THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224
http://theoryofcomputing.org

Embedding the Ulam metric intQ

Moses Charikar Robert Krauthgamer

Received: December 8, 2005; revised: September 18, 2006; published: September 29, 2006.

Abstract; Edit distance is a fundamental measure of distance between strings, the ex-
tensive study of which has recently focused on computational problems such as nearest
neighbor search, sketching and fast approximation. A very powerful paradigm is to map
the metric space induced by the edit distance into a normed space/{¢vgth small dis-
tortion, and then use the rich algorithmic toolkit known for normed spaces. Although the
minimum distortion required to embed edit distance ifitthas received a lot of attention
lately, there is a large gap between known upper and lower bounds. We make progress on
this question by considering large, well-structured submetrics of the edit distance metric
space.

Our main technical result is that the Ulam metric, namely, the edit distance on permu-
tations of length at most, embeds intd; with distortionO(logn). This immediately leads
to sketching algorithms with constant size sketches, and to efficient approximate nearest
neighbor search algorithms, with approximation fadigtogn). The embedding and its
algorithmic consequences present a big improvement over those previously known for the
Ulam metric, and they are significantly better than the state of the art for edit distance in
general. Further, we extend these results for the Ulam metric to edit distance on strings that
are (locally) non-repetitive, i. e., strings where (close by) substrings are distinct.

ACM Classification: F.2.2, G.2.1, G.3

AMS Classification: 68P05, 68W20, 68W25

Key words and phrases: edit distance, metric embedding, Ulam metric, low distortion, sketching,
permutation edit distance

*Supported by NSF ITR grant CCR-0205594, DOE Early Career Principal Investigator award DE-FG02-02ER25540, NSF
CAREER award CCR-0237113, MSPA-MCS award 0528414, and an Alfred P. Sloan Fellowship

rights to publish the paper electronically and in hard copy. Use of the article is permit-
ted as long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, séetp://theoryofcomputing.org/copyright.html.

(© 2006 Moses Charikar and Robert Krauthgamer

Authors retain copyright to their papers and grant “Theory of Computing” unlir%ited

http://theoryofcomputing.org/copyright.html

M. CHARIKAR AND R. KRAUTHGAMER

1 Introduction

Theedit distancqakalLevenshtein distanid®etween two strings is the least number of character inser-
tions, deletions or substitutions required to transform one string to the other. The edit distance arises
naturally in several application areas, often involving large amounts of data, ranging from a moderate
number of extremely long strings (as in computational biology) to a large number of moderately long
strings (as in text processing and web search). Therefore, efficient algorithms for edit distance, even
with modest approximation guarantees, are highly desirable.

The edit distance is a fundamental measure of (dis)similarity, because it is a very simple model that
exhibits nontrivial alignment (i. e., a single elementary modification may cause numerous characters to
change their position in the string). Popular metrics such as the Hamming distance do not adequately
capture this phenomenon, and thus for data analysis purposes, edit distance often offers a much better
model (up to minor variations such as weighting).

Let ED(x,y) denote the edit distance between strirgsdy. Fixing an alphabel, the edit distance
function EO(-,-) defines a metric space, called thdit distance metricwhose point set contains all
the strings ovek. Every collectionX of strings over this alphabet (e. &,= {0,1}") can therefore be
associated with the submetiiX, ED). A significant obstacle in dealing with the edit distance metric is
that it lacks many of the useful properties of normed spaces. We restrict our attention to coll¥ations
strings that have limited repetitions. While these collections of strings are rather large and give rise to
submetricg X, ED) of a rich structure, we will be able to obtain results that are significantly better than
those known for the general ca¥e= 2" (or even{0,1}"). Our main focus is the Ulam metric, which
we define next.

The Ulam Metric Following [7, 5], a string (over the alphabg) is called gpermutationif its charac-

ters are all distinct. (This notion, sometimes called a variation, extends the usual notion of permutation
to cases wher&| > n, but this slightly more general setting is more convenient for our purposes and
potentially more useful in applications.) Throughout this paperitaen metricof dimensiom (called
permutation edit distance irY]) is the metric spacé€P,,ED), where®, contains all permutations of
lengthn overZ.

Remark: The standard definition of the Ulam metric for permutations (seeld) gsgs the distance
function UL(x,y), defined as the least number of character moves needed to tranxsfdoy. This dis-
tance function is obviously limited to the case- |Z| (i. e. to the usual notion of permutations), while it
is easily seen to be nearly equivalent to the edit distance, namély YL< ED(x,y) < 2UL(x,y). Thus,
our non-standard definition of the Ulam metric to(B%, ED) is merely a slight abuse of terminology to
gain additional generality.

Embeddings An embeddingf a metric spacé€X,dx) into a target metric spad®,dy) is a mapping
f : X — Y. Thedistortion of the embeddind is defined as the smallekt > 1 for which there is (a
scaling factors > 0 such that

dx (X1,%2) < s-dy(f(x1), f(x2)) < K-dx(X1,X2) forall xg,x € X .

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 208

EMBEDDING THE ULAM METRIC INTO /1

Low-distortion embeddings are a very powerful paradigm for reducing a host of problems (such as Near-
est Neighbor Search, s&ection3) from a given metric space to a more structured or computationally
easier metric space, at the cost of a small loss in the approximation guarantee. It is easy to see that the
Ulam metric contains thén/2|-dimensional hypercube as a submetric (up to scalfirag)d hence, by
Enflo’s Theorem 9], embedding the Ulam metric intt» requires distortior(,/n). But an¢; embed-
ding is usually sufficient for algorithmic applications such as sketching algorithms and Nearest Neighbor
Search (se&ection3.3 for definitions), which raises the question of embedding the Ulam metric, and
more generally the edit distance metric, ili{o

There is a very large gap between the known upper and lower bounds on the distortion required to
embed the edit distance metiig", ED) into ¢;. Ostrovsky and Raban2f] showed an upper bound
of 20(vIegnioglogn) for embedding edit distance intq. Very recently, Khot and Naorlf] obtained a
lower bound ofQ(/logn/loglogn), and this was further improved @(logn) by Krauthgamer and
Rabani [L7]. For the Ulam metric, the same upper bouriiv29nogioan) clearly holds and is still the
state of the art. On the other hand, CormoBgdage 60] shows a lower bound of3{ using a 5-
point metric that is isomorphic to th& 3 graph (up to scaling). Our embedding results make progress
towards resolving these intriguing questions by proving an exponentially smaller upper bound for the
Ulam metric, and extending it to several related edit distance submetrics.

1.1 Results

Our main result, appearing i8ection2, is that then-dimensional Ulam metric embeds infg with
distortionO(logn).2 The previously known upper bound i8@"cgnloglogn) sing the embedding o2{)]

for edit distance in general. Our embedding is surprisingly simple and easy to describe. In fact, this is
the complete description: we have a coordinate for every pair of symabols = and the value of this
coordinate in the embedding of a string is simply the inverse of the distance betvaadh in the string

(or 0 if one ofa, b does not occur).

Techniques Our methodology is inspired by the work of Cormode, Muthukrishnan and Sahifjalp [
who designed a mapping from the Ulam metric to Set-Interseétidowever, their mapping is not an
embedding intd; (in fact, Set-Intersection is not even a metric space) and it does not yield a sketching
algorithm for the Ulam metric. The main difficulty in the analysis of our embedding is to prove that it

is not too contractive. To this end, we build on the framework7pfih which a common subsequence

for two permutations is constructed recursively by partitioning each permutation into two subsequences.
The main novelty in our analysis is that we replace the deterministic recursive partitionifignf a
carefully-crafted stochastic partitioning, resulting in a suitable averaging over all symbol pairs.

LConsider e. g. the permutatioRdor which {P(2i — 1),P(2i)} = {2i — 1,2} foralli =1,...,|n/2].

2This metric space contains more thahints, and thus our distortion bound beats by far the one that follows from
Bourgain’s embedding theorem][for general finite metrics. Note that in the nearest neighbor search setting, one needs to
embed not on\sinto ¢4, but also the (yet unknown) query point.

3Namely, every permutation is mapped to a subset of some fixed groubd sech that the edit distance between two
permutations is approximately the size of the intersection between the two respective subsets.

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 209

M. CHARIKAR AND R. KRAUTHGAMER

Applications The Ulam metric is interesting in its own right, e. g. when considering the Ulam metric
as a measure of (dis)similarity between rankings for say aggregation purposes. But it is not clear a
priori that results on the Ulam metric would lend themselves to broader classes of strings; bit strings,
for instance, cannot have distinct characters untess2. Nevertheless, we show Bection3 several
applications of the above embedding result to edit distance on more general strings.

Let us mention one generalization of the above embedding here, leaving further discuséan to
tion 3. Following [2], we say that a string is-non-repetitive if all its t-substrings are distinct. For
example, a random bit string of lengths, with high probability, 2log-non-repetitive. We can easily
extend the above embeddingttmon-repetitive strings with atZactor loss in the distortion. For in-
stance, this embedding is applicable, with high probability, for two random, but correlated, bit strings
(e.g.,x is chosen uniformly at random anydis derived from it by deleting certain positions). Such
scenarios often arise in computational biology contexts due to background distributions.

All our embeddings (e. g. the one specified above) are efficiently computable, and are thus readily
applicable to computational problems. For instance, they immediately yield sketching algorithms and
Nearest Neighbor Search schemes, as stat&&dation3. The algorithms that we obtain for restricted
families of strings all have significantly better approximation guarantees than the state of the art for
edit distance in general4, 2, 20]. For one thing, restriction to strings with limited repetitions may be
reasonable in many specific scenarios, and may serve as a rigorous starting point for domain-specific
heuristics.

In addition, our results make partial progress on the general case; they identify algorithmic tools that
are provably useful (in certain cases), and they pinpoint some difficult aspects (of the general case). The
recent embedding result of Ostrovsky and Rabaj felies on a recursive construction. Our results on
the Ulam metric and its extensions suggest that it may be possible to achieve a polylogarithmic distortion
for embedding general edit distance. However, achieving this bound may require going beyond recursive
constructions and using a “magical” direct embedding along the lines of the one we construct.

1.2 Related work

Cormode, Muthukrishnan and Sahinalfj jvere the first to suggest embeddings of various distance
functions on permutations. For reversal distance and transposition distance they designed embeddings
into Hamming space with constant distortion. However, as mentioned earlier, for edit distance (on
permutations) they designed a mapping into Set-Intersection, which cannot be embeddgdrigield

a sketching algorithm. They also use this mapping into Set-Intersection to obtain a fast approximate
string matching for permutations (under edit distance).

Cormode and Muthukrishna®][show that a variant of edit distance called thleck edit distance
where a block of characters can be moved in a single edit operation, embeds with distortion
O(lognlog* n). See alsog, 19 for embeddings of similar distance function on strings.

Batu et al. B] developed a sub-linear time algorithm that run©in™a{(®/222-1)) time and solves
the O(n%) vs. Q(n) edit distance gap problem. Their algorithm can be cast as a sketching algorithm,
although it would use a sketch whose size is far more than constant.

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 210

EMBEDDING THE ULAM METRIC INTO /1

1.3 Notation

As usual, defingk] = {1,...,k}. A stringis a sequence of characters (i.e., symbols) taken from an
alphabe. The jth character in a stringis denoted byg|j]. We writea € sto denote that a character
ac X appears in the string anda ¢ s otherwise. At-substring(akat-gram) of a stringsis a string
consisting ot consecutive characterséne. g.5[i],sli+1],..., /i +t —1]. In contrast, asubsequencef
sneed not be contiguous &

A permutationis stringP whose characters are all distinct. For permutations, it will sometimes be
more convenient to work witR—1, i. e.,P~1(a) is the position at whick € = appears in the string (if
at all).

Longest common subsequence and edit distance~or two stringsx,y, let LCSx,y) be the length
of the longest common subsequencex@ndy (i. e., the maximum length of a strirgthat is both a
subsequence ofand a subsequenceyf It is well-known and easy to verify that for every two strings
(and in particular permutations)y of lengthn, we haven— LCS(x,y) < ED(x,y) < 2(n—LCS(x,y)).

2 Embedding the Ulam metric

In this section we present a low-distortion embedding of the Ulam metric (i. e., the edit distance metric
on permutations) intd .

Theorem 2.1. For every n, the Ulam metric of dimension n can be embedded?H%z) with distortion
O(logn).

Fix an integen; we may assume thatis a power of 2, e. g., by padding all strings using additional
characters. Lan = |X|, and assume without loss of generality that {1,...,m}.
Define an embedding : P, — 6&2) as follows. First, associate every coordinate of the target space
with a distinct pair{a,b} wherea,b € ~ anda # b. Now for every permutatioP € P, the coordinates
of f(P) are given by
1/(P~Y(b)—-PYa)) ifabeP,a<b;

f(P)ja) = {0 otherwise (i.e.a¢ Porb ¢ P). @D

The proof ofTheorem 2.1s completed below ihemma 2.ZandLemma 2.3 which analyze the expan-
sion and contraction of this embeddifgrespectively.
Lemma 2.2 (Expansion).Let P and Q be permutations of length n. Then

1(P) - f(Q)[1 < O(logn) -ED(P,Q) .

Proof. Extendf to permutations of length at mostby using the same definitior2(1). Observe now
that it suffices to prove the claimed inequalitf/(P) — f(Q)||1 < O(logn) - ED(P, Q) for the case where
ED(P,Q) = 1, the length oP is n and the length 0@ is n— 1. Indeed, the general case then follows by

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 211

M. CHARIKAR AND R. KRAUTHGAMER

the triangle inequality if1. (In the process, we simulate a character substitution by a deletion followed

by an insertion, which increases the number of character operations at most by a factor of 2.)
Suppose then th& is obtained fronP by deleting some charactefs]. Thus, we have (i[i] = Pi]

for all i < sand (i) Q[i] = P[i + 1] for all i > s. Clearly,

1f(P) - f(Qlla= ;z‘f(P){a,b}* f(Q)any| -

It suffices to consider only the terms in whiehe P andb € P, as every other term is 0. So suppose
a=P[i] andb = P[j] fori < j. In the case where=s, clearly f (Q) (5 5; = O; thus, the total contribution
of this case isz’j]:sﬂjfls < H(n) whereH (k) = z‘z;l% is thekth harmonic number. The case where
j = sis similar, with f (Q) (s, = 0 and thus total contributiog?;ll(é) < H(n). The case where both

i and j are smaller thas, as well as the case where bothnd j are larger thais, contribtes zero since
f(P)iapy = f(Q)fapy = J—fl The last case wheie< s < | has total contribution at most

s—1 o

2,2,

for eachi, the summation ovey is a telescopic sum bounded above gy implying that the total
contribution of this case is at madtn). Hence || f (P) — f(Q)||1 <3H(n) <3(1+Inn)=0(logn). O

-1 j-i-1

1 1‘_

Our proof method of the next lemma, which bounds the contractioh &f inspired by the work
of Cormode, Muthukrishnan and Sahinalfj.[At a high level, we recursively construct a common
subsequence by first partitioning the alphabet, thereby partitioning each string into two subsequences,
and then merging the two common subsequences obtained by recursion. Our analysis is more involved
than that of f]. In particular, we employ a carefully-crafted stochastic partitioning that “smooths” the
effect of any single pair of characters.

Lemma 2.3 (Contraction). Let P and Q be permutations of length n, and assume n is a pow&r of
Then||f(P) - f(Q)[l1 > GED(P.Q).

Before proving this lemma, we introduce some definitions and a technical propositioR. Heca
permutation of lengtk. Denote by LISP) the length of a longest increasing subsequend @fefine
abreakpointin P to be a position € [k— 1] whereP[i] > PJi + 1], and denote by () the number of
breakpoints inP. Two subsequences &fare called gartition of P if each character dP appears in
exactly one of the two subsequencesblackis a pair of position§2i — 1,2i} wherei € [|k/2]]. A
partition of P into two subsequencés, P is calledblock-balancedt, at every block{2i —1,2i}, exactly
one of the two characters belongshRp(hence also exactly one of them belong®th Note that if the
length ofP is even and a partition ¢f is block-balanced, then the two corresponding subsequences have
equal length.

Proposition 2.4. Let P be a permutation of length k, and suppose k is even. Then for every block-
balanced partition of P into subsequencgsRd, R,

LIS(P) > LIS(Ry) + LIS(P) — 2b(P) .

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 212

EMBEDDING THE ULAM METRIC INTO /1

Proof. We will actually prove that
LIS(P) > 2LIS(Ry) —2b(P) . (2.2)

A symmetric argument foP, will imply similarly that LIS(P) > 2LIS(Py) — 2b(P), and the lemma will
follow by averaging the last two inequalities.

Let us then proved.2). Fix a longest increasing subsequenc@&gpfand, with a slight abuse of no-
tation, let LIS Py) denote both this subsequence and its length. We construct an increasing subsequence
of P, by augmenting LI§%) with certain characters frof,. For each positiorj € [k] such thatP|j]
isinPy, letj’ € {j—1,j+ 1} be the position such thdg, j'} forms a block. Notice tha®[j’] is in P,
and call it acandidatef the corresponding|j] is in LIS(Ry). The number of candidates is thus exactly
LIS(Py). In particular, if augmenting LIS%) with all the candidates forms an increasing subsequence
of P, then the length of this increasing subsequence would be(®y)Sand it would proveZ.2). We
show next that LISR) can be always be augmented with [IP5) — 2b(P) candidates.

Consider two consecutive characters of (Rg, sayP[j1] andP[j,] with j1 < j». (Essentially the
same argument works in the two extremal cases wheeethe first character of LI&,) and wherg; is
the last character of Li®).) Lett be the number of candidates amd?{dy +1],...,P[j> — 1]. We claim
thatt < 2;indeed, onlyj; +1 andj, — 1 can possibly be candidates, becauijif] is a candidate foj’ €
{i1+1,...,j2— 1} then for the correspondirfgj] in LIS(Py) we havej € {j'—1,j +1} C{j1,..., |2}
and thusj € {j1, j2}. If thet candidates are themselves in increasing order and they are all between
P[j1] andP[j2], then augment LI§%) with theset candidates; clearly, the result is still an increasing
subsequence . Otherwise P must contain some breakpoint {J1,---,j2—1}, and this breakpoint
can be blamed for not augmenting ICR5) with theset < 2 candidates. Applying this augmentation for
every two consecutive charactétg;| andP[j,] of LIS(R,), we see that every breakpoint is blamed only
for candidates that are in the same intedvgl ..., j» — 1} as the breakpoint, and thus every breakpoint
is blamed for a total of at most 2 candidates. It follows that we have augmenté¢gb)Mgith at least
LIS(Py) —2b(P) candidates. It is easy to see that this results in an increasing subsequBr{becduse
augmenting at one interval does not prevent augmenting at another interval) and this prgves (1

Proof ofLemma 2.3 Start with the two lengtim permutations$® andQ, and recall that we used padding
to maken be a power of 2. We may assume tRaandQ contain exactly the same characters, because
every charactea € X that appears in exactly one of the two strings contributes 1 tPED and at
least 2 (actually2(logn)) to its “own” coordinates (alfa,b} whereb € 2\ @) in the difference vector
f(P)— f(Q). We can further assume (by renaming characteis ithatQ is the identity permutation,
i.e.,Q[i] =i. Hence,

ED(PQ) <2(n—LCS(P,Q)) =2(n—LIS(P)) .

Pick a random block-balanced partition®fnto subsequencd® andPy, i. e., independently assign
eachP|2i] to eitherRy or P, uniformly at random, and assig?{2i — 1] to the other subsequence. By
Proposition 2.4we have

LIS(P) > E[LIS(Ry) + LIS(P)] — 2b(P) .

Now apply a similar partitioning to each subsequence using independent coingyésgplit into Py
andPy1. Continue recursively in a similar fashion until we get a singleton subsequgnfm every
o € {0,1}'°9", For convenience, let denote the empty string, and defike= P and{0,1}° = {¢}.

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 213

M. CHARIKAR AND R. KRAUTHGAMER

Applying Proposition 2.4ecursively, we have

Ls(P)> Y IE[LIS(PG)]—ZkEn S Elb(R)] -
oe{0,1}lan k=1oe{01}k1

We rearrange this equation using the fact th&ifs a singleton sequence then I[(F§) = 1, and obtain

logn

n—LIS(P) < 2E

b(Po)]

K=1oe{01}k1

Notice that the sunp 5 ,b(Ps) in the right-hand side gets a contribution of 1 every time two
character®]i], P[] for whichi < j andP[i] > P[j] become consecutive characters in a subsequence
Formally, for positions and j such thai < j andP[i] > P[j], let the random variablg; be the number
of subsequence’; which containP[i],P[j] as consecutive characters. By linearity of expectation we
get that

}ED(P,Q)gn—LIS(P)§2 % E[Z;] - (2.3)
2 i<j;P[i|>P[j]

We claim thatR[Z;;] < 4/(j —i). To prove the claim, notice tha[Z;;] = 5°"'Pr{z;; > 7] because
Z;; takes only integral values between 0 andridgsP]i] appears in log subsequences). Therefore, it
suffices to show for every integee> 1 the upper bound

2—27

j—i
Let us first show thal[i], P[j] can become consecutive characters only afteg(j —i) | iterations (par-
titions of P). Indeed, ifj —i > 2, then at the first iteration these two characters must belong to different
blocks; thus, with probability 22 the random partition oP sends them to different subsequences, in
which case they will never form a consecutive pair oFgpand with probability ¥2 they are sent to the
same subsequence, in which case the difference between their positions in that common subsequence is
atleast| (j —i)/2]. Continuing similarly we see that if X j —i < 2'+1 then even after — 1 partitions,
the difference between the positions of the two characters is at least 2, i. e., they can become consecutive
only afterl iterations. Since the different sequence partitions are independent, we get that

1 [log(j—i)] 2
o> < | = < — .
PI’[Z”_l]_<2> ST

Similarly, if P[i],P[j] are consecutive in a subsequelse they can be consecutive in a later iteration
only if they are sent to the same subsequende;pfvhich happens with proability /2 or less. Fixing
an integeiz > 1 we can apply this argument- 1 times to get that FZ; > z| Z; > 1] < (1/2)* 1. We
thus conclude that P; > 7] < 22-2/(j —i), which completes the proof of the claim.
Using @.3) together with the above claim regardifify;; |, we get that
leopoca 3y L
2 <jErpy !

PI’[Zij > Z] <

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 214

EMBEDDING THE ULAM METRIC INTO /1

Notice that for every < j with Pi] > P[]j], the respective coordinates bfP) and f (Q) are

1 1
f(P)spriiprin=—— <0 and f(Qpitprin==—==>0,
(P)eei iy = 7 Qe = BT —pr
and hencéf(P){p[,]pm} - f(Q){pmpm}‘ > 1/(] — I) We conclude that
1
SED(R.Q) < 4f(P)~f(Q: .
which completes the proof afemma 2.3 O

This completes the proof dfheorem 2.1 We note that the bounds lremma 2.2andLemma 2.3
are existentially tight, up to constant factors (for our embedding

3 Applications

We present several applications of dgrembedding of the Ulam metric fro®ection2. Following [2],
we say that a string isnon-repetitiveif all its t-substrings are distinct. We first extend the embedding
to strings that are-non-repetitive $ection3.1). We also extend the above embedding to strings in which
every character appears a bounded number of tiBestion3.2). Both extensions follow by showing
that the corresponding strings can be embedded in the Ulam metric with low distortion. We then discuss
the immediate applications of these embeddings to sketching algori®eatidn3.3) and to Nearest
Neighbor SearchSection3.4).

A technically more involved application of the above embedding is an improvement to a result of
Bar-Yossef et al.Z]. Call a string(t, r)-non-repetitivef everyr successivé-substrings of it are distinct.
We improve over the sketching algorithm & [for locally non-repetitive strings in two aspects: (i)
we achieve an embedding result, which is stronger than a sketching algorithm (namely, a sketching
algorithm follows quite easily); and (ii) we improve the approximation factor. Seetion3.5for more
details.

3.1 Embedding non-repetitive strings

Recall that a string is-non-repetitive if all its t-substrings are distinct. L&, contain all thet-non-
repetitive strings of length overz.

Theorem 3.1. The metric spacéX,;, ED) embeds with distortioft into the Ulam metric of dimension
n—t+ 1and alphabet siz&'. Consequently, it embeds intpwith distortion Qtlogn).

The proof of the first part of the theorem is based on a simple observation, and that of the second
part is an immediate consequencelbkorem 2.1

Proof. We define an embeddinof (X,t, ED) into the aforementioned Ulam metric. First, we identify
the Ulam metric alphabeP!] with {0,1}! (using an arbitrary bijection). Now for &non-repetitive
stringx € {0,1}", definef (x) to be a lengtm —t + 1 string (over{2!]), whosejth coordinate is given by

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 215

M. CHARIKAR AND R. KRAUTHGAMER
f(x)j =b~1(x[j]...x[j +t—1]). To complete the proof, we will show that for every two strimgge =",

ED(x,y) < ED(f(x), f(y)) <tED(X,y) . (3.1)

To prove the first inequality, consider a longest common subsequence betix¢amd f (y). Each
character in it corresponds tat-aubstring inx and iny. Taking the first character from each of these
t-substrings, except for the last suekubstring, which is taken in its entirety, yields a subsequence that
is common tax andy, and hence LC&,y) > LCS(f(x), f(y)) +t — 1. We obtain that

%ED(x,y) <n—LCS(x,y) <n—t+1-LCS(f(x), f(y)) <ED(f(x),f(y)) .

To prove the second inequality, fix a longest common subsequen@ndfy, and with a slight abuse
of notation let LC$x,y) denote both this sequence and its length. Consider alt$héstrings ok and
of y that are entirely contained in LESy). Observe that the number of sutiSubstrings is at least
n—t+1—-t(n—LCS(X,y)), because each of tle- LCS(x,y) characters that do not belong to L&Sy)
participates irt or fewert-substrings. Thesesubstrings ik and iny give rise to a subsequence that is
common tof (x) and f (y). Therefore, LCEf (x), f(y)) > n—t+1—t(n—LCS(x,y)), implying that

ED(f(x), f(y)) <2(n—t+1-LCS(f(x),f(y))) <t(h—LCS(x,y)) <tED(X,y) .

3.2 Embedding bounded-occurrence strings

We say that a strin@ hast-bounded-occurrencié every charactea € 2 appears at mosttimes inP.
Let Bt C X" contain all the-bounded-occurrence strings of lengtbver.

Theorem 3.2. The metric spacéBy, ED) embeds with distortion t into the Ulam metric of dimension
n over an extended alphabet of siZE|t Consequently, it embeds imtpwith distortion Qtlogn).

The proof the first part of the theorem is based on a simple observation, and that of the second part
follows immediately fromTheorem 2.1

Proof. Let ¥’ be an alphabet of siz¢>|, and associate every characéer > with t distinct characters
ai,...,a € 2. Given a string, let f(x) be the string obtained fromby replacing, for every € |t] and
every charactes € 2, the jth occurrence of in x with the charactea; € Z'. To complete the proof of
the first part, it would suffice to prove that for every two strixgg < =",

2ED(xy) < ED(f(x), (y)) <tED(xY) . (3.2)
and it is indeed straightforward to verify this inequality. O

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 216

EMBEDDING THE ULAM METRIC INTO /1

3.3 Sketching algorithms

A sketching algorithm for edit distance consists of two procedures that work in concert as follows.
The first procedures produce a fingerprint, cal&dtch from each of the input strings, and the second
procedure uses solely the sketches to approximate the edit distance between the two stringk. In the
vs. m gap version of the problem, there is a promise that the edit distance between the two strings is
either at mosk or more tharm, and we wish to decide which of the two cases holds. The key feature is
that the sketch of each string is constructed without knowledge of the other string. The procedures are
randomized and are allowed to share random coins, and the main measure of complexity is the size of
the sketches produced. For actual applications it is also desirable that both procedures are efficient (say
run in time that is polynomial in their input size).

In contrast to Hamming distance, whose sketching complexity is well-understépdd, 10], rel-
atively little is known about sketching of edit distance. The result of Ostrovsky and Ré&fhugjiyes
a sketching algorithm that, for eveky= k(n), distinguishes between pairs of strings at edit distance at
mostk and at leask - 20(vlegnloglogn) sing sketches of siz8(1).

For strings that arenon-repetitive (including e. g. permutations), Bar-Yossef eRabjive a sketch-
ing algorithm that solves, for eveky= k(n), thek vs. Q(tk?) gap edit distance problem using sketches
of sizeO(1). We improve over their algorithm as follows.

Theorem 3.3 (Sketching-non-repetitive strings). For every k= k(n) there exists a polynomial-time
sketching algorithm that solves the k @$ktlogn) gap edit distance problem on t-non-repetitive strings
of length n using sketches of siz€1

The proof of the theorem is a simple consequence of{fembedding fromTheorem 3.1First,
convert the/;-metric can be into a scaled Hamming metric. Observe that a scaling fac@néf
suffices: rounding each coordinate in theembedding to multiples of /fCr?, for a sufficiently large
constantC > 0, increases the distortion by a factor 2, becatid®) .,y — f(Q)apy for f in (2.1) is
either zero or has absolute val(1/n?). (A different argument is that(P) has at most? nonzero
coordinates, and thus the total error due to rounding is at most addi{¢ Then, use the sketching
algorithm stated below for Hamming spaces, which is implicitli§] [and can also be derived from the
locality-sensitive hashing algorithms df, 13] (using the fact that for binary strings there is a direct
correspondence between Hamming distancefamiistance).

Theorem 3.4 (Sketching Hamming metric L8]). For everye > 0 and k= k(n), there is a polynomial-
time sketching algorithm that solves the k (4s+)k gap Hamming distance problem in binary strings
of length n, with a sketch of sizg O/ e?).

We note that besides being a very basic computational primitive for massive data sets (sBe e. g. [
Section 4.6]), sketching is also related to (i) Nearest Neighbor Search (see below), (ii) protocols that are
secure (i. e., leak no information), cfl(], and (iii) the simultaneous messages communication model
with public coins R1].

3.4 Nearest Neighbor Search

One of the most extensively studied computational problee&est Neighbor Sear¢dhNN): Given a
setSof points in a metric spack, preproces$ so as to efficiently answer queries for finding the point

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 217

M. CHARIKAR AND R. KRAUTHGAMER

in Sthat is closest to a query poigte X. The last decade has seen the advent of data structures for
approximate NN in (highp-dimensional normed spaces. In particular, algorithms with preprocessing
space (storage) polynomialimand|S and query time that is polynomial mand logS), were designed

in [15, 18] for ¢} and ¢} (achieving approximation factor ¢ for every constant > 0) and in [L2]

for £3, (achieving approximation facta@®(loglogn)). Other algorithms fo¢] and /3, due to [L5, 11],
achieve 1+ ¢ approximation require preprocessing space that is more moderate (subquad8itarid

have query time that is sublinear|i® (roughly O(|§Y/(1+9))).

In contrast, the known algorithmic guarantees for approximate NN in edit distance ni&trib)
are much weaker. For the general cé5& ED), Indyk [14] designed, for every fixedt > O, a con-
stant factor approximation (exponential ifdl) with space requirement that is exponentiahth The
recent embedding result of Ostrovsky and Rabafj [eads to a nearest neighbor data structure with
approximation factor 2v'egnioglogn) ang polynomial space requirement.

Combining our/;-embedding fromTheorem 3.2with these NN algorithms fof; (or Hamming
space oWy, as discussed iBection3.3) immediately yields a nearest neighbor algorithm tfaron-
repetitive strings (including e. g. permutations) achieving approximation f&fdogn), which im-
proves over the bound obtain if][for this case. In particular, using the algorithms 9%, 18] results
in query time(n+log|S)°®, and space requirement that+|S)°Y). Similarly, using the algorithms
of [15, 11] results in query time that is sublinear|i§ and space requirement that is subquadrat|&jin

The sketching algorithm can alternatively be used to speed up the naive algorithm that computes
the edit distance between the querand every data point € S Simply replace each edit distance
computation with an estimate derived from a sketck g¢omputed at the preprocessing stage) and a
sketch ofg. The number of iterations would still &(|S)), but each iteration will be much faster—about
O(log|g -+ loglogn) time.

3.5 Embedding locally non-repetitive strings

We can further generaliZEheorem 3.Jand obtain an embedding of strings that are locally non-repetitive
(see the definition below). The guarantee of this embedding is slightly weaker than a low distortion, since
it approximates well only distances that are sufficiently small. An interesting aspect of our embedding is
that it uses the sketching algorithm af to obtain an embedding; this is opposite to the usual direction,
where an embedding is used to obtain a sketching algorithm.

Our results improve overZ] in several respects: (i) We give an embedding, which consequently
leads to a sketching algorithm, whil@][only give a sketching algorithm. An embedding result is
stronger (unless it is computationally inefficient) since it has to simultaneously handle exponentially
many strings, including pairs y with rather different distance ER,y), while a sketching algorithm is
only required to have a high success probability for every pair. (ii) Our approximation factor is smaller
since we rely on the Ulam metric embedding.

Definition 3.5 (Locally non-repetitive string). A string is calledt, r)-non-repetitiveor in shortiocally
non-repetitiveif everyr successivé-substrings are distinct, i. e., for each interfal. ..,i +r — 1}, the
r substrings of lengtheach that start in this interval are distinct.

Let Xt contain all the(t,r)-non-repetitive strings of length over Z. Notice that this family
containsX,t since every-non-repetitive string is als@, r)-non-repetitive.

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 218

EMBEDDING THE ULAM METRIC INTO /1

Theorem 3.6 (Embedding).For every t=t(n) and every k= k(n), there exists an embedding f of the
(t,18k)-non-repetitive strings intd;, such that for every two such strings/x

Q(min{k, ED(x,y)/tlog(tk)}) < [[f(x) — f(y)[| <ED(xY) .

This embedding builds on the iterative anchors technique used in the sketching algorithm of Bar-
Yossef et al. 2, Section 2]. The basic idea is to pick a set of nhon-overlapping substrings of lemgth
a coordinated fashion. These substrings are referred to as anchors and partition the string into disjoint
substrings. The substrings between anchors are embedded ol the embedding for the original
string is obtained by combining these embeddings in a suitable way. The key ide&fiem fnethod to
pick these anchors in such a way that @ndy are two strings with small edit distance, then the anchor
selection process picks the same anchors for kahdy. One technical difference is that, between
successive anchors, we employ theembedding fronBection2. Another difference is that as a final
step we apply thé; sketching algorithm of18], which effectively “thresholds” thé; distance between
images. For clarity, we make no attempt to optimize constants.

Proof. We describe the embedding oftal8tk)-non-repetitive strings using a randomized procedure
that generates a bft(x). The embedding into ¢; will then be the concatenation &f(x), ranging over
all possible outcomes for the coin tosses, with suitable scaling.

Fix W := 56k. Augment the alphabet with 2W +t new characteray, . ..,axy.t and append ta
the fixed stringa; ... axw-t. Select a sequence of disjoint substrimgs. . ., o, of X, called “anchors,”
iteratively as follows. Maintain a sliding window of lengtM\2+t over the stringk. The left endpoint
of the sliding window is denoted bg; initially, c is set to 1. At each step, say stegonsider thaV
substrings of length whose starting position lies in the interjaH-W...c+ 2W — 1], and denote the
jth such substring, foy € W], by

Sj=Xc+W+j—1l...c+W+j+t-2] .

Select at random a permutatiéh of X', and set the anchay; to be a substring; | that is minimal
according td; (breaking ties arbitrarily), i. e.,

Mi(s1) =min{Mi(s1)),...,Mi(sw)} -
Then slide the window by settingto the position immediately following the anchor, i. e.,
C—C+W+Il+t—-1 .

If this new value ofc is at mostn start a new iteration. Otherwise, stop, letting< O(n/tk) be the
number of anchors collected.
Fori € [ry], let ¢' = ¢'(x) be the substring of starting at the position immediately after the last
character of anchax;_; and ending at the last characteragf By conventiong? starts at position 1.
Now embed each' into E?(tk) usingTheorem 3.1notice thaip' is a substring ok of length at most
2W +t < 18ak, and is thug-non-repetitive. Next concatenate the resulting- O(n/tk) images into a

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 219

M. CHARIKAR AND R. KRAUTHGAMER

vector(x) € Ei’(”) (appending O’s as necessary). Finally, choose a random bit steng), 1}°(" of
the same length, such that for glf; = 1 independently with probability Kktlog(kt), and let

f'(x) = Zri -¢i(X) mod2.

(This step is similar to18], though the purpose of using it here is very different.)
The embedding'’s correctness follows immediately from the next two lemmas, which we shall prove
shortly.

Lemma 3.7. If x and y are(t, 18k)-non-repetitive strings then

Pr{'(x) # '(y)] < O(ED(x,y)/K)

Lemma 3.8. If x and y are(t, 18Qk)-non-repetitive strings then

Prif'(x) # f'(y)] > Q(min{ED(x,y)/ktlog(kt),1}) .

The proof of Theorem 3.6s completed by observing that the concatenation of Hitgith suitable
scaling yields an embeddingwhich satisfies

() = f(Y)lla = KE ['(x) = F'(y)| = kPrf'(x) # F'(y)] .
O

Proof ofLemma 3.7 The preliminary step of appendingandy with the same string of length/2 +t
clearly does not change ERY). Now fix a sequence of edit operationghat transforms this new
into the newy and uses E[X,y) edit operations. Lety be theith anchor chosen fax and letf; be
theith anchor chosen for. Letr = min{ry,ry}. As in the proof of Lemma 2.6 ir2], with probability
at least - ED(x,y)/7k, the following event happens: for alk [r], the tranformatiorr (sequence of
edit operations) maps; to B; with no edit operations inside; or 5;.* If this happens, we say that the
anchors match

Assume for the moment that the anchors match. Using the fa({tqbf(w}ie[r] are disjoint substrings
of x and similarly{¢'(y) }icr) for y, we get that

ED(xy) = 3 ED(9'(0.9'13)

Furthermore, at least one of the ancharsandp; is the last anchor in its string and thus contains one of
the unique ¥ +t characters that were appendedctandy. But since the anchors, = ;, both must
be the last anchor in their string, and thiys=ry. Using the guarantees ®heorem 3.1we get that

lo(x) — oY)l < _% O(tlog(2W +tk)) ED(¢'(x), 9'(¥)) < O(tlog(tk)) ED(x.y) -

4The argument ing] goes roughly as follows: at a single iteration, the probability that the anchor selection goes wrong is at
mostt times the number of edit operations inside the current window divid&df fsince there aré/ choices for the anchor).
It can be verified that an edit operation can only affect one iteration, and a union bound over all iterations gives an upper bound
of ED(x,y)/7k.

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 220

EMBEDDING THE ULAM METRIC INTO /1

Finally, the analysis in]8] of a random inner product modulo 2 shows that

Pr{f'(x) # T'(y) | 9(x), 9(y)] = ©(min{[¢(x) — ¢(y)||/ktlog(kt),1}) . (3.3)

We can then bound P (x) # f’(y)] from above by conditioning on whether the anchors match. If they
do match,f’(x) # f’(y) with probability O(ED(x,y)/k). Otherwise (which happens with probability at
most EOx,y)/7K), f'(x) # f’(y) with probability at most 1. We thus conclude that

Pr{f'(x) # f'(y)] < O(ED(x,y)/K)
O

Proof ofLemma 3.8 The preliminary step of appendingandy with the same string of length/2 +t
clearly does not change ERY). Now similar to the proof of Lemma 2.8 ir2], letr = max{ry,ry} and
fori=ry+1,...,r let¢'(x) = € be the empty string and similarly for=ry+1,....r let¢'(y) = €. Let
g be the/1-embedding fronTheorem 3.1 Then for alli € [r] we have

199" () —9(9')l = Q(ED(¢' (x),9'(¥))) -

Since the substring&)’ (X) }ier) induce a partition of the stringand similarly{q)‘(y)}ie[r] fory, we get
that
ED(x,y) < 5 ED(¢'(x),9'(y)) < O([l¢(x) — o)) -

i€lr]

The lemma follows by applying the analysis of a random inner product modulo 2, as staieg).in 0

Improved sketching algorithm The embedding ofheorem 3.8eads to the following sketching re-
sult.

Theorem 3.9 (Sketching).For every t=t(n) and every k= k(n), there exists a polynomial-time effi-
cient sketching algorithm that solves the k @$tklogk) gap edit distance problem fdt, 180tk)-non-
repetitive strings using sketches of sizg D

The proof follows in a straightforward way by “concatenating” the embeddifignebrem 3.6vith a
sketching algorithm for thi’ vs.kK'(1+ €) gap Hamming distance (éx) problem that is implicit in 15,
18]. We note that the embedding uses many dimensions (coordinates), but for the purpose of sketching
it suffices to generate oni@(ktlog(kt)) coordinatesf’ at random, which can be done efficiently using
the shared random coins. It is also easy to verify that the random permutatian be replaced by an
almost min-wise hash family that is efficiently computable using shared randomness, sinfilar to [

Note that a permutation {4, r)-non-repetitive for every > 1, and so this theorem offers a somewhat
unexpected small improvement for the Ulam metric (0Meeorem 3.3 reducing the gap fro®(logn)
to O(logk).

Acknowledgements We thank the anonymous reviewers for helpful comments.

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 221

M. CHARIKAR AND R. KRAUTHGAMER

References

[1] * D. ALbous AND P. DiIACONIS: Longest increasing subsequences: from patience sorting
to the Baik-Deift-Johansson theoremBull. Amer. Math. Soc. (N.$.36(4):413-432, 1999.
[BUllAMS:1999-36-04/S0273-0979-99-00794-X1

[2] * Z. BAR-YOSSEE T. S. AYRAM, R. KRAUTHGAMER, AND R. KUMAR: Approximating edit
distance efficiently. InProc. 45th FOCSpp. 550-559. IEEE Computer Society Press, 2004.
[FOCS:10.1109/FOCS.2004]141.1, 3,3.3 3.4,3.5 3.5 3.5 4,3.5 3.5

[3] * T. BATU, F. ERGUN, J. KILIAN, A. MAGEN, S. RASKHODNIKOVA, R. RUBINFELD, AND
R. Sami: A sublinear algorithm for weakly approximating edit distancePtac. 35th STOCpp.
316—-324. ACM Press, 20035TOC:10.1145/780542.7805901.2

[4] * J. BOURGAIN: On Lipschitz embedding of finite metric spaces in Hilbert spésmel J. Math,
52(1-2):46-52, 19852

[5] * G. CorRMODE Sequence Distance EmbeddinghD thesis, University of Warwick, 20031,
1,33

[6] * G. CORMODE AND S. MUTHUKRISHNAN: The string edit distance matching problem with
moves. InProc. 13th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODAI®2) 667676,
2002. FODA:545381.545470 1.2

[7] * G. CORMODE, S. MUTHUKRISHNAN, AND S. C. S\HINALP: Permutation editing and match-
ing via embeddings. IfProc. 28th Internat. Coll. on Automata, Languages, and Programming
(ICALP’01), volume 2076 ofLecture Notes in Computer Sciengp. 481-492. Springer, 2001.
[ICALP:hfOvwuhOrcyujugl. 1,1.1,1.2 2

[8] * G. CORMODE, M. PATERSON, S. C. S\HINALP, AND U. VISHKIN: Communication com-
plexity of document exchange. Proc. 11th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA'00) pp. 197—-206, 2000.590ODA:338219.338292 1.2

[9] * P. ENFLO: On the nonexistence of uniform homeomorphisms betwggespaces.Ark. Mat,
8:103-105, 1969.1

[10] * J. FEIGENBAUM, Y. ISHAI, T. MALKIN, K. NissimM, M. J. STRAUSS, AND R. N. WRIGHT:
Secure multiparty computation of approximations. Aroceedings of 28th International Collo-
quium on Automata, Languages, and Programmia@ume 2076 olecture Notes in Computer
Sciencepp. 927-938. Springer, 2001CJALP:cpg5t97vrymqg7q3ja 3.3, 3.3

[11] * A. GIONIS, P. INDYK, AND R. MOTWANI: Similarity search in high dimensions via hashing. In
Proc. 25th Internat. Conf. on Very Large Data Bages. 518—-529. Morgan Kaufmann Publishers
Inc., 1999. VLDB:645925.67151) 3.4

[12] * P. INDYK: On approximate nearest neighbors in non-euclidean spacsod¢n39th FOCSpp.
148-155. IEEE Computer Society Press, 1998)S:10.1109/SFCS.1998.743}.383.4

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 222

http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#AD99
http://www.ams.org//bull/1999-36-04/S0273-0979-99-00796-X
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#BJKK04
http://doi.ieeecomputersociety.org//10.1109/FOCS.2004.14
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#BEKMRRS
http://doi.acm.org/10.1145/780542.780590
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Bourgain85
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Cormode:Thesis
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#CM02
http://portal.acm.org/citation.cfm?id=545381.545470
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#CMS01
http://springerlink.metapress.com/link.asp?id=hf0vwuh0rcyujug1
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#CPSV00
http://portal.acm.org/citation.cfm?id=338219.338252
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Enflo69
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#FIMNSW
http://springerlink.metapress.com/link.asp?id=cpq5t97vrymq7q3n
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#GIM99
http://portal.acm.org/citation.cfm?id=645925.671516
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Indyk98
http://doi.ieeecomputersociety.org//10.1109/SFCS.1998.743438

EMBEDDING THE ULAM METRIC INTO /1

[13] * P. INDYK: Dimensionality reduction techniques for proximity problems. Rroc. 11th
Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA0@p. 371-378. SIAM, 2000.
[SODA:338219.3385392 3.3

[14] * P. INDYK: Approximate nearest neighbor under edit distance via product metrics. In
Proc. 15th Ann. ACM-SIAM Symp. on Discrete Algorithnpp. 646-650. SIAM, 2004.
[SODA:982792.982899 1.1, 3.4

[15] * P. INDYK AND R. MOTWANI: Approximate nearest neighbors: towards removing the curse of
dimensionality. Ii30th STOCpp. 604—613. ACM Press, 199&T0C:10.1145/276698.276976
3.33.33435

[16] * S. KHOT AND A. NAOR: Nonembeddability theorems via Fourier analysiathematische
Annalen 334(4):821-852, 2006 Springer:n4671147n16843}41

[17] * R. KRAUTHGAMER AND Y. RABANI: Improved lower bounds for embeddings intg.
In Proc. 16th Ann. ACM-SIAM Symp. on Discrete Algorithmg. 1010-1017. SIAM, 2006.
[SODA:1109557.1109669 1

[18] * E. KUsHILEVITZ, R. OSTROVSKY, AND Y. RABANI: Efficient search for approximate near-
est neighbor in high dimensional spaceSIAM Journal on Computing30(2):457-474, 2000.
[SICOMP:30/3471J0 3.3, 3.3 3.4,3.4,3.5 3.5 3.5 3.5

[19] * S. MUTHUKRISHNAN AND S. C. S\HINALP: Approximate nearest neighbors and sequence
comparisons with block operations. Froc. 32nd STOCpp. 416-424. ACM Press, 2000.
[STOC:10.1145/335305.3353531.2

[20] * R. OsTROVSKY AND R. RABANI: Low distortion embeddings for edit distance. Rroc. 37th
STOG pp. 218-224. ACM Press, 2005 TOC:1060590.10606p31, 1.1, 1.1, 3.3, 3.4

[21] * A. C-C. Yao: Some complexity questions related to distributive computing.Pioc. 11th
STOG pp. 209-213. ACM Press, 1979 TOC:10.1145/800135.8044143.3

AUTHORS

Moses Charikar

Dept. of Computer Science

Princeton University

35 Olden Street

Princeton, NJ 08540, USA
moses@cs.princeton.edu
http://wuw.cs.princeton.edu/ "moses/

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 223

http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Indyk00
http://portal.acm.org/citation.cfm?id=338219.338582
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Indyk04
http://portal.acm.org/citation.cfm?id=982792.982889
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#IM98
http://doi.acm.org/10.1145/276698.276876
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#KN05
http://springerlink.metapress.com/link.asp?id=n4671147n1684344
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#KR06
http://portal.acm.org/citation.cfm?id=1109557.1109669
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#KOR00
http://locus.siam.org/SICOMP/volume-30/art_34717.html
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#MS00
http://doi.acm.org/10.1145/335305.335353
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#OR05
http://portal.acm.org/citation.cfm?id=1060590.1060623
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Yao79
http://doi.acm.org/10.1145/800135.804414
http://www.cs.princeton.edu/~moses/

M. CHARIKAR AND R. KRAUTHGAMER

Robert Krauthgamer

IBM Almaden Research Center

Department K53/B2

650 Harry Road

San Jose, CA 95120, USA
robi@almaden.ibm.com
http://www.almaden.ibm.com/cs/people/robi/

ABOUT THE AUTHORS

MOSESCHARIKAR is an Assistant Professor in the@mputer Science departmeatPrince-
ton University He received his Ph. D. in 2000 fro8tanford Universityunder the su-
pervision ofRajeev Motwani Before that, he obtained his undergraduate degree from
thelndian Institute of Technology, Bombaldis research interests are in approximation
algorithms, metric embeddings, and algorithmic techniques for large data sets. His work
on dimension reduction iy, won the Best Paper award at FOCS 2003. A one year stint
in the research group &tooglegave him an opportunity to apply his theoretical ideas in
the real world. He still reaps the benefits of that experience — he has successfully man-
aged to retain the top spot for a Google search on his last name, but has wisely given up
trying to compete with his well-known namesake for searches on his first name.

ROBERT KRAUTHGAMER is a Research Staff Member in thiesory groupat thelBM Al-
maden Research CeniarSan Jose, CA. He received his Ph. D. in 2001 fromitleez-
mann Institute of Scienda Israel. A paper, coauthored (as part of his thesis) with his
advisor,Uri Feige was awarded the 2005 SIAM Outstanding Paper Prize. Subsequently
he spent two years as a postdoc intiheory group at BerkeleyHis research interests
include combinatorial algorithms, finite metric spaces, high-dimensional geometry, data
analysis, and related areas. His favorite sport since youth has been swimming; once he
swam across th&ea of Galiledn a 10km competitive race, and was the last one to
arrive at the finish line.

THEORY OF COMPUTING, Volume 2 (2006), pp. 207-224 224

http://www.almaden.ibm.com/cs/people/robi/
http://www.cs.princeton.edu/
http://www.princeton.edu/
http://www.princeton.edu/
http://www.stanford.edu/
http://theory.stanford.edu/~rajeev/
http://www.cse.iitb.ac.in/
http://www.google.com/
http://www.almaden.ibm.com/software/disciplines/pm/
http://www.almaden.ibm.com/
http://www.almaden.ibm.com/
http://www.weizmann.ac.il/
http://www.weizmann.ac.il/
http://www.wisdom.weizmann.ac.il/~feige/
http://www.eecs.berkeley.edu/Research/Areas/CS/THY/
http://en.wikipedia.org/wiki/Sea_of_Galilee

	Introduction
	Results
	Related work
	Notation

	Embedding the Ulam metric
	Applications
	Embedding non-repetitive strings
	Embedding bounded-occurrence strings
	Sketching algorithms
	Nearest Neighbor Search
	Embedding locally non-repetitive strings

	References

