist(x, y) ≥ ρ. A ρ-covering of X is a subset S ⊆ R2 such that ∀x ∈ X, ∃y ∈ S,
dist(x, y) ≤ ρ. We call S ⊆ R2 a ρ-net for X if it is both a ρ-packing and a ρ-covering for X.

A. Czumaj, S.-H.-C. Jiang, R. Krauthgamer, and P. Veselý 47:7

▶ Fact 2.1 (Packing Property, cf. [47]). A ρ-packing S ⊆ Rd has size |S| ≤
(

3 diam(S)
ρ

)d

.

Metric Graphs. We call a weighted undirected graph G = (X, E, w) a metric graph if for
every edge {u, v} ∈ E, w(u, v) = dist(u, v), and we let w(G) to be the sum of the weights of
edges in G. A solution F of SFP may be interpreted as a metric graph. For a set of points S

(e.g., S can be a square), let F |S be the subgraph of F formed by edges whose both endpoints
belong to S. Note that we think of F as a continuous graph in which every point of an edge
is itself a vertex, so F |S may be interpreted as a geometric intersection of F and S.

Randomly-Shifted Quad-trees [7]. Without loss of generality, let ∆ be a power of 2, and
let L := 2∆. A quad-tree sub-division is constructed on [L]2. In the quad-tree, each node u

corresponds to a square Ru and if it’s not a leaf, it has four children, whose squares partition
Ru. The squares in the quad-tree are of side-lengths that are powers of 2, and we say a square
R is of level i if its side-length is 2i (this is also the level of its corresponding node in the
quad-tree, where leaves have level 0 and the root is at level log2 L). The whole quad-tree is
shifted by a random vector in [−∆, 0]2. Throughout, we assume a randomly-shifted quad-tree
has been sampled from the very beginning. When we talk about a quad-tree square R, we
interpret it as the point set that consists of both the boundary and the internal points. For
i = 0, . . . log2 L, let 2i-grid Gi ⊂ R2 be the set of centers of all level-i squares in the quad-tree.

2.1 Review of Dynamic Programming (DP) [11, 14]
The PTAS for geometric SFP in the offline setting [11, 14] is based on the quad-tree sub-
division framework of Arora [7], with modifications tailored to SFP. For each square R in
the (randomly-shifted) quad-tree,

O(ε−1 log L) equally-spaced points on the boundary edges are designated as portals; and
the γ ×γ sub-squares of R are designated as cells of R, denoted cell(R), where γ = Θ(ε−1)
is a power of 2.

For each square R in the quad-tree, let ∂R be the boundary of R (which consists of four
segments). The following is the main structural theorem from [11], and an illustration of it
can be found in Figure 1a.

▶ Theorem 2.2 ([11]). For an optimal solution F of SFP, there is a solution F ′ (defined
with respect to the randomly-shifted quad-tree), such that
1. w(F ′) ≤ (1+O(ε)) ·w(F) with constant probability (over the randomness of the quad-tree);
2. For each quad-tree square R, F ′|∂R has at most O(ε−1) components, and each component

of F ′|∂R contains a portal of R;
3. For each quad-tree square R and each cell P of R, if two points x1, x2 ∈ X ∩ P are

connected to ∂R via F ′, then they are connected in F ′|R; this is called the cell property.
It suffices to find the optimal solution that satisfies the structure defined in Theorem 2.2.
This is implemented using dynamic programming (DP), where a subproblem of the DP is
identified as a tuple (R, A, f, Π), specified as follows:

R is a quad-tree square;
A is a set of O(ε−1) active portals through which the local solution enters/exits R;
f : cell(R) → 2A s.t. for S ∈ cell(R), f(S) represents the subset of A that S connects to;
Π is a partition of A, where active portals in each part of Π have to be connected outside
of R (in a larger subproblem).

ICALP 2022

47:8 Streaming Algorithms for Geometric Steiner Forest

a1 a2

a3

b

(a) structural property. (b) simple squares. (c) compatibility checking.

Figure 1 Illustrations of the structural properties of Theorem 2.2 (Figure 1a), construction of
simple squares by Algorithm 1 (Figure 1b) and the approximate compatibility checking idea in
Section 3.2.2 (Figure 1c). Figure 1a shows a square R with portals (crosses) on ∂R, the 4 × 4 cells
of R, and the part of solution F ′|R, such that F ′|R passes ∂R through four portals a1, a2, a3, b on
the sides, and in each cell, points that are connected by F ′ to ∂R in the cell are connected in R.
Figure 1b demonstrates the 13 simple squares constructed by Algorithm 1 for the three colors (noting
that the 5 empty squares are also included as simple squares). In Figure 1c, red points are data
points, cross points are the net points constructed from the data, and the black hollowed points are
the added points for cells that are close-enough to a net point (for simplicity, not shown for cells
containing a data point).

The use of R and A is immediate, and f is used to capture the connectivity between cells
and portals (this suffices because we have the “cell property” in Theorem 2.2). Finally, Π is
used to ensure feasibility, since a global connected component may be broken into several
components in square R, and it is crucial to record whether or not these components still
need to be connected from outside of R. An optimal solution for subproblem (R, A, f, Π)
is defined as a minimum weight metric graph in R that satisfies the constraints A, f, Π.
Standard combinatorial bounds show that the number of subproblems associated with each
square is bounded by (ε−1 · log ∆)O(ε−2) (see [11]).
▶ Remark 2.3. Strictly speaking, we use a simplified definition of DP subproblems, compared
to [11]. Namely, one can additionally require that for any two cells S, S′ ∈ cell(R), either
f(S) = f(S′) or f(S) ∩ f(S′) = ∅ and that any active portal in A appears in f(S) for
some cell S. Then, f defines a partition of cell(R) and of A into local components inside R

(taking into account only components connected to ∂R), and Π should encode which local
components need be connected from the outside of R, implying that Π should be a partition
of local components (instead of A). Thus, Π can also be thought of as a partition of the
partition of A induced by f . We chose to give a more relaxed definition of DP subproblems
as it is sufficient for describing how to implement the DP approach in the streaming setting.

3 Streaming Dynamic Programming: k3-time-and-space Algorithm

In this section, we prove our main result, Theorem 1.1, restated with more precise bounds.
Formally, we call the time for processing inserting/deleting one point as update time, and for
reporting the estimate of OPT the query time.

▶ Theorem 3.1. For any integers k, ∆ ≥ 1 and any 0 < ε < 1/2, one can with high
probability (α2 + ε)-approximate the SFP cost of an input X ⊆ [∆]2 presented as a dynamic
geometric stream, using space and update time of k3 · poly(log k · ε−1 · log ∆) and with query
time bounded by k3 · poly(log k) · (ε−1 · log ∆)O(ε−2).

A. Czumaj, S.-H.-C. Jiang, R. Krauthgamer, and P. Veselý 47:9

Overview. Our approach for the streaming algorithm relies on a novel modification of the
known PTAS for SFP in the offline setting [11, 14], which is based on dynamic programming
(DP). One important reason why the DP requires Ω(n) space is that Ω(n) leaves in the
quad-tree have to be considered as basic subproblems which correspond to singletons. To
make the DP use only Õ(poly(k)) space, we will use only Õ(poly(k)) leaf nodes. Then, since
each internal node in the quad-tree has degree 4, the total number of squares to consider is
Õ(poly(k)). Furthermore, we design an algorithm that runs in time and space Õ(poly(k))
and finds an (α2 + ε)-approximate estimation for each new leaf and each DP subproblem
associated with it. Finally, we apply the DP using such leaves as basic subproblems to obtain
the estimation. We start in Section 3.1 with a description of this approach in the offline
setting, and we make it streaming in Section 3.2. The proof of Theorem 3.1 is in Section 3.3.

3.1 Offline Algorithm
New Definition of Basic Subproblems. Each of our new leaves in the DP will be a simple
square defined below. The idea behind the definition is also simple: If no color class is
contained in R, then all points inside R must be connected to ∂R, so we can make better
use of the cell property in Theorem 2.2.

▶ Definition 3.2 (Simple Squares). We call a square R simple if for every 1 ≤ i ≤ k,
Ci ∩ R ̸= Ci. In other words, there is no color class totally contained in R.

We note that the number of all possible simple squares can still be large (in particular,
any empty square is simple as well as any square containing a single point of color Ci with
|Ci| ≥ 2), and we use Lemma 3.3 below to show the existence of a small subset of simple
squares that covers the whole instance and can be found efficiently. Our new leaves are
naturally defined using such subset of squares.

▶ Lemma 3.3. There is a subset R of disjoint simple squares, such that the union of the
squares in R covers X, and |R| = O(k · log ∆).

Proof. Consider the recursive procedure specified in Algorithm 1 that takes as input a
square R and returns a set of disjoint simple squares R that covers R; see Figure 1b for an
illustration of the outcome of the procedure. For our proof, we apply the procedure with R

being the root square covering the whole instance. Suppose the procedure returns R.

Algorithm 1 Algorithm for finding simple squares.

1: procedure Simp-Square(R)
2: if R is simple then return {R}
3: else
4: let {Ri}i be the child squares of R in the quad-tree
5: return

⋃
i Simp-Square(Ri)

We call a square R intermediate square if it is a square visited in the execution of the
algorithm and it is not simple (i.e., R contains a color class). We observe that |R| is O(1)
times the number of intermediate squares. On the other hand, each color Ci can be totally
contained in at most O(log ∆) intermediate squares. Therefore, |R| = O(k · log ∆). ◀

Approximation Algorithm for Subproblems on Simple Squares. Fix some simple square
R. We now describe how each DP subproblem (R, A, f, Π) associated with R can be solved
directly using an α2-approximate algorithm that is amenable to the streaming setting.

ICALP 2022

47:10 Streaming Algorithms for Geometric Steiner Forest

Since R is a simple square, every point in R has to be connected to the outside of R,
as otherwise the color connectivity constraint is violated. Hence, by the cell property of
Theorem 2.2, for every cell R′ ∈ cell(R), all points in R′ are connected in R. Therefore,
we enumerate all possible partitions of cell(R) that is consistent with the f constraint. For
each partition, we further check whether it satisfies the constraint defined by Π. To do so,
for each cell R′ ∈ cell(R), we scan through all colors, and record the set of colors CR′ ⊆ C
that intersects R′. The CR′ ’s combined with the f constraint as well as the enumerated
connectivity between cells suffice for checking the Π constraint.

Observe that every feasible solution of the subproblem corresponds to the above-mentioned
partition of cells. Therefore, to evaluate the cost of the subproblem, we evaluate the sum of the
MST costs of the parts in each partition and return the minimum one. The time complexity
for evaluating each subproblem is bounded since |A| = O(ε−1) and |cell(R)| = O(ε−2). The
approximation ratio is α2 because we use MST instead of Steiner tree for evaluating the cost.
Using MST will enable us to implement this algorithm in the streaming setting.

3.2 Building Blocks for Streaming Algorithm
3.2.1 Constructing Simple Squares in the Streaming Setting
The first step is to construct a set of simple squares, as in Lemma 3.3, and an offline
construction is outlined in Algorithm 1. For the streaming construction of simple squares,
we observe that the key component of Algorithm 1 is a subroutine that tests whether a
given square is simple or not. To implement the subroutine, we use a streaming algorithm to
compute the bounding square for each color, and we test whether a given square contains
any bounding square as a sub-square.

▶ Lemma 3.4. Algorithm 1 can be implemented in the streaming setting, using space
O(k poly log ∆) and in time O(k poly log ∆) per stream update, with success probability at
least 1 − poly(∆−1).

Proof. The proof is ommited due to the space limit and can be found in the full version. ◀

3.2.2 Approximate Compatibility Checking
Suppose we applied Lemma 3.4 to obtain a set of simple squares R. We proceed to evaluate
the cost of subproblems associated with each simple square. Fix a simple square R ∈ R. We
next describe how to evaluate the cost for every subproblem associated with R, in streaming.

Suppose we are to evaluate the cost of a subproblem (R, A, f, Π). Since R is known, we
have access to cell(R), and hence, we can enumerate the connectivity between the cells, which
is a partition of cell(R), on-the-fly without maintaining other information about the input.
Similarly, we can check the compatibility of the partition of cells with the f constraint, since
the constraint only concerns the information about A and the partition. Then, when we
check the compatibility of the partition of cells with Π, in the offline setting we need to
compute the set of colors CR′ ⊆ C that a cell R′ intersects.

However, computing this set CR′ is difficult in the streaming setting, even if there is
only one color C. Indeed, testing whether color C has an intersection with cell R′ can be
immediately reduced to the INDEX problem (see e.g. [42] for the definition), which implies
an Ω(n) space bound, where n is the number of points of color C. Therefore, we need to
modify the offline algorithm, and only test the intersection approximately.

To implement the approximate testing, for every color C ∈ C, we impose a δ ·diam(C)-net
NC for C (see Section 2), where δ := O

(
ε3(k log ∆)−1)

. A streaming algorithm in Lemma 3.5
is presented to compute this net. To be exact, the streaming algorithm in Lemma 3.5 returns

A. Czumaj, S.-H.-C. Jiang, R. Krauthgamer, and P. Veselý 47:11

a set of points NC such that for any point x ∈ NC at least one point in C is within distance
δ · diam(C) from x (so NC does not contain net points that are far away from C). Hence,
take DC := diam(NC), and we have DC ∈ (1 ± δ) · diam(C). Then, for each cell R′ ∈ cell(R)
of each simple square R, we examine each point in NC , and if dist(R′, NC) ≤ δ · DC , we
add a new point x ∈ R′ such that dist(x, NC) ≤ δ · DC to the stream, and assign it color C.
Furthermore, we declare C intersects R′. This idea is visually demonstrated in Figure 1c.

▶ Lemma 3.5. There is an algorithm that for every 0 < ρ ≤ 1 and every point set S ⊂ R2

provided as a dynamic geometric stream, computes a subset NS ⊂ R2 that is a ρ ·diam(S)-net
for S such that for every x ∈ NS there exists y ∈ S with dist(x, y) ≤ ρ · diam(S), with
probability at least 1 − poly(∆−1), using space O(ρ)−2 · poly log ∆, and running in time
O(ρ)−2 · poly log ∆ per stream update.

Proof. The proof is ommited due to the space limit and can be found in the full version. ◀

In fact, such procedure of adding points is oblivious to the subproblem, and should be
done only once as a pre-processing step before evaluating any subproblems. Therefore, the
subproblems are actually evaluated on a new instance (X ′, C′) after the pre-processing. Since
we apply Lemma 3.5 for every color i, and by the choice of δ, the space complexity for
the pre-processing step is O

(
k3 · poly(ε−1 log ∆)

)
, and the time complexity per update is

bounded by this quantity. Next, we upper bound the error introduced by the new instance.

▶ Lemma 3.6. Let OPT be the optimal SFP solution for the original instance (X, C), and
let OPT′ be that for (X ′, C′). Then w(OPT) ≤ w(OPT′) ≤ (1 + ε) · w(OPT).

Proof. Since OPT′ is a feasible solution for (X, C), we obtain w(OPT) ≤ w(OPT′) by the
optimality of OPT. It remains to prove the other side of the inequality.

Recall that for every color C, we use Lemma 3.5 to obtain a δ · diam(C)-net NC and
estimate diam(C) using DC := diam(NC). Now, for every cell R′ of every simple square, if
dist(R′, NC) ≤ δ · DC for some color C we add a point x to C satisfying d(x, NC) ≤ δ · DC ,
and for any other color C ′ ̸= C with dist(R′, NC′) ≤ δ · DC′ , we add the same point x to C ′.
Note that we add at most one distinct point for each cell. Let z ∈ NC satisfy d(x, z) ≤ δ ·DC ,
then adding x increases OPT by at most 2δ · DC ≤ 3δ · diam(C), since one can connect x to
y ∈ C such that dist(y, z) ≤ δ · diam(C) (such y must exist due to Lemma 3.5).

Since there are in total at most O(k log ∆ · ε−2) cells in all simple squares by
Lemma 3.3, the total increase of the cost is at most O(δ · k log ∆ · ε−2) · maxC∈C diam(C) ≤
ε maxC∈C diam(C) ≤ εw(OPT), using the definition of δ and w(OPT) ≥ maxC∈C(diam(C)).
We conclude that w(OPT′) ≤ (1 + ε) · w(OPT). ◀

3.2.3 Evaluating Basic Subproblems in the Streaming Setting
After we obtain the new instance (X ′, C′), we evaluate the cost for every subproblem
(R, A, f, Π). Because of the modification of the instance, we know for sure the subset of colors
CR′ for each cell R′. To evaluate the subproblem, recall that we start with enumerating a
partition of cell(R) that is compatible with the subproblem, which can be tested efficiently
using CR′ ’s. Suppose now {Pi := Ri ∪ Ai}t

i=1 is a partition of cell(R) ∪ A that we enumerated
(recalling that A is the set of active portals, which needs to be connected to cells in a way that
is compatible to the constraint f). Then, as in the offline algorithm, we evaluate MST(Pi) of
each part Pi, and compute the sum of them, i.e.

∑t
i=1 MST(Pi), however, we need to show

how to do this in the streaming setting.

ICALP 2022

47:12 Streaming Algorithms for Geometric Steiner Forest

Frahling et al. [27] designed an algorithm that reports a (1 + ε)-approximation for the
value of the MST of a point set presented in a dynamic stream, using space O(ε−1 log ∆)O(1).
Furthermore, as noted in Section 1, their algorithm maintains a linear sketch. Now, a
natural idea is to apply this MST sketch, that is, create an MST sketch for each color, which
only takes k · O(ε−1 log ∆)O(1) space. Then, for each Pi = Ri ∪ Ai, we compute the set of
intersecting colors, and we create a new MST sketch K by first adding up the MST sketches
of these colors (recalling that they are linear sketches), and then adding the active portals
connected to Pi to the sketch. We wish to query the sketch K for the cost of MST(Pi).

However, this idea cannot directly work, since the algorithm by [27] only gives the MST
value for all points represented by K, instead of the MST value for a subset Pi. Therefore,
we modify the MST sketch to answer the MST cost of a subset of points of interest.

Brief Review of the MST Sketch. We give a brief overview of the algorithm of [27] before
we explain how we modify it. The first observation (already from [21]) is that the MST
cost can be written as a weighted sum of the number of connected components in metric
threshold graphs, which are obtained from the complete metric graph of the point set by
removing edges of length larger than a threshold τ . Essentially, the idea is to count the
number of MST edges of length larger than τ .

To estimate the number of components in a threshold graph, we round the points to a
suitable grid and sample a small number of rounded points uniformly, using ℓ0-samplers.
An ℓ0-sampler is a data structure that processes a dynamic stream (possibly containing
duplicate items), succeeds with high probability, and conditioned on it succeeding, it returns
a random item from the stream such that any item in the stream is chosen with the same
probability 1/n, where n is the ℓ0 norm of the resulting frequency vector, i.e., the number
of distinct items in the stream (see Lemma 3.7 for a more precise statement). For each
sampled (rounded) point y, the algorithm in [27] runs a stochastic-stopping BFS from y and
in particular, it checks if it explores the whole component of y within a random number of
steps. We note that this requires an extended ℓ0-sampler that also returns the neighboring
points for each sampled point, as presented in [27] and stated in Lemma 3.7. The MST cost
is estimated by a weighted sum of the number of completed BFS’s, summed over all levels.

▶ Lemma 3.7 (ℓ0-Sampler with Neighborhood Information [27, Corollary 3]). There is an
algorithm that for δ > 0, integer ρ, ∆ ≥ 1, every set of points S ⊆ [∆]2 presented as a dynamic
geometric stream, succeeds with probability at least 1 − δ and, conditioned on it succeeding,
returns a point p ∈ S such that for every s ∈ S it holds that Pr[p = s] = 1/|S|. Moreover,
if the algorithm succeeds, it also returns all points from s ∈ S such that dist(p, s) ≤ ρ. The
algorithm has space and both update and query times bounded by poly(ρ · ε−1 · log ∆ · log δ−1),
and its memory contents is a linear sketch of S.

Generalizing the MST Algorithm to Handle Subset Queries. Fix some part Pi. Recall
that the Pi’s always consist of at most O(ε−2) cells (which are quad-tree squares), plus
O(ε−2) active portal points. Hence, a natural first attempt is to make the ℓ0-samplers to
sample only on these clipping squares defined by Pi. Unfortunately, this approach would not
work, since the squares are not known in advance and may be very small (i.e., degenerate to
a point), so sampling a point from them essentially solves the INDEX problem.

Therefore, to estimate MST(Pi), we still use the original ℓ0-samplers, and we employ a
careful sampling and estimation step. We sample from the whole point set maintained by the
sketch K but we only keep the sampled points contained in Pi. We execute the stochastic
BFS from these points that are kept, restricting the BFS to the points contained in Pi.

A. Czumaj, S.-H.-C. Jiang, R. Krauthgamer, and P. Veselý 47:13

One outstanding problem of this sampling method is that if the number of points in Pi,
or to be exact, the number of non-zero entries of level-i ℓ0-samplers, is only a tiny portion of
that of the full sketch, then with high probability, we do not sample any point from Pi at all.
Hence, in this case, no stochastic BFS can be performed, and we inevitably answer 0 for the
number of successful BFS’s. This eventually leads to an additive error. We summarize the
additive error and the whole idea of the above discussions in Lemma 3.8.

▶ Lemma 3.8. There is an algorithm that for every 0 < ε < 1, integer k, ∆ ≥ 1, and every
set of points S ⊆ [∆]2 presented as a dynamic geometric stream, maintains a linear sketch of
size k2 · poly(log k · ε−1 log ∆). For every query (R, {Rj}t

j=1, A) (provided after the stream
ends) satisfying
1. R is a simple square, A is a subset of portals of R, and
2. {Rj}t

j=1 ⊆ cell(R),
the algorithm computes from the linear sketch a real number E such that with probability at
least 1 − exp(− log k · poly(ε−1 log ∆)),

MST(P) ≤ E ≤ (1 + ε) · MST(P) + O

(
poly(ε)
k log ∆

)
· MST(S) ,

where P =
(⋃t

j=1 Rj

)
∪ A. The algorithm runs in time k2 · poly(log k · ε−1 log ∆) per update

and the query time is also k2 · poly(log k · ε−1 log ∆).

This lemma constitutes the main algorithm for the evaluation of the subproblem. Note
that we only need to prove it for one point set S, since the sketch is linear. Indeed, when
applying Lemma 3.8, we obtain the sketch for each color separately from the stream, and
for every query, we first merge the sketches of colors relevant to the query and add query
portals to the resulting sketch. By linearity, this is the same as if we obtain the sketch for
all these colors and portals at once. Due to the space limit, the proof of Lemma 3.8 can be
found in the full version.

3.3 Proof of Theorem 3.1
▶ Theorem 3.1. For any integers k, ∆ ≥ 1 and any 0 < ε < 1/2, one can with high
probability (α2 + ε)-approximate the SFP cost of an input X ⊆ [∆]2 presented as a dynamic
geometric stream, using space and update time of k3 · poly(log k · ε−1 · log ∆) and with query
time bounded by k3 · poly(log k) · (ε−1 · log ∆)O(ε−2).

We combine the above building blocks to prove Theorem 3.1. See Algorithm 2 for a
description of the complete algorithm. The space and update time follow immediately from
Algorithm 2, Theorem 2.2 and Lemmas 3.4, 3.5, and 3.8.

The query time is bounded by O(k · log ∆) · (ε−1 · log ∆)O(ε−2) · ε−O(ε−1) · k2 · poly(log k ·
ε−1 log ∆) ≤ k3 · poly(log k) · (ε−1 log ∆)O(ε−2), where O(k · log ∆) is the number of simple
squares (and thus, up to an O(1) factor, the number of quad-tree squares for which we
evaluate DP subproblems), (ε−1 · log ∆)O(ε−2) is the number of subproblems associated with
each square (see Section 2.1), ε−O(ε−1) is the number of MST queries evaluated for each
subproblem, and each MST query takes k2 · poly(log k · ε−1 log ∆) time by Lemma 3.8.

2 We need to use the same randomness for sketches {K(3)
C } among all colors C so that they can be

combined later.

ICALP 2022

47:14 Streaming Algorithms for Geometric Steiner Forest

Algorithm 2 Main streaming algorithm.

1: procedure SFPinitialization(C) ▷ C is the set of colors
2: initialize a sketch K(1) of Lemma 3.4, a set of sketches of Lemma 3.5 {K(2)

C }C∈C for
every color C ∈ C with parameter δ := poly(ε)(k log ∆)−1, and a set of (linear) sketches2

of Lemma 3.8 {K(3)
C }C∈C for every color C ∈ C

3: procedure SFPupdate(x, C, insert/delete) ▷ insert/delete point x of color C

4: insert/delete point x in sketches K(1), K(2)
C , K(3)

C

5: procedure SFPquery ▷ the stream terminates
6: use sketch K(1) to compute a set of simple squares R ▷ see Section 3.2.1
7: for each color C ∈ C, use sketch K(2)

C to compute a set of net points NC , and let
DC := diam(NC) ▷ DC is a (1 ± ε)-approximation for diam(C)

8: initialize a Boolean list I records whether a cell of a simple square and a color
intersects ▷ This uses space at most O(k · log ∆ · poly(ε−1))

9: for every R ∈ R, R′ ∈ cell(R) do
10: if dist(NC , R′) ≤ ρ · DC for some color C then
11: let x ∈ R′ be a point such that dist(x, NC) ≤ ρ · DC

12: for every color C ′ with dist(NC′ , R′) ≤ ρ · DC′ do
13: add x to K(3)

C′ and record in I that R′ intersects color C ′ ▷ see Section 3.2.2
14: for each simple square R and an associated subproblem (R, A, f, Π) do
15: for each partition of cell(R) do
16: if the partition is compatible with the subproblem then ▷ see Section 3.2.2
17: for each part Rj in the partition do
18: let Aj ⊆ A be the set of active portals that Rj connects to
19: create linear sketch K′, by adding up K(3)

C for every C intersecting a
cell in Rj ▷ the intersection information is recorded in I

20: add points in Aj to sketch K′

21: query sketch K′ for the value of the MST of the part Rj and portals
Aj (as in Lemma 3.8) ▷ see Section 3.2.3

22: store the sum of the queried values of MST(Rj , Aj) as the estimated cost
for the subproblem

23: invoke the DP (as in [11]) using the values of basic subproblem estimated as above
24: return the DP value (for the root square with no active portals)

To bound the failure probability, we use a union bound over the failure probabilities
of all applications and queries of the streaming algorithms as well as the error bound in
Theorem 2.2. We observe that Theorem 2.2 incurs an O(1) failure probability, and every other
steps, except for the use of Lemma 3.8, have a failure probability of poly(∆−1). Since we
have k · (ε−1 · log ∆)O(ε−2) basic subproblems (see Section 2), and for each basic subproblem
we need to evaluate at most ε−O(ε−1) MST queries, the total failure probability of evaluating
the subproblems is at most

k · (ε−1 · log ∆)O(ε−2) · ε−O(ε−1) · exp(− log k · poly(ε−1 log ∆)) ≤ poly(∆−1) ,

by the guarantee of Lemma 3.8. Therefore, we conclude that the failure probability is then
at most 2

3 . It remains to analyze the error.

A. Czumaj, S.-H.-C. Jiang, R. Krauthgamer, and P. Veselý 47:15

Error Analysis. For the remaining part of the analysis, we condition on no failure of the
sketches used in Algorithm 2 and on that the error bound in Theorem 2.2 holds. By
Lemma 3.6, for the part of evaluating the basic subproblems (lines 14-22 of Algorithm 2),
the actual instance that the linear sketches work on is (1 + O(ε))-approximate. Hence, it
suffices to show the DP value is accurate to that instance.

Our estimation is never an underestimate, by Lemma 3.8 and since all partitions that we
enumerated are compatible with the subproblems; see Section 3.2.2. Hence, it remains to
upper bound the estimation. Consider an optimal DP solution F , which we interpret as a
metric graph (see Section 2). Then we create a new solution F ′ from F by modifying F using
the following procedure. For each simple square R, we consider F |R which is the portion of
F that is totally inside of R (see Section 2). For each component S ⊂ R in F |R, let S′ be
the point set formed by removing all Steiner points from S, except for portals of R (note
that we remove portals of subsquares of R if they appear in S). Then, for each component
S, we replace the subtree in F that spans S with the MST on S′. It is immediate that after
the replacement, the new solution has the same connectivity of portals and terminal points
as before. We define F ′ as the solution after doing this replacement for all simple squares.

F ′ is still a feasible solution. Furthermore, for every simple square R, if F is compatible
with a subproblem (R, A, f, Π), then so does F ′. By the construction of F ′, the definition of
Steiner ratio α2, and Theorem 2.2, we know that

w(F ′) ≤ α2 · w(F) ≤ (1 + O(ε)) · α2 · OPT, (1)

where the last inequality holds as we condition on that the error bound in Theorem 2.2 holds.
Now we relate the algorithm’s cost to w(F ′). Fix a simple square R, and suppose

(R, A, f, Π) is the subproblem that is compatible with F ′|R. Then, the components in F ′|R
can be described by a partition of the cells plus their connectivity to active portals. Such a
subproblem, together with the partition, must be examined by Algorithm 2 (in lines 14-22),
and the MST value for each part is estimated in Algorithm 2. Since the algorithm runs a
DP using the estimated values, the final DP value is no worse than the DP value that is only
evaluated from the subproblems that are compatible to F ′. Recall that our estimation for
each subproblem not only has a multiplicative error of (1 + ε) but also an additive error by
Lemma 3.8. Therefore, by the fact that F ′ always uses MST to connect points in components
of basic subproblems, it suffices to bound the total additive error for the estimation of the
MST cost of the components of F ′.

Fix a connected (global) component Q of F ′, and let CQ ⊆ C be the subset of colors that
belongs to Q. By Lemma 3.8, for every basic subproblem (R, f, A, Π) that is compatible
with F ′, and every component P of Q|R, the additive error is at most O

(
poly(ε)
k log ∆

)
· MST(S),

where S is the union of color classes that intersect P plus the active portals A. Observe that
CS ⊆ CQ (where CS is the set of colors used in S), so S is a subset of the point set of Q (note
that Q contains all portals in A as F ′ is a portal-respecting solution and the subproblem is
compatible with F ′) and thus MST(S) ≤ MST(Q), which implies

O

(
poly(ε)
k log ∆

)
· MST(S) ≤ O

(
poly(ε)
k log ∆

)
· MST(Q) ≤ O

(
poly(ε)
k log ∆

)
· w(Q).

Observe that for each simple square R, Q|R has at most O(ε−2) local components, hence,
summing over all local components of Q|R and all simple squares R, the total additive error
is bounded by poly(ε−1) · O(k log ∆) · O (poly(ε)/(k log ∆)) · w(Q) ≤ ε · w(Q), where use
that there are at most O(k log ∆) simple squares by Lemma 3.3. Finally, summing over all
components Q of F ′, we conclude that the total additive error is ε · w(F ′). Combining with
Equation (1), we conclude the error guarantee. This finishes the proof of Theorem 3.1.

ICALP 2022

47:16 Streaming Algorithms for Geometric Steiner Forest

4 Lower Bound: Ω(k) Bits are Necessary

In this section we demonstrate that any streaming algorithm for SFP achieving any finite
approximation ratio for SFP requires Ω(k) bits of space.

▶ Theorem 4.1. For every k > 0, every randomized streaming algorithm achieving a finite
approximation ratio for SFP with k color classes of size at most 2 must require Ω(k) bits
of space. This holds even for insertion-only algorithms and even when points are from the
one-dimensional line R.

Proof. The proof is a reduction from the INDEX problem on k bits, where Alice holds a
binary string x ∈ {0, 1}k, and Bob has an index i ∈ [k]. The goal of Bob is to compute the
bit xi in the one-way communication model, where only Alice can send a message to Bob
and not vice versa. It is well-known that Alice needs to send Ω(k) bits for Bob to succeed
with constant probability [41] (see also [42, 39]). Our reduction is from INDEX to SFP on
the (discretized) one-dimensional line [2k]. Consider a randomized streaming algorithm ALG
for SFP that approximates the optimal cost and in particular can distinguish whether the
optimal cost is 0 or 1 with constant probability. We show that it can be used to solve the
INDEX problem, implying that ALG needs to use Ω(k) bits of space.

Indeed, Alice applies ALG on the following stream: For each bit xj , she adds to the
stream a point of color j at location 2j + xj . So far OPT = 0. She now sends the internal
state of ALG to Bob. Then, Bob continues the execution of ALG (using the same random
coins) by adding one more point to the stream: Given his index i ∈ [k], he adds a point of
color i at location 2i. After that, OPT = 0 + xi, which is either 0 or 1. It follows that if
ALG achieves a finite approximation with constant probability, then Bob can discover xi

and solve INDEX. ◀

5 Conclusions and Future Directions

Our paper makes a progress in the understanding of geometric streaming algorithms and
of applicability of Arora’s framework for low-space streaming algorithms for geometric
optimization problems. Still, our work leaves a number of very interesting open problems.

Our approximation ratio α2 + ε matches the current approximation ratio for the Steiner
tree problem in geometric streams. Hence, any improvement to our approximation ratio
would require to first improve the approximation for Steiner tree, even in insertion-only
streams. This naturally leads to the main open problem of obtaining a (1 + ε)-approximation
for Steiner tree in geometric streams using only poly(ε−1 log ∆) space.

Our naïve algorithm for the Steiner forest problem given in Theorem 1.2 is also an
(α2 + ε)-approximation with poly(kε−1 log ∆) space, but its running time is exponential in k

because it queries an (approximate) MST-value oracle on all possible subsets of color classes
to find the minimum. We do not know if a smaller number of queries suffices here, but it is
known that in a similar setup for coverage problems any oracle-based O(1)-approximation
requires exponentially many queries to an approximate oracle [10]. Thus, it would not be
surprising if a similar lower bound holds for our problem.

Our Theorem 4.1 shows that for SFP with color classes of size at most 2 one cannot achieve
any bounded approximation ratio using space that is sublinear in n ≤ 2k. This strongly
suggests that SFP with pairs of terminals (i.e., Ci = {si, ti}) does not admit a constant-factor
approximation in the streaming setting, although our lower bound construction does not
extend to this case (as it requires having some size-1 color classes). We leave it as an open
problem whether a constant-factor approximation in sublinear (in n = 2k) space is possible

A. Czumaj, S.-H.-C. Jiang, R. Krauthgamer, and P. Veselý 47:17

for this version. We notice however that for the case where both points of each terminal
pair are inserted/deleted together, it is possible to get an O(log n)-approximation using the
metric embedding technique of Indyk [36].

The main focus of this paper is on the study of SFP for the Euclidean plane, but in
principle, our entire analysis can be extended to the Euclidean space Rd, for any fixed d ≥ 2.
However, this would require extending the arguments of [11, 14], namely, the structural result
restated in Theorem 2.2, and these details were not written explicitly in these papers.

The techniques developed in this paper seem to be general enough to be applicable to
other problems/objectives with connectivity constraints, where the connectivity is specified
by the colors and a solution is feasible if the points of the same color are connected. One
such closely related problem is the sum-of-MST objective, i.e., the problem of minimizing
the sum of the costs of trees such that points of the same color are in the same tree (see also
[2, 53] for related problems). We hope that the approach developed in our paper can lead
to a (1 + ε)-approximation of the geometric version of this problem, using poly(kε−1 log ∆)
space and time (for space only, one can use similar techniques as in Theorem 1.2). Moreover,
it may be possible to apply our approach to solve the connectivity-constrained variants of
other classical problems, especially those where dynamic programming has been employed
successfully, like r-MST and TSP [7]. For example, the TSP variant could be to find a
collection of cycles of minimum total length with points of the same color in the same cycle.

At a higher level, the connectivity constraints may be more generally interpreted as
grouping constraints. For instance, in the context of clustering, our color constraints may
be viewed as must-link constraints, where points of the same color have to be placed in the
same cluster. Such constrained clustering framework is of significant interest in data analysis
(see, e.g., [52]). Our framework, combined with coreset techniques [28] and Arora’s quad-tree
methods (see [8]), may be used to design streaming algorithms for such clustering problems.

Finally, we believe that the framework of optimization problems with connectivity and
grouping constraints is interesting on its own, going beyond the streaming setup. Such
problems may be studied also in the setting of standard (offline) algorithms, as well as of
online algorithms, approximation algorithms, fixed-parameter tractability, and heuristics.

References
1 Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An approximation algorithm

for the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–456,
1995.

2 Mattias Andersson, Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan.
Balanced partition of minimum spanning trees. International Journal of Computational
Geometry and Applications, 13(4):303–316, 2003.

3 Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David P. Woodruff. Efficient sketches for
earth-mover distance, with applications. In Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 324–330, 2009.

4 Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-
dimensional spaces. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 343–352, 2008.

5 Alexandr Andoni and Huy L. Nguyen. Width of points in the streaming model. In Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 447–452,
2012.

6 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Proceedings of the 46th Annual ACM Symposium
on Theory of Computing (STOC), pages 574–583, 2014.

ICALP 2022

47:18 Streaming Algorithms for Geometric Steiner Forest

7 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM, 45(5):753–782, 1998.

8 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Euclidean
k-medians and related problems. In Proceedings of the 13th Annual ACM Symposium on the
Theory of Computing (STOC), pages 106–113, 1998.

9 Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 184–193, 1996.

10 MohammadHossein Bateni, Hossein Esfandiari, and Vahab S. Mirrokni. Almost optimal
streaming algorithms for coverage problems. In Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 13–23, 2017.

11 MohammadHossein Bateni and MohammadTaghi Hajiaghayi. Euclidean prize-collecting
Steiner forest. Algorithmica, 62(3-4):906–929, 2012.

12 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Dániel Marx. Approximation
schemes for Steiner forest on planar graphs and graphs of bounded treewidth. Journal of the
ACM, 58(5):21:1–21:37, 2011.

13 Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document
exchange. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 51–60, 2016.

14 Glencora Borradaile, Philip N. Klein, and Claire Mathieu. A polynomial-time approximation
scheme for Euclidean Steiner forest. ACM Transactions of Algorithms, 11(3):19:1–19:20, 2015.

15 Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler, and Lin F. Yang.
Clustering high dimensional dynamic data streams. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 576–585, 2017.

16 Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Proceedings of the 48th
Annual ACM Symposium on Theory of Computing (STOC), pages 712–725, 2016.

17 T.-H. Hubert Chan, Shuguang Hu, and Shaofeng H.-C. Jiang. A PTAS for the Steiner forest
problem in doubling metrics. SIAM Journal on Computing, 47(4):1705–1734, 2018.

18 Timothy M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions.
Computation Geometry, 35(1-2):20–35, 2006.

19 Timothy M. Chan. Dynamic streaming algorithms for ε-kernels. In Proceedings of the 32nd
International Symposium on Computational Geometry (SoCG), pages 27:1–27:11, 2016.

20 Moses Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the 34th Annual ACM Symposium on Theory of Computing (STOC), pages 380–388, 2002.

21 Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum spanning
tree weight in sublinear time. SIAM Journal on Computing, 34(6):1370–1379, 2005.

22 Kuan Cheng, Alireza Farhadi, MohammadTaghi Hajiaghayi, Zhengzhong Jin, Xin Li, Aviad
Rubinstein, Saeed Seddighin, and Yu Zheng. Streaming and small space approximation
algorithms for edit distance and longest common subsequence. In Proceedings of the 48th
International Colloquium on Automata, Languages, and Programming (ICALP), pages 54:1–
54:20, 2021.

23 F. R. K. Chung and R. L. Graham. A new bound for Euclidean Steiner minimal trees. Annals
of the New York Academy of Sciences, 440(1):328–346, 1985.

24 Artur Czumaj, Christiane Lammersen, Morteza Monemizadeh, and Christian Sohler. (1 + ε)-
approximation for facility location in data streams. In Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1710–1728, 2013.

25 Funda Ergün and Hossein Jowhari. On the monotonicity of a data stream. Combinatorica,
35(6):641–653, 2015.

26 Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing diameter in the streaming
and sliding-window models. Algorithmica, 41(1):25–41, 2005.

A. Czumaj, S.-H.-C. Jiang, R. Krauthgamer, and P. Veselý 47:19

27 Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams and
applications. International Journal of Computational Geometry and Applications, 18(1/2):3–28,
2008.

28 Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pages
209–217, 2005.

29 Edgar N. Gilbert and Henry O. Pollak. Steiner minimal trees. SIAM Journal on Applied
Mathematics, 16(1):1–29, 1968.

30 Michel X. Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

31 Parikshit Gopalan, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Estimating the
sortedness of a data stream. In Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 318–327, 2007.

32 Martin Groß, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel R. Schmidt, Melanie
Schmidt, and José Verschae. A local-search algorithm for Steiner forest. In Proceedings of the
9th Innovations in Theoretical Computer Science Conference (ITCS 2018), pages 31:1–31:17,
2018.

33 Anupam Gupta and Amit Kumar. Greedy algorithms for Steiner forest. In Proceedings of the
47th Annual ACM Symposium on Theory of Computing (STOC), pages 871–878, 2015.

34 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages
291–300, 2004.

35 Wei Hu, Zhao Song, Lin F. Yang, and Peilin Zhong. Nearly optimal dynamic k-means clustering
for high-dimensional data, 2019. arXiv:1802.00459.

36 Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In Proceedings of
the 36th Annual ACM Symposium on Theory of Computing (STOC), pages 373–380, 2004.

37 Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In Proceedings of the 3rd
International Workshop on Statistical and Computational Theories of Vision (SCTV), 2003.
URL: https://people.csail.mit.edu/indyk/emd.pdf.

38 Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39–60, 2001.

39 T. S. Jayram, Ravi Kumar, and D. Sivakumar. The one-way communication complexity of
Hamming distance. Theory of Computing, 4(6):129–135, 2008.

40 Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment estimation in
data streams in optimal space. In Proceedings of the 43rd Annual ACM Symposium on Theory
of Computing (STOC), pages 745–754, 2011.

41 Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication com-
plexity. Computational Complexity, 8(1):21–49, 1999.

42 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

43 Christiane Lammersen and Christian Sohler. Facility location in dynamic geometric data
streams. In Proceedings of the 16th Annual European Symposium on Algorithms (ESA), pages
660–671, 2008.

44 Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. Heavy hitters via
cluster-preserving clustering. Communications of the ACM, 62(8):95–100, 2019.

45 Thomas L. Magnanti and Laurence A. Wolsey. Chapter 9: Optimal trees. In Network Models,
volume 7 of Handbooks in Operations Research and Management Science, pages 503–615.
Elsevier, 1995.

46 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM Journal on Computing, 28(4):1298–1309, 1999.

ICALP 2022

http://arxiv.org/abs/1802.00459
https://people.csail.mit.edu/indyk/emd.pdf

47:20 Streaming Algorithms for Geometric Steiner Forest

47 David Pollard. Empirical Processes: Theory and Applications, chapter 4: Packing and Covering
in Euclidean Spaces, pages 14–20. IMS, 1990.

48 Michael E. Saks and C. Seshadhri. Space efficient streaming algorithms for the distance to
monotonicity and asymmetric edit distance. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1698–1709, 2013.

49 Guido Schäfer. Steiner Forest. In Ming-Yang Kao, editor, Encyclopedia of Algorithms, pages
2099–2102. Springer, New York, NY, 2016.

50 Christian Sohler. Problem 52: TSP in the streaming model. https://sublinear.info/52,
2012.

51 Xiaoming Sun and David P. Woodruff. The communication and streaming complexity of
computing the longest common and increasing subsequences. In Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 336–345, 2007.

52 Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means clustering
with background knowledge. In Proceedings of the 18th International Conference on Machine
Learning (ICML), pages 577–584, 2001.

53 Liang Zhao, Hiroshi Nagamochi, and Toshihide Ibaraki. Greedy splitting algorithms for
approximating multiway partition problems. Mathematical Programming, Series A, 102(1):167–
183, 2005.

https://sublinear.info/52

	1 Introduction
	1.1 Our Contribution
	1.1.1 Technical Contribution: Adapting Arora's Framework to Streaming

	1.2 Could Other Approaches Work?
	1.3 Related Work

	2 Preliminaries
	2.1 Review of Dynamic Programming (DP) [11,14]

	3 Streaming Dynamic Programming: k^3-time-and-space Algorithm
	3.1 Offline Algorithm
	3.2 Building Blocks for Streaming Algorithm
	3.2.1 Constructing Simple Squares in the Streaming Setting
	3.2.2 Approximate Compatibility Checking
	3.2.3 Evaluating Basic Subproblems in the Streaming Setting

	3.3 Proof of Theorem 4.1

	4 Lower Bound: Omega(k) Bits are Necessary
	5 Conclusions and Future Directions

