
Almost-Linear 𝜀-Emulators for Planar Graphs∗

Hsien-Chih Chang

Dartmouth College

USA

Robert Krauthgamer
†

Weizmann Institute of Science

Israel

Zihan Tan
‡

University of Chicago

USA

ABSTRACT
We study vertex sparsification for distances, in the setting of planar

graphs with distortion: Given a planar graph𝐺 (with edge weights)

and a subset of 𝑘 terminal vertices, the goal is to construct an

𝜀-emulator, which is a small planar graph 𝐺 ′
that contains the

terminals and preserves the distances between the terminals up to

factor 1 + 𝜀.

We design the first 𝜀-emulators for planar graphs of almost-linear

size 𝑘1+𝑜 (1)/poly 𝜀. In terms of 𝑘 , this is a dramatic improvement

over the previous quadratic upper bound of Cheung, Goranci and

Henzinger [ICALP 2016], and breaks below known quadratic lower

bounds for exact emulators (the case when 𝜀 = 0). Moreover, our

emulators can be computed in near-linear time, with applications

to fast (1 + 𝜀)-approximation algorithms for basic optimization

problems on planar graphs such as minimum (𝑠, 𝑡)-cut and diameter.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis; Ran-
dom projections and metric embeddings.

KEYWORDS
emulator, planar metric, spread reduction, Okamura-Seymour in-

stance, slicing

ACM Reference Format:
Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan. 2022. Almost-

Linear 𝜀-Emulators for Planar Graphs. In Proceedings of the 54th Annual

ACM SIGACT Symposium on Theory of Computing (STOC ’22), June 20–24,

2022, Rome, Italy. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3519935.3519998

1 INTRODUCTION
Graph compression describes a paradigm of transforming a large

graph 𝐺 to a smaller graph 𝐺 ′
that preserves, perhaps approx-

imately, certain graph features such as distances or cut values.

∗
Full version of the paper can be found on arXiv. The full version includes an im-

provement on the size of the emulator, from 𝑘1+𝑜 (1) /poly 𝜀 to 𝑘/poly 𝜀; a matching

lower bound Ω (𝑘/𝜀) for the emulator size for one-hole instance; as well as the first

offline dynamic (1 + 𝜀)-approximate distance oracle for undirected planar graph with

𝑛 vertices that has𝑂 (poly log𝑛) query and update time.

†
Supported in part by ONR Award N00014-18-1-2364, Israel Science Foundation grant

#1086/18, the Weizmann Data Science Research Center, and the Minerva Foundation.

‡
Supported in part by NSF grant CCF-2006464.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’22, June 20–24, 2022, Rome, Italy

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9264-8/22/06. . . $15.00

https://doi.org/10.1145/3519935.3519998

The algorithmic utility of graph compression is apparent — the

compressed graph 𝐺 ′
may be computed as a preprocessing step,

reducing computational resources for subsequent processing and

queries. This general paradigm covers famous examples like span-

ners, Gomory-Hu trees, and cut/flow/spectral edge-sparsifiers, in

which case𝐺 ′
has the same vertex set as𝐺 , but fewer edges. Some-

times the compression is non-graphical and comprises of a small

data structure instead of a graph 𝐺 ′
; famous examples are distance

oracles and distance labeling.

We study another well-known genre of compression, called ver-

tex sparsification, whose goal is for 𝐺 ′
to have a small vertex set.

In this setting, the input graph 𝐺 has a collection of 𝑘 designated

vertices 𝑇 , called the terminals. The compressed graph 𝐺 ′
should

contain, besides the terminals in 𝑇 , a small number of vertices and

preserve a certain feature among the terminals. Specifically, we

are interested in preserving the distances between terminals up to

multiplicative factor 𝛼 ≥ 1 in an edge-weighted graph (where the

weights are interpreted as lengths). Formally, given a graph𝐺 with

terminals 𝑇 ⊆ 𝑉 (𝐺), an emulator for 𝐺 with distortion 𝛼 ≥ 1 is a

graph 𝐺 ′
that contains the terminals, i.e., 𝑇 ⊆ 𝑉 (𝐺 ′), satisfying

∀𝑥,𝑦 ∈ 𝑇, dist𝐺 (𝑥,𝑦) ≤ dist𝐺 ′ (𝑥,𝑦) ≤ 𝛼 · dist𝐺 (𝑥,𝑦), (1)

where dist𝐺 denotes the shortest-path distance in 𝐺 (and similarly

for 𝐺 ′
). In the important case that 𝛼 = 1 + 𝜀 = 𝑒Θ (𝜀) for 0 ≤ 𝜀 ≤ 1,

we simply say that𝐺 ′
is an 𝜀-emulator.

1
Notice that𝐺 ′

need not be

a subgraph or a minor of 𝐺 (in these two settings 𝐺 ′
is known as a

spanner and a distance-approximating minor).

We focus on the case where𝐺 is known to be planar, and thus

require also 𝐺 ′
to be planar (which excludes the trivial solution

of a complete graph on 𝑇). This requirement is natural and also

important for applications, where fast algorithms for planar graphs

can be run on 𝐺 ′
instead of on 𝐺 . Such a requirement that 𝐺 ′

has structural similarity to 𝐺 is usually formalized by assuming

that both 𝐺 and 𝐺 ′
belong to ℱ for a fixed graph family ℱ (e.g.,

all planar graphs). If ℱ is a minor-closed family, one can further

impose the stronger requirement that 𝐺 ′
is a minor of𝐺 , and this

clearly implies that 𝐺 ′
is in ℱ .

Vertex sparsifiers commonly exhibit a tradeoff between accuracy

and size, which in our case of an emulator 𝐺 ′
, are the distortion 𝛼

and the number of vertices of𝐺 ′
. Let us briefly overview the known

bounds for planar graphs. At one extreme of this tradeoff we have

the “exact” case, where distortion is fixed to 𝛼 = 1 and we wish to

bound the (worst-case) size of the emulator𝐺 ′
[8, 13, 24]. For planar

graphs, the known size bounds are𝑂 (𝑘4) [38] and Ω(𝑘2) [9, 41]. At
the other extreme, we fix the emulator size to |𝑉 (𝐺 ′) | = 𝑘 , i.e., zero

non-terminals, and we wish to bound the (worst-case) distortion 𝛼

[5, 6, 12, 21, 32]. For planar graphs, the known distortion bounds

are 𝑂 (log𝑘) [20] and lower bound 2 [27].

1
Our formal definition in Section 2 differs slightly (allowing two-sided errors), which

affects our results only in some hidden constants.

1311

https://doi.org/10.1145/3519935.3519998
https://doi.org/10.1145/3519935.3519998
https://doi.org/10.1145/3519935.3519998

STOC ’22, June 20–24, 2022, Rome, Italy Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan

Our primary interest is in minimizing the size-bound when the

distortion 𝛼 is 1+ 𝜀, i.e., 𝜀-emulators, a fascinating sweet spot of the

tradeoff. The minimal loss in accuracy is a boon for applications,

but it is usually challenging as one has to control the distortion

over iterations or recursion. For planar graphs, the known size

bounds for a distance-approximating minor are �̃� ((𝑘/𝜀)2) [13]
and Ω(𝑘/𝜀) [38]. Improving the upper bound from quadratic to

linear in 𝑘 is an outstanding question that offers a bypass to the

aforementioned Ω(𝑘2) lower bound for exact emulators (𝛼 = 1). In

fact, no subquadratic-size emulators for planar graphs are known

to exist even when we allow the emulators to be arbitrary graphs,

except for when the input is unweighted [8] or for trivial cases like

trees.

Notation. Throughout the paper, we consider undirected graphs

with non-negative edge weights. A plane graph refers to a planar

graph together with a specific embedding in the plane. We suppress

poly-logarithmic terms by writing �̃� (𝑡) = 𝑡 · polylog 𝑡 , and multi-

plicative factors that depend on 𝜀 by writing 𝑂𝜀 (𝑡) = 𝑂 (𝑓 (𝜀) · 𝑡).
We write log

∗ 𝑡 for the iterated logarithm of 𝑡 .

1.1 Main Result
We design the first 𝜀-emulators for planar graphs that have almost-

linear size; furthermore, these emulators can be computed in near-

linear time. These two efficiency parameters can be extremely use-

ful, and we indeed present a few applications in Section 1.2.

Theorem 1.1. For every 𝑛-vertex planar graph𝐺 with 𝑘 terminals

and parameter 0 < 𝜀 < 1, there is a planar 𝜀-emulator graph 𝐺 ′
of

size |𝑉 (𝐺 ′) | = 𝑘1+𝑜 (1)/poly 𝜀. Furthermore, such an emulator can be

computed deterministically in time 𝑂
(
𝑛 log

𝑂 (1) 𝑛/poly 𝜀
)
.

The result dramatically improves over the previous �̃� ((𝑘/𝜀)2)
upper bound of Cheung, Goranci and Henzinger [13]. Moreover,

it breaks below the aforementioned lower bound Ω(𝑘2) for exact
emulators (𝛼 = 1) [9, 38, 41]. Unsurprisingly, our result is unlikely

to extend to all graphs, because for some (bipartite) graphs, every

minor with fixed distortion 𝛼 < 2 must have Ω(𝑘2) vertices [13].
See Table 1 for comparison to prior work.

Table 1: Distance emulators for planar graphs.

Distortion Size (lower/upper) Requirement Reference

1 Ω (𝑘2) planar [9, 41]

1 𝑂 (𝑘4) minor [38]

1 + 𝜀 Ω (𝑘/𝜀) minor [38]

1 + 𝜀 �̃� ((𝑘/𝜀)2) minor [13]

1 + 𝜀 𝑘1+𝑜 (1) /poly 𝜀 planar Theorem 1.1

𝑂 (log𝑘) 𝑘 minor [20]

1.2 Algorithmic Applications
We present a few applications of our emulators to the design of

fast (1 + 𝜀)-approximation algorithms for standard optimization

problems on planar graphs. Our first application is to construct

an approximate version of the multiple-source shortest paths data

structure, called 𝜀-MSSP : Preprocess a plane graph 𝐺 and a set of

terminals 𝑇 on the outerface of 𝐺 , so as to quickly answer dis-

tance queries between terminal pairs within (1 + 𝜀)-approximation.

The preprocessing time of our data structure is 𝑂𝜀 (𝑛 poly(log
∗ 𝑛)),

which for fixed 𝜀 > 0 is faster than Klein’s 𝑂 (𝑛 log𝑛)-time algo-

rithm [35] for the exact setting when 𝜀 = 0. Both algorithms have

the same query time 𝑂 (log𝑛).

Theorem 1.2. Given a parameter 0 < 𝜀 < 1, an 𝑛-vertex plane

graph 𝐺 and a set of terminals 𝑇 all lying on the boundary of 𝐺 , one

can preprocess an 𝜀-MSSP data structure on𝐺 with respect to𝑇 in time

𝑂 (𝑛 poly(log
∗ 𝑛)/poly 𝜀), that answers queries in time 𝑂 (log𝑛).

Our second application is an𝑂𝜀 (𝑛 log
∗ 𝑛)-time algorithm to com-

pute (1+𝜀)-approximateminimum (𝑠, 𝑡)-cut in planar graphs, which
for fixed 𝜀 > 0 is faster than the𝑂 (𝑛 log log𝑛)-time exact algorithm

by Italiano, Nussbaum, Sankowski, and Wulff-Nilsen [31].

Theorem 1.3. Given an 𝑛-vertex planar graph 𝐺 with two dis-

tinguished vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺) and a parameter 0 < 𝜀 < 1, one can

compute a (1 + 𝜀)-approximation to the minimum (𝑠, 𝑡)-cut in 𝐺 in

time 𝑂 (𝑛 log
∗ 𝑛/poly 𝜀).

Our third application is an 𝑂𝜀 (𝑛 log𝑛 log
∗ 𝑛)-time algorithm to

compute a (1 + 𝜀)-approximate diameter in planar graphs, which

for fixed 0 < 𝜀 < 1 is faster than the 𝑂 (𝑛 log
2 𝑛 + 𝜀−5𝑛 log𝑛)-time

algorithm of Chan and Skrepetos [7] (which itself improves over

Weimann and Yuster [49]).

Theorem 1.4. Given an 𝑛-vertex planar graph𝐺 and a parameter

0 < 𝜀 < 1, one can compute a (1 + 𝜀)-approximation to its diameter

in time 𝑂 (𝑛 log𝑛 log
∗ 𝑛 + 𝑛 log𝑛/poly 𝜀).

As the applications can be derived from applying the 𝜀-emulator

construction with bootstrapping, we only present the bootstrapping

idea and postpone the complete proofs to the full version.

1.3 Technical Contributions
A central technical contribution of this paper is to carry out a spread

reduction for the all-terminal-pairs shortest path problem when the

input graph can be embedded in the plane and the terminals all

lie on the outerface; the spread is defined to be the ratio between

the largest and the smallest distances between terminals. Spread

reduction is a crucial preprocessing step for many optimization

problems, particularly in Euclidean spaces or on planar graphs [4,

15, 22, 32, 47], that replaces an instance with a large spread with

one or multiple instances with a bounded spread. In many cases,

one can reduce the spread to be at most polynomial in the input

size. However, we are not aware of previous work that achieves

such a reduction in our context, where many pairs of distances

have to be preserved all at once. In fact, even after considerable

work we only managed to reduce the spread to be sub-exponential.

We now provide a bird-eye’s view of our emulator construction.

The emulator problem on plane graphs with an arbitrary set of

terminals can be reduced to the same problem on plane graphs, but

with the strong restriction that all the terminals lies on a constant

number of faces, known as holes (cf. Section 5), using a separator de-

composition that splits the number of vertices and terminals evenly;

such a decomposition (called the 𝑟 -division) can be computed ef-

ficiently [23, 36]. From there we can further slice the graph open

1312

Almost-Linear 𝜀-Emulators for Planar Graphs STOC ’22, June 20–24, 2022, Rome, Italy

into another plane graph with all the terminals on a single face,

which without loss of generality we assume to be the outerface. We

refer to it as a one-hole instance.

To construct an emulator for a one-hole instance𝐺 we adapt a re-

cursive split-and-combine strategy (cf. Section 3). We will attempt to

split the input instance into multiple one-hole instances along some

shortest paths that distribute the terminals evenly (cf. Lemma 3.2).

Every time we slice the graph 𝐺 open along a shortest path 𝑃 , we

compute a small collection of vertices on 𝑃 called the portals, that

approximately preserve the distances from terminals in 𝐺 to the

vertices on 𝑃 . The portals are duplicated during the slicing along 𝑃

and added to the terminal set (i.e., become terminals) at each piece

incident to 𝑃 , to ensure that further processing will (approximately)

preserve their distances as well. We emphasize that the naive idea

of placing portals at equally-spaced points along 𝑃 is not sufficient,

as some terminals in 𝐺 might be arbitrarily close to 𝑃 . Instead,

we place portals at exponentially-increasing intervals from both

ends of 𝑃 . After splitting the original instance into small enough

pieces by recursively slicing along shortest paths and computing

the portals, we compute exact emulators for each piece using any of

the polynomial-size construction [9, 38]. Next we glue these small

emulators back along the paths by identifying multiple copies of

the same portal into one vertex. See Figure 1.

(a) (b)

Figure 1: Illustration of the split-and-combine process for a
one-hole instance.

Let 𝑈 be the set of terminals in the current piece, and let 𝑟 B
|𝑈 |. We need the portals to be dense enough so that only a small

error term, of the form 𝑟−𝛿 (meaning that the distortion increases

multiplicatively by 1 + 𝑟−𝛿) will be added to the distortion of the

emulator after the gluing, as this will eventually guarantee (through

more details like the stopping condition of the recursion) that the

final distortion is 1 + 𝜀 and the final emulator size has polynomial

dependency on 𝜀−1
. At the same time, the number of portals cannot

be too large, as they are added to the terminal set, causing the

number of terminals per piece to go down slowly and creating too

many pieces, and in the end the size of the combined emulator

might be too big. It turns out that the sweet spot is to take roughly

𝐿𝑟 B 𝑟/log
2 𝑟 portals. Calculations show that in such case the

portals preserve distances up to error term logΦ/𝐿𝑟 , where Φ is

the spread of the terminal distances (cf. Claim 4.4). When Φ ≤ 2
𝑟 0.9

,

we will get the polynomially-small �̃� (𝑟−0.1) error term needed for

the gluing (cf. Section 4.2). However, even when the original input

has a polynomial spread to start with, in general we cannot control

the spread of all the pieces occurring during the split-and-combine

process, because portals are added to the terminal sets. Therefore a

new idea is needed.

When Φ > 2
𝑟 0.9

, we need to tackle the spread directly. We per-

form a hierarchical clustering of the terminals (cf. Section 4.3). At

each level 𝑖 , we connect two clusters of terminals from the previous

level 𝑖 − 1 using an edge if their distance is at most 𝑟2𝑖
; then we

group each connected component into a single cluster. The key to

the spread reduction is the idea of expanding clusters. A cluster 𝑆

is expanding if its parent cluster 𝑆 is at least ∼𝑒𝑟 −0.7
-factor bigger.

Intuitively, if all clusters are expanding, then the number of levels

in the hierarchical clustering must be at most 𝑟0.7
, and therefore

the spread must be at most sub-exponential. So in the high-spread

case some non-expanding cluster must exist.

If such non-expanding cluster 𝑆 is of moderate size (that is, in

between 𝑟/5 and 4𝑟/5) (cf. Section 4.3.1), we construct a collection

of non-crossing shortest paths between terminals in 𝑆 (non-crossing

means that no two paths with endpoint pairs (𝑠1, 𝑠2) and (𝑡1, 𝑡2)
have their endpoints in an interleaving order (𝑠1, 𝑡1, 𝑠2, 𝑡2) on the

outerface) in which no two paths intersect except at their endpoints.

Again compute portals on the paths from every terminal in 𝑆 \𝑆 , but
now using 𝜀𝑟 -covers [48] for 𝜀𝑟 B 𝑟−0.1

, and split along the paths to

create sub-instances. Because the cluster is non-expanding and has

moderate size, the number of terminals in 𝑆 \ 𝑆 is at most (𝑒𝑟 −0.7 −
1) |𝑆 | ≤ 𝑟0.3

, and thus the number of portals is𝑂 (𝑟0.3/𝜀𝑟) ≤ 𝑂 (𝑟0.4),
which is a gentle enough increase in the number of terminals. The

hard part is to argue that the portals created are sufficient for

the recombined instance to be an emulator. This can be done by

observing that terminal pairs among𝑈 \𝑆 are far apart, and similarly

when one terminal is from 𝑆 and the other is from𝑈 \𝑆 ; hence only
terminal pairs involving 𝑆 \𝑆 have to be dealt with using properties

of 𝜀𝑟 -covers (cf. Claim 4.8).

If there are no non-expanding clusters with moderate size (cf.

Section 4.3.2), we find a non-expanding cluster 𝑆 of lowest level that

contains most of the terminals, and construct a collection of non-

crossing shortest paths between terminals in 𝑆 like the previous case.

However this time, after computing the 𝑟−0.1
-covers and splitting

along the paths, there might be one instance containing too many

terminals. In this case, we find every non-expanding cluster 𝑆 of

maximal level; such clusters must all lie within �̃� (𝑟0.7) levels from
𝑆 because we cannot have nested expanding clusters for �̃� (𝑟0.7)
consecutive levels. TheMonge property guarantees that the shortest

paths generated by the union of these maximal-level non-expanding

clusters must be non-crossing because all such clusters are disjoint

(cf. Observation 4.7). Now if we split the graph based on the path

set generated, each resulting instance either has moderate size, or

must have small spread, and we safely fall back to the earlier cases.

Applications. A widely adopted pipeline in designing efficient

algorithms for distance-related optimization problems on planar

graphs in recent years consists of the following steps:

(1) Decompose the input planar graph into small pieces each of

size at most 𝑟 with a small number of boundary vertices and

𝑂 (1) holes, called an 𝑟 -division (see Frederickson [23] and

Klein-Mozes-Sommer [36];

1313

STOC ’22, June 20–24, 2022, Rome, Italy Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan

(2) Process each piece so that all-pairs shortest paths between

boundary vertices within a piece can be extracted efficiently

by the multiple-source shortest paths algorithm for planar

graphs (Klein [35]);

(3) Further process each piece into a compact data structure

that supports efficient min-weight-edge queries and updates

(SMAWK[1], Fakcharoenphol and Rao [19]);

(4) Compute shortest paths in the original graph in a problem-

specific fashion, now with each piece replaced with the

compact data structure, using a modified Dijkstra algorithm

(Fakcharoenphol and Rao [19]).

The conceptual role of our planar emulators is an alternative to

Step 3. In a sense, the reason for the development of the afore-

mentioned machinery and complex algorithms is to get around

the size lower bound in representing the all-pairs distances for

the pieces. The benefit of replacing the data structure with a sin-

gle planar emulator is that the whole graph stays planar. One can

then simply replace Step 4 with the standard Dijkstra algorithm

(or even better, with the 𝑂 (𝑛)-time algorithm for planar graphs by

Henzinger et al. [29]). More importantly, one can recurse on the

resulting graph when appropriate, and compress the graph further

and further with small additive errors slowly accumulated. This

allows us to construct an 𝜀-emulator that is sub-linear in the size

of each piece in linear time (up to 𝑂𝜀 (log
∗ 𝑛) factors).

1.4 Related Work
In addition to emulators, there are other lines of research on graph

compression that preserve distance information. Among them the

most studied objects are spanners and preservers (in which the spar-

sifier is required to be a subgraph of the input graph) and distance

oracles (that is a data structure that report exact or approximate

distances between pairs of vertices). We refer the reader to the

excellent survey [2].

Another type of vertex sparsifiers that are extensively studied are

cut/flow sparsifiers. There are rich lines of works for constructing

vertex sparsifiers that preserve cut/flow values exactly [11, 24, 28,

33, 34, 39, 40] or approximately [3, 10, 14, 16, 25, 26, 42, 43].

2 PRELIMINARIES
All logarithms are to the base of 2. All graphs are simple and undi-

rected. Let 𝐺 be a connected graph. A vertex 𝑣 ∈ 𝑉 (𝐺) is called a

cut vertex of𝐺 if the graph𝐺 \ {𝑣} is disconnected. The cut vertices
of a plane graph 𝐺 can be computed in time 𝑂 (|𝑉 (𝐺) | + |𝐸 (𝐺) |).
Let 𝐺 be a graph with an edge-weight function 𝑤 : 𝐸 (𝐺) → R+.
The weight of a path 𝑃 is defined as 𝑤 (𝑃) B ∑

𝑒∈𝐸 (𝑃) 𝑤 (𝑒). The
shortest-path distance between two vertices 𝑢 and 𝑣 is denoted by

dist𝐺 (𝑢, 𝑣). For a subset 𝑆 of vertices in 𝐺 , we define diam𝐺 (𝑆) B
max𝑢,𝑢′∈𝑆 dist𝐺 (𝑢,𝑢′). For a pair of disjoint subsets of vertices

(𝑆, 𝑆 ′) in 𝐺 , we define dist𝐺 (𝑆, 𝑆 ′) B min𝑢∈𝑆,𝑢′∈𝑆 ′ dist𝐺 (𝑢,𝑢′).

Emulators. Throughout, we consider graph 𝐺 equipped with a

special set of vertices𝑇 , called terminals. We refer to the pair (𝐺,𝑇)
as an instance. Let (𝐺,𝑇) and (𝐻,𝑇) be a pair of instances with

the same set of terminals, and let 𝜀 ∈ [0, 1]. We say that 𝐻 is an

𝜀-emulator for 𝐺 with respect to 𝑇 , or equivalently, instance (𝐻,𝑇)

is an 𝜀-emulator for instance (𝐺,𝑇) if
∀𝑥,𝑦 ∈ 𝑇, 𝑒−𝜀 · dist𝐺 (𝑥,𝑦) ≤ dist𝐻 (𝑥,𝑦) ≤ 𝑒𝜀 · dist𝐺 (𝑥,𝑦). (2)

Throughout, we use Equation (2) as the definition of an 𝜀-emulator

instead of Equation (1); but since we restrict our attention to 𝜀 < 1,

the two definitions are equivalent up to scaling 𝜀 by a constant factor.

By definition, if (𝐻,𝑇) is an 𝜀-emulator for (𝐺,𝑇), then (𝐺,𝑇) is
an 𝜀-emulator for (𝐻,𝑇). Moreover, if (𝐺,𝑇) is an 𝜀-emulator for

(𝐺 ′,𝑇) and (𝐺 ′,𝑇) is an 𝜀′-emulator for (𝐺 ′′,𝑇), then (𝐺,𝑇) is an
(𝜀 + 𝜀′)-emulator for (𝐺 ′′,𝑇).

In this paper we mostly consider instance (𝐺,𝑇) where graph 𝐺
is a plane graph, which we refer to as planar instances. We say that

a planar instance (𝐺,𝑇) is an ℎ-hole instance for an integer ℎ > 0

if the terminals lie on at most ℎ faces in the embedding of𝐺 . The

faces incident to some terminals are called holes. Notice that in a

one-hole instance (𝐺,𝑇), we can safely assume all the terminals

in 𝑇 lie on the outerface 𝐺 . By definition, a 0-emulator preserves

distances exactly, i.e., dist𝐺 (𝑥,𝑦) = dist𝐺 ′ (𝑥,𝑦) for all 𝑥,𝑦 ∈ 𝑇 .

Theorem 2.1 (Chang-Ophelders [9, Theorem 1]). Given one-

hole instance (𝐺,𝑇) with 𝑛 B |𝑉 (𝐺) | and 𝑘 B |𝑇 |, one can compute

a 0-emulator (𝐺 ′,𝑇) for (𝐺,𝑇) of size |𝑉 (𝐺 ′) | ≤ 𝑘2
. The running

time of the algorithm is 𝑂 ((𝑛 + 𝑘2) log𝑛).

Crossing pairs and the Monge property. Let (𝐺,𝑇) be a one-hole
instance. Assume that no terminal in 𝑇 is a cut vertex of 𝐺 , ev-

ery terminal appears exactly once as we traverse the boundary of

the outerface. Let (𝑡1, 𝑡2), (𝑡 ′
1
, 𝑡 ′

2
) be two terminal pairs whose four

terminals are all distinct. We say that the pairs (𝑡1, 𝑡2), (𝑡 ′
1
, 𝑡 ′

2
) are

crossing if the clockwise order in which these terminals appear on

the boundary is either (𝑡1, 𝑡 ′
1
, 𝑡2, 𝑡

′
2
) or (𝑡1, 𝑡 ′

2
, 𝑡2, 𝑡

′
1
); otherwise we

say that they are non-crossing. A collectionℳ of pairs of terminals

in 𝑇 is called non-crossing if every two pairs inℳ is non-crossing.

Sometimes we abuse the language and say that a set of shortest

paths 𝒫 in 𝐺 is non-crossing when the collection of endpoint pairs

for the paths is non-crossing. The Monge property
2
states that, for

every one-hole instance (𝐺,𝑇) and every crossing pairs of terminals

(𝑡1, 𝑡2) and (𝑡 ′
1
, 𝑡 ′

2
),

dist𝐺 (𝑡1, 𝑡2) + dist𝐺 (𝑡 ′
1
, 𝑡 ′

2
) ≥ dist𝐺 (𝑡 ′

1
, 𝑡2) + dist𝐺 (𝑡1, 𝑡 ′2) .

Well-structured sets of shortest paths. Consider a graph 𝐺 and

a collection 𝒫 of shortest paths in 𝐺 . We say that the set 𝒫 is

well-structured if for every pair of paths (𝑃, 𝑃 ′) in 𝒫 , 𝑃 ∩ 𝑃 ′ is a
single subpath of both 𝑃 and 𝑃 ′. It is not hard to see that every

collection of shortest paths in 𝐺 is well-structured if the shortest

path between any two vertices in 𝐺 is unique. Such condition can

be enforced with high probability if we perturb the edge-weights in

𝐺 slightly and apply the isolation lemma [17, 45]. A deterministic

lexicographic perturbation scheme that guarantees the uniqueness

of shortest paths in an 𝑛-vertex plane graph can be computed in

𝑂 (𝑛) time [17]. The following lemma is proved in the full version

of the paper.

Lemma 2.2. Given a one-hole instance (𝐺,𝑇) and a non-crossing
collection ℳ of pairs of terminals in 𝑇 , one can compute a well-

structured set 𝒫 of shortest paths, one for each pair of terminals in 𝑇

in 𝑂 (|𝐸 (𝐺) | · log |ℳ|) time.

2
Technically, this is known as the cyclic Monge property [9].

1314

Almost-Linear 𝜀-Emulators for Planar Graphs STOC ’22, June 20–24, 2022, Rome, Italy

Therefore from here on we assume that all the planar graphs we

consider have unique shortest path between every pair of vertices,

and every collection of shortest paths is well-structured.

𝜀-cover. We use the notion of 𝜀-cover [37, 48]. Let 𝜀 ∈ (0, 1) be
a parameter. Let 𝐺 be a graph and let 𝑃 be a shortest path in 𝐺

connecting some pair of vertices. Consider now a vertex 𝑣 in 𝐺

that does not belong to path 𝑃 . An 𝜀-cover of 𝑣 on 𝑃 is a subset

𝑆 of vertices in 𝑃 such that, for each vertex 𝑥 ∈ 𝑉 (𝑃), taking the

detour from 𝑣 to some 𝑦 ∈ 𝑆 then to 𝑥 is a (1 + 𝜀)-approximation

to the shortest path from 𝑣 to 𝑥 , i.e., there exists 𝑦 ∈ 𝑆 for which

dist𝐺 (𝑣,𝑦) + dist𝐺 (𝑦, 𝑥) ≤ (1+ 𝜀) · dist𝐺 (𝑣, 𝑥). Small 𝜀-cover of size

𝑂 (1/𝜀) is known to exist.

Theorem 2.3 (Thorup [48, Lemma 3.4]). Let 𝜀 ∈ (0, 1) be a

constant. For every shortest path 𝑃 in some graph 𝐺 and every vertex

𝑣 ∉ 𝑃 , there is an 𝜀-cover of 𝑣 on 𝑃 with size 𝑂 (1/𝜀). Moreover, such

an 𝜀-cover can be computed in 𝑂 (|𝐸 (𝐺) |) time.

We emphasize that choosing 𝑂 (1/𝜀) “portals” at equal distance
on the path 𝑃 as in Klein-Subramanian [37, Lemma 4] is not suf-

ficient, because the distance from 𝑣 to 𝑃 might be much smaller

than the length of 𝑃 . The linear-time construction is not stated in

Lemma 3.4 of [48], but it can be inferred from their proof. In fact,

we will use the following construction that allows us to efficiently

compute the union of 𝜀-covers of a subset 𝑌 of vertices along the

boundary of plane graph; the proof is a simple divide-and-conquer

similar to Reif [46], which we omit here.

Lemma 2.4. Let 𝜀 ∈ (0, 1) be a constant and 𝐺 is a plane graph.

Given a subset 𝑌 of vertices that lie on the same face of 𝐺 and a

shortest path 𝑃 connecting a pair of vertices in𝐺 , we can compute the

union of 𝜀-covers of each vertex in 𝑌 on 𝑃 in𝑂 (|𝐸 (𝐺) | · log |𝑌 |) time.

3 EMULATORS FOR ONE-HOLE INSTANCES
In this section and the next one we design a near-linear time algo-

rithm for constructing 𝜀-emulators for one-hole instances, as stated

in Theorem 3.1. We say that an 𝜀-emulator (𝐺 ′,𝑇) for a one-hole
instance (𝐺,𝑇) is aligned if (𝐺 ′,𝑇) is also a one-hole instance, and

the circular orderings of the terminals on the outerfaces of𝐺 and

of 𝐺 ′
are identical.

Theorem 3.1. Given a parameter 𝜀 ∈ (0, 1) and one-hole instance
(𝐺,𝑇) with 𝑘 B |𝑇 |, one can compute an aligned 𝜀-emulator for

(𝐺,𝑇) of size𝑘 log
𝑂 (1) 𝑘/poly 𝜀 in𝑂

(
(𝑛+𝑘2) log

𝑂 (1) 𝑛/poly 𝜀
)
time.

In the rest of this section and the next one, all the emulators are

aligned, and therefore we omit the word “aligned” from now on.

We describe the algorithm and proof for Theorem 3.1 in Section 3.1,

with the help of the core decomposition lemma (cf. Lemma 3.2).

The proof to Lemma 3.2 itself is deferred to Section 4.

3.1 The Algorithm and Its Analysis
In this subsection we describe the algorithm for Theorem 3.1 and

provide its analysis. Let (𝐺,𝑇) be the input one-hole instance. The
algorithm consists of two stages. The first stage iteratively decom-

poses (𝐺,𝑇) into smaller one-hole instances, and the second stage

computes emulators for these small instances and then combines

them into an emulator for (𝐺,𝑇).

Algorithm. Throughout the algorithm we maintain a collection

ℋ of one-hole instances, that is initialized to be ℋ = {(𝐺,𝑇)}. Set
𝜆 B 𝑐∗ log

2 𝑘/𝜀20
, where 𝑘 B |𝑇 | and 𝑐∗ > 0 is a large enough con-

stant. In the first stage, we repeatedly replace a one-hole instance

(𝐻,𝑈) ∈ ℋ where |𝑈 | > 𝜆 with new one-hole instances obtained

by applying the algorithm from Lemma 3.2 to (𝐻,𝑈), until all one-
hole instances inℋ have |𝑈 | ≤ 𝜆. The core of our construction is

the following lemma.

Lemma 3.2. Given one-hole instance (𝐻,𝑈) with 𝑟 B |𝑈 | and
threshold 𝜆 B 𝑐∗ log

2 𝑘/𝜀20
, one can compute a collection of one-hole

instances {(𝐻1,𝑈1), . . . , (𝐻𝑠 ,𝑈𝑠)}, such that

• 𝑈 ⊆
(⋃

1≤𝑖≤𝑠 𝑈𝑖

)
;

• |𝑈𝑖 | ≤ 9𝑟/10 for each 1 ≤ 𝑖 ≤ 𝑠 ;

• ∑
𝑖: |𝑈𝑖 | ≤𝜆 |𝑈𝑖 | ≤ 𝑂 (𝑟 log

2 𝑟); and
• ∑

𝑖: |𝑈𝑖 |>𝜆 |𝑈𝑖 | ≤ 𝑟 ·
(
1 +𝑂 (1

log
2 𝑟
)
)
.

Moreover, given an 𝜀-emulator (𝐻 ′
𝑖
,𝑈𝑖) for each (𝐻𝑖 ,𝑈𝑖), algorithm

Combine computes for (𝐻,𝑈) an
(
𝜀 +𝑂 (log

4 𝑟

𝑟 0.1)
)
-emulator (𝐻 ′,𝑈):

|𝑉 (𝐻 ′) | ≤
(∑︁
1≤𝑖≤𝑠

|𝑉 (𝐻 ′
𝑖) |

)
+𝑂 (𝑟 log

2 𝑟).

The running time of both algorithms is at most 𝑂
(
(|𝑉 (𝐻) | + 𝑟2) ·

log 𝑟 · log |𝑉 (𝐻) |
)
.

We prove this lemma in Section 4, and in the remainder of this

subsection we use it to complete the proof of Theorem 3.1.

We associate with the decomposition process a partitioning tree 𝜏 .

Its nodes are all the one-hole instances that ever appear in the

collection ℋ. Its root node is the initial one-hole instance (𝐺,𝑇),
and every tree node (𝐻,𝑈) has children nodes corresponding to

the new instances (𝐻1,𝑈1), . . . , (𝐻𝑠 ,𝑈𝑠) generated by Lemma 3.2.

The leaves of 𝜏 are those that are in ℋ at the end of the first stage.

(To avoid ambiguity, we refer to elements in 𝑉 (𝜏) as nodes and
elements in 𝑉 (𝐻) as vertices.)

We now describe the second stage of the algorithm. For each one-

hole instance (𝐻,𝑈) inℋ at the end of the first stage, compute a 0-

emulator (𝐻 ′,𝑈) for (𝐻,𝑈) using the algorithm from Theorem 2.1.
3

We then iteratively process the non-leaf nodes in 𝜏 inductively in

a bottom-up fashion: Given a non-leaf node (𝐻,𝑈) with children

(𝐻1,𝑈1), . . . , (𝐻𝑠 ,𝑈𝑠), let (𝐻 ′
𝑖
,𝑈𝑖) be the emulator computed for

(𝐻𝑖 ,𝑈𝑖) by induction. Apply algorithmCombine from Lemma 3.2 to

the emulators (𝐻 ′
1
,𝑈1), . . . , (𝐻 ′

𝑠 ,𝑈𝑠) to obtain an emulator (𝐻 ′,𝑈)
for instance (𝐻,𝑈). After all nodes in 𝜏 have been processed, output
the emulator (𝐺 ′,𝑇) constructed for the root node (𝐺,𝑇).

We proceed to show that the instance (𝐺 ′,𝑇) computed by the

above algorithm satisfies all the properties required in Theorem 3.1.

Size analysis. We need to bound the size of the emulator𝐺 ′
by

𝑘 log
𝑂 (1) 𝑘/poly 𝜀. In what follows, ℋ denotes this set at the end

of the first stage.

• For each node (𝐻,𝑈) in the partitioning tree 𝜏 , we define

𝑓 (𝐻,𝑈) B 𝑐 · |𝑈 | log
2 |𝑈 |, where 𝑐 > 0 is a constant inde-

pendent to (𝐻,𝑈) that is greater than all constants hidden

3
This step can use any 0-emulator that has size poly𝑘 and can be constructed in time

�̃� (𝑛 + poly𝑘) , and we conveniently use Theorem 2.1.

1315

STOC ’22, June 20–24, 2022, Rome, Italy Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan

in the big-O notations in the statement of Lemma 3.2. By

Theorem 2.1 and Lemma 3.2, the final emulator has size

|𝑉 (𝐺 ′) | ≤
∑︁

(𝐻,𝑈) ∈ℋ
|𝑈 |2 +

∑︁
(𝐻,𝑈) ∈𝑉 (𝜏)

𝑓 (𝐻,𝑈).

• We bound the term

∑
(𝐻,𝑈) ∈𝑉 (𝜏) 𝑓 (𝐻,𝑈) via a charging

scheme as follows. Consider a node (𝐻,𝑈) in 𝜏 . We charge

the value of 𝑓 (𝐻,𝑈) uniformly to all terminals in𝑈 , so each

terminal has a charge of at most 𝑐 log
2 |𝑈 | ≤ 𝑐 log

2 𝑘 . The

height of 𝜏 is at most 𝑂 (log𝑘), because at every node that

is split by Lemma 3.2, the number of terminals decreases by

at least a factor of 9/10. So every terminal in

⋃
(𝐻,𝑈) ∈ℋ𝑈

is charged at most 𝑂 (log𝑘) times, thus has a total charge at

most 𝑂 (log
3 𝑘) .

• It suffices to bound the total number of terminals in all re-

sulting one-hole instances inℋ by 𝑘 log
𝑂 (1) 𝑘 , because then

the total size of emulators (𝐻 ′,𝑈) for all resulting one-hole

instances inℋ is∑︁
(𝐻,𝑈) ∈ℋ

|𝑈 |2 ≤ max

(𝐻,𝑈) ∈ℋ
{|𝑈 |} ·

∑︁
(𝐻,𝑈) ∈ℋ

|𝑈 |

≤ 𝜆 · 𝑘 log
𝑂 (1) 𝑘 = 𝑘 log

𝑂 (1) 𝑘/poly 𝜀.

Therefore, |𝑉 (𝐺 ′) | is at most∑︁
(𝐻,𝑈) ∈ℋ

(
|𝑈 |2 + |𝑈 | ·𝑂 (log

3 𝑘)
)
= 𝑘 · log

𝑂 (1) 𝑘/poly 𝜀.

It remains to bound the total number of terminals in all one-hole

instances inℋ, which we do next via a charging scheme. Let (𝐻,𝑈)
be a node in 𝜏 with children (𝐻1,𝑈1), . . . , (𝐻𝑠 ,𝑈𝑠).

• For instances (𝐻𝑖 ,𝑈𝑖) with |𝑈𝑖 | ≤ 𝜆 (which will all be inℋ at

the end of first stage), charge every vertex in𝑈𝑖 to vertices in

𝑈 . Since

∑
𝑖: |𝑈𝑖 | ≤𝜆 |𝑈𝑖 | ≤ 𝑂 (log

2 |𝑈 | · |𝑈 |) ≤ 𝑂 (log
2 𝑘 · |𝑈 |),

each vertex of𝑈 gets a charge of𝑂 (log
2 𝑘) this way. We call

these charge inactive.

• For instances (𝐻𝑖 ,𝑈𝑖) with |𝑈𝑖 | > 𝜆, let 𝑈 ′
be the set of all

new vertices, i.e., they appear in some set𝑈𝑖 but not in𝑈 ; we

have |𝑈 ′ | ≤ 𝑂 (|𝑈 |/log
2 |𝑈 |) by Lemma 3.2. Charge every

vertex in𝑈 ′
uniformly to vertices in𝑈 , so each vertex gets

𝑂 (1/log
2 |𝑈 |) charge. We call these charge active.

The total inactive charge on each vertex of𝑇 is𝑂 (log
3 𝑘) because

𝜏 has height 𝑂 (log𝑘). As for the total active charge to each vertex

in𝑇 , a quick calculation shows that it is at most𝑂 (1/(log(10/9) 𝜆 −
1)) ≤ 1/2. Note that this only accounts for the direct active charge.

For example, some terminal does not belongs to the initial one-hole

instance (𝐺,𝑇), that was first actively charged to the terminals in

𝑇 , can in turn be actively charged by some other terminals later. We

call such charge indirect active charge. The total direct and indirect

active charge for each terminal in𝑇 is at most 1/2+ (1/2)2 + · · · ≤ 1.

Altogether, each terminal in 𝑇 is charged 𝑂 (log
3 𝑘). Therefore,

we conclude that the total number of terminals in all resulting

instances in ℋ is bounded by 𝑂 (𝑘 log
3 𝑘), which, from the above

discussion, implies that the total size of emulators (𝐻 ′,𝑈) for all
resulting one-hole instances in ℋ is 𝑘 log

𝑂 (1) 𝑘/poly 𝜀.

Correctness. It remains to show that (𝐺 ′,𝑇) is an 𝜀-emulator for

(𝐺,𝑇). Recall that we have associated with the algorithm in first

stage a (rooted) partitioning tree 𝜏 . We now define, for each tree

node (𝐻,𝑈), a value 𝜀 (𝐻,𝑈) as follows. If (𝐻,𝑈) is a leaf node, we
define 𝜀 (𝐻,𝑈) B 0. Otherwise, (𝐻,𝑈) is a non-leaf node with child

nodes in 𝜏 be (𝐻1,𝑈1), . . . , (𝐻𝑠 ,𝑈𝑠). Denote 𝑟 B |𝑈 |, and let 𝑐 > 0

be a large enough constant that is greater than the constants hidden

in all big-O notations in Lemma 3.2 and 𝑐 < (𝑐∗)1/20
. We define

𝜀 (𝐻,𝑈) B
𝑐 log

4 𝑟

𝑟0.1
+ max{𝜀 (𝐻1,𝑈1) , . . . , 𝜀 (𝐻𝑠 ,𝑈𝑠) }.

From the properties of the algorithm Combine, it is easy to verify

that for each node (𝐻,𝑈) in 𝜏 , the one-hole instance (𝐻 ′,𝑈) we
construct is an 𝜀 (𝐻,𝑈) -emulator for (𝐻,𝑈).

We now show that 𝜀 (𝐺,𝑇) ≤ 𝜀. Observe that there are integers

𝑟1, . . . , 𝑟𝑡 with 𝑟1 ≤ 𝑘 , 𝑟𝑡 ≥ 𝜆, such that for each 1 ≤ 𝑖 ≤ 𝑡 − 1,

𝑟𝑖 ≥ (10/9)·𝑟𝑖+1, 𝜀 (𝐺,𝑇) =
∑

1≤𝑖≤𝑡 𝑐 log
4 𝑟𝑖/𝑟0.1

𝑖
. A quick calculation

gives us 𝜀 (𝐺,𝑇) ≤ 𝑐 · (log 𝜆)4/𝜆0.1
. Since 𝑐 is a constant, and recall

that we have set 𝜆 = 𝑐∗ log
2 𝑘/𝜀20

where 𝑐∗ > 𝑐20
is large enough,

so 𝜀 (𝐺,𝑇) < 𝜀, and therefore (𝐺 ′,𝑇) is an 𝜀-emulator for (𝐺,𝑇).

Running time. Every time we implement the algorithm from

Lemma 3.2 to split some instance in (𝐻,𝑈) ∈ ℋ with 𝑛 B |𝐻 |
and 𝑟 B |𝑈 |, we charge its running time (and also the time for

Combine): (i) the 𝑛 log
𝑂 (1) 𝑟 · log𝑛 term uniformly to all vertices

in 𝐻 , so every vertex is charged at most log
𝑂 (1) 𝑟 · log𝑛; and (ii)

the 𝑟2
log

𝑂 (1) 𝑟 · log𝑛 term uniformly to all terminals in 𝑈 , so

every terminal in 𝑈 is charged at most 𝑟 log
𝑂 (1) 𝑟 · log𝑛. Using

similar charging scheme as described above, we get that the total

running time is at most log
𝑂 (1) 𝑘 · log𝑛 times the total number

of vertices in all resulting one-hole instances in ℋ, which is at

most 𝑛 + (𝑘 log
𝑂 (1) 𝑘/poly 𝜀), plus 𝑘 log

𝑂 (1) 𝑘 · log𝑛 times the total

number of terminals in all resulting one-hole instances inℋ, which

is at most 𝑘 log
𝑂 (1) 𝑘)/poly 𝜀. Therefore, the total running time of

the algorithm is (𝑛 + 𝑘2) log
𝑂 (1) 𝑘 · log𝑛/poly 𝜀.

4 RECURSIVE EMULATOR CONSTRUCTION
In this subsection we provide the proof of Lemma 3.2. We first

introduce the basic graph operations Split and Glue in Section 4.1.

Then we describe the algorithm and its analysis. The algorithm

described in this section can be implemented in 𝑂
(
(𝑛 + 𝑟2) · log 𝑟 ·

log𝑛
)
time; see the full version for details.

4.1 Splitting and Gluing
In this subsection we introduce building blocks for the divide-and-

conquer: procedures Split and Glue. We will decompose a single

one-hole instance (𝐻,𝑈) into many small one-hole instances using

procedure Split, compute emulators for each of them, and then

glue the collection of small emulators together into an emulator for

(𝐻,𝑈) using procedure Glue.

Splitting. The input to procedure Split consists of

• a one-hole instance (𝐻,𝑈);
• a non-crossing set 𝒫 of shortest paths in 𝐻 connecting pairs

of terminals in𝑈 ; and

• a subset 𝑌 of vertices on the union of shortest paths in 𝒫 ; 𝑌

must contain all endpoints of paths in 𝒫 .

The output of procedure Split is a collection of one-hole instances

constructed as follows.

1316

Almost-Linear 𝜀-Emulators for Planar Graphs STOC ’22, June 20–24, 2022, Rome, Italy

Consider the plane graph 𝐻 with all the terminals in 𝑈 lying on

the outerface of 𝐻 . Because all the paths in 𝒫 are shortest paths in

𝐻 , each path must be simple and connecting two terminals in 𝑈 .

Given any plane graph 𝐻 and simple path 𝑃 , we can slice
4 𝐻 open

along the path 𝑃 by duplicating every vertex and edge of 𝑃 to create

another path 𝑃 ′ identical to 𝑃 , together bounding a common new

boundary component. The set of edges incident to each vertex on 𝑃

are split into two sides naturally based on the cyclic order around

the vertex.

The output of procedure Split is simply the collectionℋ of one-

hole instances formed by iteratively slicing (the remaining of) 𝐻

using shortest paths from 𝒫 . Note that each vertex 𝑦 ∈ 𝑌 may now

belong to multiple instances inℋ. We call them copies of 𝑦.

Gluing. We now describe procedure Glue. Assume that we have

applied the procedure Split to the one-hole instance (𝐻,𝑈), and
ℋ B {(𝐻𝑅,𝑈𝑅)} is the collection of one-hole instances produced.

The input to procedure Glue consists of

• one emulator 𝑍𝑅 for each one-hole instance (𝐻𝑅,𝑈𝑅) in ℋ;

• the same vertex subset 𝑌 given as the input to Split.

The output of procedure Glue is an emulator for (𝐻,𝑈), which is

constructed as follows.

We start by taking the union of all emulators {𝑍𝑅}, and identi-

fying, for each vertex 𝑦 ∈ 𝑌 , all copies of the vertex. We denote

by 𝑍 the resulting graph. We then add to 𝑍 all the branch vertices

of 𝒫 vertices that are not in 𝑌 (and thus have not been merged),

where the branch vertices of 𝒫 in 𝐻 are those vertices that has

degree at least three in the union of shortest paths in 𝒫 . For each

emulator 𝑍𝑅 , denote the cyclic sequence of all terminals in 𝑈𝑅 and

the copies of branch vertices appearing around the outerface of 𝑍𝑅
in counter-clockwise order as ⟨𝑣1, . . . , 𝑣𝑚⟩. For each branch vertex

𝑣𝑖 not in𝑈𝑅 , we add an edge connecting 𝑣𝑖 to the previous vertex

𝑣𝑖−1 (might be a terminal or another branch vertex), with the edge-

weight dist𝐻 (𝑣𝑖 , 𝑣𝑖−1); similarly, add an edge connecting 𝑣𝑖 to 𝑣𝑖+1

with edge-weight dist𝐻 (𝑣𝑖 , 𝑣𝑖+1). (See Figure 2 for an illustration.)

We denote the resulting graph 𝑍 after processing all the emulators

𝑍𝑅 inside 𝑍 . Graph 𝑍 is naturally a plane graph by inheriting the

embeddings of all 𝑍𝑅s. By the assumption that 𝑌 contains all the

endpoints of paths in 𝒫 , every vertex in𝑈 shows up uniquely on

the outerface of 𝑍 . The size of 𝑍 is bounded by

∑
𝑅 |𝑍𝑅 | plus the

number of branch vertices.

It is easy to verify that both procedures Split and Glue can be

implemented in 𝑂 (|𝑉 (𝐻) |) time. Now we summarize the behavior

of the algorithms with the following three claims; let ((𝐻,𝑈),𝒫, 𝑌)
be a valid input to procedure Split and ℋ be the corresponding

output throughout the description. The proofs of Claim 4.1, 4.2,

and 4.3 are deferred to the full version.

Claim 4.1. Graph 𝐻 has at most𝑂 (|𝑈 | · log
2 |𝑈 |) branch vertices.

Claim 4.2. The total number of terminals in all one-hole instances

in ℋ after procedure Split is∑︁
(𝐻𝑅 ,𝑈𝑅) ∈ℋ

|𝑈𝑅 | ≤ 𝑂
(
|𝑈 | · log

2 |𝑈 | + |𝑌 |
)
,

4
The slicing operation, which can be traced back to Reif [46] (when describing the

minimum-cut algorithm by Itai-Shiloach [30]), is sometimes referred to as cutting [18]

or incision [44] in the literature.

Figure 2: Adding edges that connect to branch vertices. Left:
Graph𝐻𝑅 : 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 are branch vertices, and only vertices 𝑣𝑖 , 𝑣𝑘
belong to set𝑉 ∗\𝑈𝑅 .Right: Graph𝑍𝑅 in𝑍 : 𝑣𝑖 , 𝑣𝑘 do not belong
to 𝑍𝑅 but they are connect to vertices of𝑈𝑅 by edges (purple).

and for any 2 < 𝜇 < |𝑈 |/2,∑︁
(𝐻𝑅 ,𝑈𝑅) ∈ℋ: |𝑈𝑅 | ≥𝜇

|𝑈𝑅 | ≤
(
|𝑈 | +𝑂 (|𝑌 \𝑈 |)

)
·
(
1 + 1

𝜇 − 2

)
.

Claim 4.3. Let (�̂�,𝑈) be the instance obtained by applying the

procedure Glue directly to the instances inℋ. The output (𝑍,𝑈) from
procedure Glue when applying to the emulators of instances in ℋ is

an 𝜀-emulator for (�̂�,𝑈).

Later in the proof we will use the divide-and-conquer technique

twice. Because the set 𝑌 we choose to glue along is different each

time, we will postpone the statements that relate (�̂�,𝑈) to the orig-
inal instance (𝐻,𝑈) to the later sections in context. (See Claim 4.4

and Claim 4.8).

Now we focus on proving Lemma 3.2 for any instance (𝐻,𝑈)
where no vertex in𝑈 is a cut vertex of graph 𝐻 ; in other words, if

we traverse the boundary of the face that contains all terminals in𝑈 ,

every terminal of𝑈 appear exactly once. The reduction from general

instances to this special case can be found in the full version.

Spread of an instance. Let (𝐻,𝑈) be a planar instance. The spread
of (𝐻,𝑈) is defined to be

Φ(𝐻,𝑈) B
max𝑢,𝑢′∈𝑈 dist𝐻 (𝑢,𝑢′)
min𝑢,𝑢′∈𝑈 dist𝐻 (𝑢,𝑢′) .

Denote the spread of instance (𝐻,𝑈) by Φ B Φ(𝐻,𝑈). We distin-

guish between the following two cases, depending on whether or

not Φ is small or large.

4.2 Small Spread Case
In this case we assumeΦ ≤ 2

𝑟 0.9
log

2 𝑟
. Wewill employ the procedure

Split in order to decompose the one-hole instance (𝐻,𝑈) into
smaller instances. Throughout this case, we use parameters

𝐿𝑟 B 𝑟/100 log
2 𝑟 and 𝜀𝑟 B logΦ/𝐿𝑟 ,

so 𝜀𝑟 = 𝑂 (log
4 𝑟/𝑟0.1).

Balanced terminal pairs. Let (𝐻,𝑈) be a one-hole instance with
𝑈 = {𝑢1, . . . , 𝑢𝑟 }, where the terminals are indexed according to

the order in which they appear on the outerface. We say that a

pair of terminals (𝑢𝑖 , 𝑢 𝑗) (with 𝑖 < 𝑗) is a 𝑐-balanced pair for some

parameter 1/2 < 𝑐 < 1, if and only if 𝑗 − 𝑖 ≤ 𝑐 · 𝑟 and 𝑖 + 𝑟 − 𝑗 ≤ 𝑐 · 𝑟 .
In other words, the terminals𝑢𝑖 and𝑢 𝑗 separate the outer boundary

1317

STOC ’22, June 20–24, 2022, Rome, Italy Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan

into two segments, each contains at most 𝑐-fraction (and therefore

at least (1 − 𝑐)-fraction) of the terminals.

We first compute the (3/4)-balanced pair 𝑢,𝑢′ of terminals that,

among all (3/4)-balanced pairs of terminals in 𝑈 , minimizes the

distance between them in 𝐻 . We compute the 𝑢-𝑢′ shortest path
in 𝐻 , and denote it by 𝑃 . Let the set 𝑌 contain the endpoints of 𝑃 ,

together with the following vertices of 𝑃 : for each 1 ≤ 𝑖 ≤ 𝐿𝑟 ,

(i) among all vertices 𝑣 of 𝑃 with dist𝑃 (𝑣,𝑢) ≤ 𝑒𝑖𝜀𝑟 , vertex that

maximizes its distance to 𝑢;

(ii) among all vertices 𝑣 of 𝑃 with dist𝑃 (𝑣,𝑢) ≥ 𝑒𝑖𝜀𝑟 , vertex that

minimizes its distance to 𝑢;

(iii) among all vertices 𝑣 of 𝑃 with dist𝑃 (𝑣,𝑢′) ≤ 𝑒𝑖𝜀𝑟 , vertex that

maximizes its distance to 𝑢′;
(iv) among all vertices 𝑣 of 𝑃 with dist𝑃 (𝑣,𝑢′) ≥ 𝑒𝑖𝜀𝑟 , vertex that

minimizes its distance to 𝑢′.

In other words, if we think of path 𝑃 as a line, and then mark, for

each 1 ≤ 𝑗 ≤ 𝐿𝑟 , the point on the line that is at distance 𝑒𝑖𝜀𝑟 from

𝑢, and the point on the line that is at distance 𝑒𝑖𝜀𝑟 from 𝑢′, then set

𝑌 contains, for all marked points, the vertices of 𝑃 that are closest

to it from both sides. By definition, |𝑌 | ≤ 4𝐿𝑟 .

We apply the procedure Split to the one-hole instance (𝐻,𝑈),
the path set that contains a single path 𝑃 and vertex set 𝑌 defined

above. Let (𝐻1,𝑈1) and (𝐻2,𝑈2) be the one-hole instances we get.
We then return the collection {(𝐻1,𝑈1), (𝐻2,𝑈2)}.

Analysis of the small spread case. We now show that the out-

put of the algorithm in this case satisfies the properties required

in Lemma 3.2. From the definition of procedure Split, every ter-

minal in 𝑈 continues to be a terminal in at least one instance in

{(𝐻1,𝑈1), (𝐻2,𝑈2)}. Moreover, since the pair 𝑢,𝑢′ of terminals is

(3/4)-balanced, and |𝑌 | ≤ 4𝐿𝑟 = 𝑟/25 log
2 𝑟 , we get that |𝑈1 | ≤

(3/4)𝑟 + 𝑟/25 log
2 𝑟 ≤ (9/10)𝑟 , and similarly |𝑈2 | ≤ (9/10)𝑟 . Also,

|𝑈1 | + |𝑈2 | ≤ |𝑈 | +𝑂 (|𝑌 |) ≤ 𝑟 · (1 +𝑂 (𝐿𝑟 /𝑟)) = 𝑟 · (1 +𝑂 (1

log
2 𝑟
)).

We now construct an algorithm Combine that satisfies the re-

quired properties. Let (𝐻 ′
1
,𝑈1) be an 𝜀-emulator for (𝐻1,𝑈1) and

let (𝐻 ′
2
,𝑈2) be an 𝜀-emulator for (𝐻2,𝑈2). The algorithm Combine

simply applies the procedure Glue to instances (𝐻 ′
1
,𝑈1), (𝐻 ′

2
,𝑈2).

Let (𝐻 ′,𝑈 ′) be the one-hole instance that it outputs. It is easy to ver-
ify that 𝑈 ′ = 𝑈 . The algorithm Combine then returns the instance

(𝐻 ′,𝑈). It remains to show that the algorithm Combine satisfies

the required properties. Note that instance pair (𝐻1,𝑈1), (𝐻2,𝑈2)
is also a valid input for procedure Glue. Let (�̂�,𝑈) be the one-hole
instance that it outputs. It is easy to verify that𝑈 = 𝑈 . We use the

following claim.

Claim 4.4. Instance (�̂�,𝑈) is a (3𝜀𝑟)-emulator for instance (𝐻,𝑈).

We provide the proof of Claim 4.4 right after we complete the

analysis for the small spread case. From Claim 4.3, (𝐻 ′,𝑈) is an
𝜀-emulator for (�̂�,𝑈). From Claim 4.4, instance (�̂�,𝑈) is a (3𝜀𝑟)-
emulator for instance (𝐻,𝑈). Altogether, (𝐻 ′,𝑈) is an (𝜀 + 3𝜀𝑟) =
(𝜀 +𝑂 (log

4 𝑟

𝑟 0.1))-emulator for (𝐻,𝑈).
Proof (of Claim 4.4): We will show that, for each pair 𝑢1, 𝑢2 of

terminals in𝑈 , dist𝐻 (𝑢1, 𝑢2) ≤ dist
�̂�
(𝑢1, 𝑢2) ≤ 𝑒3𝜀𝑟 · dist𝐻 (𝑢1, 𝑢2).

From the procedure Split, 𝐻1 is the subgraph of 𝐻 whose image

lies in the region surrounded by the image of 𝑃 and the segment of

outer-boundary of 𝐻 from 𝑢 clockwise to 𝑢′ (including the bound-

ary), and 𝐻2 is the subgraph of 𝐻 whose image lies in the region

surrounded by the image of 𝑃 and the segment of outer-boundary

of 𝐻 from 𝑢 anti-clockwise to 𝑢′ (including the boundary), and

path 𝑃 is entirely contained in both 𝐻1 and 𝐻2. We denote by �̂�1

the copy of 𝐻1 in graph �̂� , and we define graph �̂�2 similarly, so

𝑉 (�̂�1) ∩𝑉 (�̂�2) = 𝑌 . We denote by 𝑃1, 𝑃2
the copies of path 𝑃 in

graph �̂�1, �̂�2, respectively. See Figure 3 for an illustration.

Figure 3: Illustration of graphs �̂� , 𝐻1, and 𝐻2. Left: Graphs 𝐻1

(top) graph 𝐻2 (bottom) viewed as individual graphs. Right:
Subgraph �̂� obtained by gluing graphs 𝐻1 and 𝐻2. Vertices in
𝑌 \ {𝑢,𝑢′} are shown in purple.

We first show that for each pair 𝑢1, 𝑢2 of terminals in 𝑈 one

has dist𝐻 (𝑢1, 𝑢2) ≤ dist
�̂�
(𝑢1, 𝑢2). Consider a pair 𝑢1, 𝑢2 ∈ 𝑈 . As-

sume first that 𝑢1, 𝑢2 both belong to 𝐻1 (the case where 𝑢1, 𝑢2

both belong to 𝐻2 is symmetric). Clearly, in graph �̂� , there is

a 𝑢1-𝑢2 shortest path 𝑄 that lies entirely in �̂�1. From the con-

struction of �̂� , the same path belongs to graph 𝐻1, and there-

fore dist𝐻 (𝑢1, 𝑢2) ≤ dist
�̂�
(𝑢1, 𝑢2). Assume now that 𝑢1 ∈ 𝑉 (𝐻1) \

{𝑢,𝑢′} and𝑢2 ∈ 𝑉 (𝐻2)\{𝑢,𝑢′} (the case where𝑢2 ∈ 𝑉 (𝐻1)\{𝑢,𝑢′}
and 𝑢1 ∈ 𝑉 (𝐻2) \ {𝑢,𝑢′} is symmetric). It is easy to see that, in

graph �̂� , there exists a 𝑢1-𝑢2 shortest path that is the sequential

concatenation of

(i) a path 𝑄1 in �̂�1 connecting 𝑢1 to some vertex 𝑥1 ∈ 𝑉 (𝑃1),
that does not contain vertices of 𝑉 (𝑃1) as inner vertices;

(ii) a subpath 𝑅1
of 𝑃1

connecting 𝑥1 to a vertex 𝑦 ∈ 𝑌 ;

(iii) a subpath 𝑅2
of 𝑃2

connecting 𝑦 to a vertex 𝑥2; and

(iv) a path 𝑄2 in �̂�2 connecting 𝑥2 to 𝑢2 that does not contain

vertices of 𝑉 (𝑃2) as inner vertices.
Consider the path in 𝐻 formed by the sequential concatenation

of (i) the copy of 𝑄1 in 𝐻1; (ii) the subpath 𝑅 of 𝑃 connecting the

copy of 𝑥1 in 𝑃 to the copy of 𝑥2 in 𝑃 ; and (iii) the copy of 𝑄2 in

𝐻2. Clearly, this path connects 𝑢1 to 𝑢2 in 𝑃 . Moreover, since the

weight of 𝑅 is at most the total weight of paths 𝑅1
and 𝑅2

, this path

in 𝐻 has weight at most the weight of the 𝑢1-𝑢2 shortest path in �̂� .

Therefore, dist𝐻 (𝑢1, 𝑢2) ≤ dist
�̂�
(𝑢1, 𝑢2).

From now on we focus on showing that, for each pair 𝑢1, 𝑢2 of

terminals in 𝑈 , dist
�̂�
(𝑢1, 𝑢2) ≤ 𝑒3𝜀𝑟 · dist𝐻 (𝑢1, 𝑢2). Assume first

that 𝑢1, 𝑢2 both belong to 𝐻1 (the case where 𝑢1, 𝑢2 both belong

to 𝐻2 is symmetric). Similar to the previous discussion, the 𝑢1-𝑢2

shortest path in𝐻 is entirely contained in𝐻1, and so dist
�̂�
(𝑢1, 𝑢2) =

dist𝐻 (𝑢1, 𝑢2). Assume now that 𝑢1 ∈ 𝑉 (𝐻1) \ {𝑢,𝑢′} and 𝑢2 ∈
𝑉 (𝐻2) \ {𝑢,𝑢′} (the case where 𝑢1 ∈ 𝑉 (𝐻2) \ {𝑢,𝑢′} and 𝑢2 ∈
𝑉 (𝐻1) \ {𝑢,𝑢′}) is symmetric. Let 𝑄 be the 𝑢1-𝑢2 shortest path in

1318

Almost-Linear 𝜀-Emulators for Planar Graphs STOC ’22, June 20–24, 2022, Rome, Italy

𝐻 . The intersection between path 𝑄 and path 𝑃 is a subpath of 𝑃 .

Let 𝑥1, 𝑥2 be the endpoints of this subpath, so vertices 𝑢1, 𝑥1, 𝑥2, 𝑢2

appear on path 𝑄 in this order. Denote by 𝑄1 the subpath of 𝑄

between 𝑢1 and 𝑥1, denote by 𝑄2 the subpath of 𝑄 between 𝑢2

and 𝑥2, and denote by 𝑄 ′
the subpath of 𝑄 between 𝑥1 and 𝑥2.

We consider the following possibilities, depending on the relative

locations of points 𝑥1, 𝑥2.

Possibility 1. There is a vertex in 𝑌 between 𝑥1 and 𝑥2. Let 𝑦 be a

vertex of 𝑌 between vertices 𝑥1 and 𝑥2. Consider the path �̂� of �̂�

formed by the sequential concatenation of (i) the copy of 𝑄1 in �̂�1

connecting𝑢1 to the copy of 𝑥1; (ii) the subpath 𝑅
1
of 𝑃1

connecting

the copy of 𝑥1 to 𝑦; (iii) the subpath 𝑅2
of 𝑃2

connecting 𝑦 to the

copy of 𝑥2; and (iv) the copy of 𝑄2 in �̃�2 connecting the copy of

𝑥2 to 𝑢2. Since vertex 𝑦 lies between 𝑥1 and 𝑥2 on path 𝑃 , from the

construction of �̂� , the path �̂� in �̂� constructed above has weight at

most the weight of𝑄 in𝐻 . Therefore, dist
�̂�
(𝑢1, 𝑢2) ≤ dist𝐻 (𝑢1, 𝑢2).

Possibility 2. There is no vertex of 𝑌 between 𝑥1 and 𝑥2. Assume

without loss of generality that |𝑉 (𝐻1) ∩𝑈 | ≥ |𝑈 |/2, and assume

without loss of generality that 𝑥1 is closer to 𝑢 than to 𝑢′ in 𝑃 . We

use the following observation.

Observation 4.5. dist𝐻 (𝑥1, 𝑢1) ≥ dist𝐻 (𝑥1, 𝑢).

Proof: Assume not, then

dist𝐻 (𝑢1, 𝑢) ≤ dist𝐻 (𝑥1, 𝑢1) + dist𝐻 (𝑥1, 𝑢)
< 2 · dist𝐻 (𝑥1, 𝑢) ≤ dist𝐻 (𝑢,𝑢′), and

dist𝐻 (𝑢1, 𝑢
′) ≤ dist𝐻 (𝑥1, 𝑢1) + dist𝐻 (𝑥1, 𝑢

′)
< dist𝐻 (𝑥1, 𝑢) + dist𝐻 (𝑥1, 𝑢

′) ≤ dist𝐻 (𝑢,𝑢′).

So both dist𝐻 (𝑢1, 𝑢) and dist𝐻 (𝑢1, 𝑢
′) is less than dist𝐻 (𝑢,𝑢′). How-

ever, because |𝑈 |/2 ≤ |𝑉 (𝐻1) ∩𝑈 | ≤ (3/4) · |𝑈 |, at least one of the
pairs (𝑢1, 𝑢), (𝑢1, 𝑢

′) is (3/4)-balanced, a contradiction to the fact

that 𝑢,𝑢′ is the closest (3/4)-balanced terminal pair in 𝐻 . □

Think of path 𝑃 as a line connecting 𝑢 to 𝑢′. We now mark,

for each 1 ≤ 𝑗 ≤ 𝐿𝑟 , the point on the line that is at distance 𝑒𝑖𝜀𝑟

from 𝑢, and the point on the line that is at distance 𝑒𝑖𝜀𝑟 from 𝑢′;
these marked points are called landmarks. Observe that there is no

landmark between vertices 𝑥1 and 𝑥2: If there is landmark between

vertices 𝑥1 and 𝑥2, since set𝑌 contains, for all landmark, the vertices

of 𝑃 that are closest to it from both sides, either 𝑥1 or 𝑥2 or some

other vertices of 𝑃 that lie between 𝑥1 and 𝑥2 will be added to vertex

set𝑌 , a contradiction. Let 𝑥 be the landmark closest to 𝑥1 that lies be-

tween𝑢 and 𝑥1, and assume dist𝑃 (𝑥,𝑢) = 𝑒𝑖𝜀𝑟 . Let𝑦 be the vertex of

𝑌 closest to the landmark 𝑥 that lies between 𝑥 and 𝑥1. From the con-

struction of portals, 𝑒𝑖𝜀𝑟 ≤ dist𝑃 (𝑦,𝑢) < dist𝑃 (𝑥1, 𝑢), dist𝑃 (𝑥2, 𝑢) <
𝑒 (𝑖+1)𝜀𝑟

. Therefore, dist𝑃 (𝑥1, 𝑦), dist𝑃 (𝑥2, 𝑦) ≤ (𝑒𝜀𝑟 − 1) · 𝑒𝑖𝜀𝑟 . Con-
sider now the 𝑢1-𝑢2 path in �̂� formed by concatenation of (i) the

copy of 𝑄1 in �̂�1 connecting 𝑢1 to the copy 𝑥1

1
of 𝑥1; (ii) the sub-

path of 𝑃1
connecting 𝑥1

1
to 𝑦; (iii) the subpath of 𝑃2

connecting 𝑦

to the copy 𝑥2

2
of 𝑥2; and (iv) the copy of 𝑄2 in �̂�2 connecting 𝑥2

2

to 𝑢2. Calculation shows the total weight of this path is at most

𝑒3𝜀𝑟 · dist𝐻 (𝑢1, 𝑢2). Therefore, dist
�̂�
(𝑢1, 𝑢2) ≤ 𝑒3𝜀𝑟 · dist𝐻 (𝑢1, 𝑢2).

This completes the proof of Claim 4.4. □

4.3 Large Spread Case
In this case we assume Φ > 2

𝑟 0.9
log

2 𝑟
. Without loss of generality

min𝑢,𝑢′∈𝑈 dist𝐺 (𝑢,𝑢′) = 1, so max𝑢,𝑢′∈𝑈 dist𝐺 (𝑢,𝑢′) = Φ. In the

algorithm for this case, we use the following parameters:

𝜇 B 𝑟2, 𝐿 B ⌈log𝜇 Φ⌉, 𝜀𝑟 B
log

4 𝑟

𝑟0.1
, 𝜀′𝑟 B

1

𝑟0.7
.

We first compute a hierarchical partitioning (𝒮0,𝒮1, . . . ,𝒮𝐿) of
terminals in 𝑈 in a bottom-up fashion as follows. We proceed in 𝐿

iterations. In the 𝑖th iteration, we compute a collection 𝒮𝑖 of subsets
of𝑈 that partition𝑈 .

We start by letting collection 𝒮0 contain, for each terminal𝑢 ∈ 𝑈 ,

a singleton set {𝑢}. That is, 𝒮0 = {{𝑢} | 𝑢 ∈ 𝑈 }. Assume we have

already computed the collection 𝒮𝑖−1 of subsets, we now describe

the computation of collection 𝒮𝑖 , as follows. First, let graph𝑊𝑖−1 be

obtained from 𝐻 by contracting each subset 𝑆 ∈ 𝒮𝑖−1 into a single

supernode, that we denote by 𝑣𝑆 , and we define 𝑉𝑖−1 = {𝑣𝑆 | 𝑆 ∈
𝒮𝑖−1}. Then we construct another auxiliary graph 𝑅𝑖−1 as follows.

Its vertex set is𝑉𝑖−1, and it contains an edge connecting 𝑣𝑆 to 𝑣𝑆 ′ if

and only if dist𝑊𝑖−1
(𝑣𝑆 , 𝑣𝑆 ′) ≤ 𝜇𝑖 , or equivalently dist𝐻 (𝑆, 𝑆 ′) ≤ 𝜇𝑖 .

Finally, we define 𝒮𝑖 to be the collection that contains, for each

connected component 𝐶 of graph 𝑅𝑖−1, the set

⋃
𝑣𝑆 ∈𝑉 (𝐶) 𝑆 . It is

easy to verify that the sets in 𝒮𝑖 partition 𝑈 . This completes the

description of the hierarchical partitioning (𝒮0,𝒮1, . . . ,𝒮𝐿). Clearly,
collection 𝒮𝐿 contains a single set 𝑈 . We denote 𝒮 =

⋃
0≤𝑖≤𝐿 𝒮𝑖 .

So collection 𝒮 is a laminar family. That is, for every pair 𝑆, 𝑆 ′ ∈ 𝒮 ,
either 𝑆 ∩ 𝑆 ′ = ∅, or 𝑆 ⊆ 𝑆 ′, or 𝑆 ′ ⊆ 𝑆 .

We use the following simple observation.

Observation 4.6. For each set 𝑆 in 𝒮𝑖 , diam𝐺 (𝑆) ≤ 2𝑟 · 𝜇𝑖 .

It would be convenient for us to associate a partitioning tree 𝜏

with the hierarchical partitioning (𝒮0,𝒮1, . . . ,𝒮𝐿) we have com-

puted, in a natural way as follows. Its vertex set 𝑉 (𝜏) is 𝑉 (𝜏) =

𝑉0 ∪ . . . ∪𝑉𝐿 (recall that for each 𝑖 , 𝑉𝑖 = {𝑣𝑆 | 𝑆 ∈ 𝒮𝑖 }, that is, 𝑉𝑖
contains, for each set 𝑆 ∈ 𝒮𝑖 , the supernode 𝑣𝑆 representing 𝑆). We

call nodes in 𝑉𝑖 level-𝑖 nodes of tree 𝜏 , and we call sets in 𝒮𝑖 level-𝑖
sets. Since 𝒮𝐿 = {𝑈 }, there is only one level-𝐿 node in 𝜏 , that we

view as the root of 𝜏 . The edge set 𝐸 (𝜏) of 𝜏 contains, for each pair

𝑆, 𝑆 of sets such that 𝑆 ∈ 𝒮𝑖 , 𝑆 ∈ 𝒮𝑖+1 for some 𝑖 and 𝑆 ⊆ 𝑆 , an edge

connecting 𝑣𝑆 to 𝑣
𝑆
, so 𝑣𝑆 is a child node of 𝑣

𝑆
, and in this case we

also say that 𝑆 is a child set of 𝑆 and 𝑆 is a parent set of 𝑆 . It is easy

to verify from the construction that 𝜏 is indeed a tree.

Observation 4.7. Let 𝑆, 𝑆 ′ be distinct sets in 𝒮 with 𝑆 ∩ 𝑆 ′ = ∅.
Let 𝑢1, 𝑢2 be any pair of vertices in 𝑆 , and let 𝑢′

1
, 𝑢′

2
be any pair of

vertices in 𝑆 ′. Then the pairs (𝑢1, 𝑢2) and (𝑢′
1
, 𝑢′

2
) are non-crossing.

Proof: Assume for contradiction that the pairs (𝑢1, 𝑢2) and (𝑢′
1
, 𝑢′

2
)

are crossing. Assume that 𝑆 is a level-𝑖 set and 𝑆 ′ is a level-𝑖′ set,
and assume without loss of generality that 𝑖 ≥ 𝑖′.

We first find another two pairs (𝑢3, 𝑢4), (𝑢′
3
, 𝑢′

4
) of terminals

in 𝑆 such that dist𝐺 (𝑢3, 𝑢4) ≤ 𝜇𝑖 , dist𝐺 (𝑢′
3
, 𝑢′

4
) ≤ 𝜇𝑖

′
and the

pairs (𝑢3, 𝑢4) and (𝑢′
3
, 𝑢′

4
) are crossing. We start by finding the

pair (𝑢3, 𝑢4). In fact, if we denote by 𝛾1 the boundary segment

clockwise from 𝑢′
1
to 𝑢′

2
around the outerface of 𝐻 , and denote by

𝛾2 the boundary segment clockwise from 𝑢′
2
to 𝑢′

1
around the outer-

face of 𝐻 , then since we have assumed that (𝑢1, 𝑢2) and (𝑢′
1
, 𝑢′

2
) are

1319

STOC ’22, June 20–24, 2022, Rome, Italy Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan

crossing, one of 𝑢1, 𝑢2 lies on 𝛾1 and the other lies on 𝛾2. Assume

without loss of generality that 𝑢1 lies on 𝛾1 and 𝑢2 lies on 𝛾2.

From the construction of graphs 𝑅1, . . . , 𝑅𝑖−1 and collections

𝒮1, . . . ,𝒮𝑖 . It is easy to observe that, for every pair𝑢,𝑢′ of terminals

that belong to the same level-𝑖 set, there exists a sequence𝑢1, . . . , 𝑢𝑡

of terminals in 𝑈 that all belong to the same level-𝑖 set as 𝑢 and 𝑢′,
such that, if we denote𝑢 = 𝑢0

and𝑢′ = 𝑢𝑡+1
, then for each 0 ≤ 𝑗 ≤ 𝑡 ,

dist𝐺 (𝑢 𝑗 , 𝑢 𝑗+1) ≤ 𝜇𝑖 ; and for every pair 𝑢,𝑢′ of terminals do not

belong to the same level-𝑖 set, dist𝐺 (𝑢,𝑢′) > 𝜇𝑖 .

Consider now the pair 𝑢1, 𝑢2 of terminals. Note that they belong

to the same level-𝑖 set. From the above discussion, there exists a

sequence of terminals in 𝑆 starting with 𝑢1 and ending with 𝑢2,

such that the distance between every pair of consecutive terminals

in the sequence is less than 𝜇𝑖 . Since 𝑢1 lies on 𝛾1 and 𝑢2 lies on 𝛾2,

there must exist a pair (𝑢3, 𝑢4) of terminals appearing consecutively

in the sequence, such that 𝑢3 lies on 𝛾1 and 𝑢4 lies on 𝛾2, so pairs

(𝑢3, 𝑢4) and (𝑢′
1
, 𝑢′

2
) are crossing and dist𝐺 (𝑢3, 𝑢4) ≤ 𝜇𝑖 .

We can then use similar arguments to find another pair (𝑢′
3
, 𝑢′

4
)

crossing the pair (𝑢3, 𝑢4) and dist𝐺 (𝑢′
3
, 𝑢′

4
) ≤ 𝜇𝑖

′
. Note that, since

𝑢3, 𝑢4 ∈ 𝑆 and 𝑢′
3
, 𝑢′

4
∉ 𝑆 , dist𝐺 (𝑢3, 𝑢

′
3
) > 𝜇𝑖 and dist𝐺 (𝑢4, 𝑢

′
4
) > 𝜇𝑖 .

Altogether, we get that

dist𝐺 (𝑢′
3
, 𝑢′

4
) + dist𝐺 (𝑢3, 𝑢4) ≤ 𝜇𝑖 + 𝜇𝑖

′
≤ 𝜇𝑖 + 𝜇𝑖

< dist𝐺 (𝑢3, 𝑢
′
3
) + dist𝐺 (𝑢4, 𝑢

′
4
),

a contradiction to the Monge property on the crossing pairs (𝑢3, 𝑢4)
and (𝑢′

3
, 𝑢′

4
). □

Expanding sets. The central notion in the algorithm for the large

spread case is the notion of expanding sets. Recall that 𝜀′𝑟 = 1

𝑟 0.7 . We

say that a set 𝑆 ∈ 𝒮 is expanding, if and only if |𝑆 | ≥ 𝑒𝜀
′
𝑟 · |𝑆 |, where

𝑆 is the parent set of 𝑆 (or equivalently 𝑣
𝑆
is the parent node of 𝑣𝑆

in 𝜏), otherwise we say it is non-expanding. We now distinguish

between two cases, depending on whether or not 𝒮 contains a

non-expanding set with moderate size.

4.3.1 Balanced Case: There are non-expanding 𝑆 such that 𝑟/5 ≤
|𝑆 | ≤ 4𝑟/5. We let 𝑆 be the parent set of 𝑆 . We denote 𝑆∗ = 𝑆 \ 𝑆 ,
and 𝑆 ′ = 𝑈 \ 𝑆 , so sets 𝑆∗, 𝑆, 𝑆′ partition set𝑈 . Moreover, we have

𝑟/6 ≤ |𝑆 |, |𝑆 ′ | ≤ 5𝑟/6 and |𝑆∗ | ≤ (𝑒𝜀′𝑟 − 1)𝑟 .
We will employ the procedure Split in order to decompose

the instance (𝐻,𝑈) into smaller instances, for which we need to

compute a non-crossing path set and a set of vertices in the path

set, as the input to the procedure, as follows.

We say that an ordered pair (𝑢,𝑢′) of terminals in 𝑆 is a border

pair if walking on the outer-boundary of 𝐻 from 𝑢 clockwise to 𝑢′

contains no other vertices of 𝑆 but at least one vertex of 𝑆∗ ∪ 𝑆 ′.
We compute the set ℳ of all border pairs in 𝑆 , and then apply

the algorithm from Lemma 2.2 to graph 𝐻 and the setℳ of pairs,

and obtain a set 𝒫 of shortest paths connecting pairs in ℳ. We

call 𝒫 the border path set of 𝑆 . It is easy to verify that set ℳ is

non-crossing, and so path set 𝒫 is also non-crossing.

Consider now a border pair (𝑢,𝑢′) of terminals and let 𝑃 (𝑢,𝑢′)
be the 𝑢-𝑢′ shortest path that we have computed. We apply the

algorithm from Lemma 2.4 to graph 𝐻 , path 𝑃 (𝑢,𝑢′) and each ver-

tex 𝑢∗ ∈ 𝑆∗ that lies on the outer-boundary of 𝐻 from 𝑢 clock-

wise to 𝑢′ with parameter 𝜀𝑟 , and compute an 𝜀𝑟 -cover of 𝑢
∗
on

𝑃 (𝑢,𝑢′) . We then let 𝑌(𝑢,𝑢′) be the union of all such 𝜀𝑟 -covers and

the endpoints of 𝑃 (𝑢,𝑢′) , so 𝑌(𝑢,𝑢′) is a vertex set of 𝑃 (𝑢,𝑢′) . Denote
𝑌 =

⋃
(𝑢,𝑢′) 𝑌𝑢,𝑢′ , so 𝑌 is a vertex set of 𝑉 (𝒫) that contains all

endpoints of paths in 𝒫 . Moreover, from Lemma 2.4,

|𝑌 \𝑈 | ≤ 𝑂

(
|𝑆∗ |
𝜀𝑟

)
≤ 𝑂

(
(𝑒𝜀′𝑟 − 1) · 𝑟

𝜀𝑟

)
= 𝑂

(
𝑟0.4

log
4 𝑟

)
.

We then apply the procedure Split to the one-hole instance

(𝐻,𝑈), the non-crossing path set𝒫 , and the vertex set𝑌 . We return

the collection ℋ of one-hole instances output by the procedure

Split as the output of our algorithm in this case.

Analysis of Balanced Case. We now show that the output col-

lection of one-hole instances of the above algorithm satisfies the

properties required in Lemma 3.2.

First, from the construction of the border path set 𝒫 , the in-

stances inℋ can be partitioned into two subsets:ℋ1 contains all in-

stances that corresponds to a region in 𝐻 surrounded by a segment

of outer-boundary of 𝐻 and the image of some path 𝑃 ∈ 𝒫 ; and set

ℋ2 contains all other instances. Recall that 𝑟/6 ≤ |𝑆 |, |𝑆 ′ | ≤ 5𝑟/6

and |𝑌 | ≤ 𝑂 (𝑟0.4/log
4 𝑟). On the one hand, each instance in ℋ1

contains at most two terminals in 𝑆 , and so it contains at most

𝑟 − |𝑆 | + 2 + |𝑌 | ≤ (9/10)𝑟 terminals. On the other hand, each in-

stance in ℋ2 does not contain terminals in 𝑆 ′, and so it contains at

most 𝑟 − |𝑆 ′ | + |𝑌 | ≤ (9/10)𝑟 terminals.

Second, note that |𝑌 | ≤ 𝑂
(
𝑟 0.4

log
4 𝑟

)
and 𝜆 = 𝑐∗ log

2 𝑘/𝜀20
, then

from Claim 4.2 (by setting 𝜇 = 𝜆), we get that
∑

(𝐻𝑖 ,𝑈𝑖) ∈ℋ |𝑈𝑖 | ≤
𝑂 (𝑟 log

2 𝑟) and ∑
(𝐻𝑖 ,𝑈𝑖) ∈ℋ: |𝑈𝑖 |>𝜆 |𝑈𝑖 | ≤ |𝑈 | ·

(
1 +𝑂 (1

log
2 𝑟
)
)
.

We now construct an algorithm Combine that satisfies the re-

quired properties. Recall that we are given, for each (𝐻𝑖 ,𝑈𝑖) ∈ ℋ, an

𝜀-emulator (𝐻 ′
𝑖
,𝑈𝑖) for instance (𝐻𝑖 ,𝑈𝑖). The algorithm Combine

simply applies the procedure Glue to (𝐻 ′
1
,𝑈1), . . . , (𝐻 ′

𝑠 ,𝑈𝑠) and
let (𝐻 ′,𝑈) be the output one-hole instance that it outputs. The

algorithm Combine simply returns instance (𝐻 ′,𝑈). It remains to

show that the algorithm Combine satisfies the required proper-

ties. Note that one-hole instances (𝐻1,𝑈1), . . . , (𝐻𝑠 ,𝑈𝑠) is also a

valid input for procedure Glue. Let (�̂�,𝑈) be the one-hole instance
that the procedure Glue outputs when it is applied to instances

(𝐻1,𝑈1), . . . , (𝐻𝑠 ,𝑈𝑠). It is easy to verify that 𝑈 = 𝑈 . We use the

following claim whose proof is in the full version.

Claim 4.8. Instance (�̂�,𝑈) is an 𝑂 (𝜀𝑟)-emulator for (𝐻,𝑈).
Now we complete the proof of Lemma 3.2 for the Balanced Case

using Claim 4.8. In fact, since for each 1 ≤ 𝑖 ≤ 𝑡 , (𝐻 ′
𝑖
,𝑈𝑖) is an

𝜀-emulator for (𝐻𝑖 ,𝑈𝑖), from Claim 4.3, (𝐻 ′,𝑈) is an 𝜀-emulator for

(�̂�,𝑈). Then from Claim 4.4 and Claim 4.8, we get that (𝐻 ′,𝑈) is an
(𝜀 +𝑂 (𝜀𝑟)) = (𝜀 +𝑂 (log

4 𝑟

𝑟 0.1))-emulator for (𝐻,𝑈). Moreover, from

the algorithm Glue, the number of vertices in graph 𝐻 ′
that does

not belong to graphs 𝐻 ′
1
, . . . , 𝐻 ′

𝑠 are the branch vertices in graph 𝐻

(vertices that appear on the boundary of at least three regions when

applying the procedure Split to it), and from Claim 4.1 the number

of such vertices is bounded by 𝑂 (𝑟 log
2 𝑟). Therefore, |𝑉 (𝐻 ′) | ≤(∑

1≤𝑖≤𝑠 |𝑉 (𝐻 ′
𝑖
) |
)
+𝑂 (log

2 𝑟 · |𝑈 |).

4.3.2 Unbalanced Case: Every 𝑆 is either expanding, or |𝑆 | < 𝑟/5, or
|𝑆 | > 4𝑟/5.

Step 1: Reducing the spread from above. We say that a set 𝑆 ∈ 𝒮
is heavy if and only if |𝑆 | > 4𝑟/5, and in this case we also say that

1320

Almost-Linear 𝜀-Emulators for Planar Graphs STOC ’22, June 20–24, 2022, Rome, Italy

the node 𝑣𝑆 is heavy. Clearly, every level of 𝜏 contains at most one

heavy node, and the set of heavy nodes induce a path in 𝜏 which

ends at the root node of 𝜏 . Let 𝑆 be the non-expanding heavy set

that lies on the lowest level. We denote by �̃� the level that 𝑆 lies

in and let 𝑆 be its parent set. Define 𝑆∗ = 𝑆 \ 𝑆 and 𝑆 ′ = 𝑈 \ 𝑆 . So
sets 𝑆∗, 𝑆, 𝑆 ′ partition set 𝑈 , and |𝑆∗ | ≤ (𝑒𝜀′𝑟 − 1)𝑟 . We perform the

same operations as in the Balanced Case (Section 4.3.1) to graph 𝐻

with respect to the partition (𝑆, 𝑆∗, 𝑆 ′). Let ˆℋ be the collection of

instances we obtain. From similar analysis as in Section 4.3.1, we get

that

∑
(𝐻𝑖 ,𝑈𝑖) ∈ℋ̂ |𝑈𝑖 | ≤ 𝑂 (𝑟 log

2 𝑟), and ∑
(𝐻𝑖 ,𝑈𝑖) ∈ℋ̂: |𝑈𝑖 |>𝜆 |𝑈𝑖 | ≤

𝑟 ·
(
1 + 𝑂 (1

log
2 𝑟
)
)
. If additionally we have, for each (𝐻𝑖 ,𝑈𝑖) ∈ ˆℋ,

|𝑈𝑖 | ≤ 0.9𝑟 , then we simply return the collection
ˆℋ as the output.

Assume now that there exists some instance (𝐻𝑖∗ ,𝑈𝑖∗) ∈ ˆℋ with

|𝑈𝑖∗ | > 0.9𝑟 . Since
∑

(𝐻𝑖 ,𝑈𝑖) ∈ℋ̂: |𝑈𝑖 |>𝜆 |𝑈𝑖 | ≤ 𝑟 ·
(
1 +𝑂 (1

log
2 𝑟
)
)
, we

may have only one such instance. It is easy to see from the algorithm

Split that no terminal of𝑈𝑖∗ is a cut vertex in graph𝐻𝑖∗ . Note that it

is now enough to prove Lemma 3.2 for the instance (𝐻𝑖∗ ,𝑈𝑖∗), which
we do in the second step. Indeed, if Lemma 3.2 holds for instance

(𝐻𝑖∗ ,𝑈𝑖∗), then we simply apply the algorithm from Lemma 3.2 to

instance (𝐻𝑖∗ ,𝑈𝑖∗) and obtain a collectionℋ∗
instances. We simply

return the collection
˜ℋ = (ˆℋ\{(𝐻𝑖∗ ,𝑈𝑖∗)})∪ℋ∗

. It is easy to verify

that the output collection
˜ℋ satisfies all conditions in Lemma 3.2

for the original input instance (𝐻,𝑈).

Step 2: Reducing the spread from below. The goal of this final step

is to further modify and decompose the instance (𝐻𝑖∗ ,𝑈𝑖∗) into
instances with bounded spread, and eventually apply the algorithm

from Case 1 to them. Consider the instance (𝐻𝑖∗ ,𝑈𝑖∗). From the

algorithm Split, the instance (𝐻𝑖∗ ,𝑈𝑖∗) corresponds to a region of

graph 𝐻 , that is surrounded by shortest paths connecting terminals

in𝑈 . Therefore, for every pair 𝑣, 𝑣 ′ of vertices in 𝐻𝑖∗ (that are also

vertices in 𝐻), dist𝐻 (𝑣, 𝑣 ′) = dist𝐻𝑖∗ (𝑣, 𝑣
′). Note that set𝑈𝑖∗ can be

partitioned into two subsets: set 𝑆 contains all terminals in 𝑆 that

lies in𝑈𝑖∗ , and set𝑌𝑖∗ contains all new terminals (which are vertices

in 𝜀𝑟 -covers of vertices of 𝑆
∗
on paths of 𝒫) added in Step 1 that

lie on the boundary of graph 𝐻𝑖∗ . Note that the distances between

a pair of terminals in 𝑌𝑖∗ and the distances between a terminal in

𝑌𝑖∗ and a terminal in 𝑆 could be very small (even much smaller

than min𝑢,𝑢′ dist𝐻 (𝑢,𝑢′)) at the moment, which makes it hard to

bound the spread from above. Therefore, we start by modifying the

instance (𝐻𝑖∗ ,𝑈𝑖∗) as follows.
We let graph �̃� be obtained from𝐻𝑖∗ by adding, for each terminal

𝑢 ∈ 𝑌𝑖∗ , a new vertex �̃� and an edge (�̃�, 𝑢) with weight 𝜇�̃�−1
. We

then define �̃� = 𝑆 ∪ {�̃� | 𝑢 ∈ 𝑌𝑖∗ }. This completes the construction

of the new instance (�̃�, �̃�). We call this operation terminal pulling.

It is easy to verify that (�̃�, �̃�) is a one-hole instance, and moreover,

for each new terminal in �̃� \ 𝑆 , the distance in �̃� from it to any

other terminal in �̃� is at least 𝜇�̃�−1
. We denote �̃� = {�̃� | 𝑢 ∈ 𝑌𝑖∗ },

so �̃� = 𝑆 ∪ �̃� . We will show later in the analysis that it is now

sufficient to prove Lemma 3.2 for the instance (�̃�, �̃�).
We now construct the hierarchical clustering

˜𝒮 for instance

(�̃�, �̃�), in the same way as the hierarchical clustering 𝒮 for instance

(𝐻,𝑈), described at the beginning of the large spread case. Let 𝜏 be
the partitioning tree associated with

˜𝒮 . Recall that for every pair

of vertices in 𝐻𝑖∗ , the distance between them in 𝐻𝑖∗ is identical to

the distance between them in 𝐻 . From the construction of instance

(�̃�, �̃�), it is easy to verify that both
˜𝒮 and 𝜏 has depth �̃�, and in

levels �̃� − 1, . . . , 1, new terminals in �̃� \ 𝑆 only form singleton sets

as each of them is at distance at least 𝜇�̃�−1
from any other terminal

in �̃� . Therefore, every non-singleton set in
˜𝒮 is also a set in 𝒮 .

We say that a set is good if

(i) |𝑆 | > 1;

(ii) 𝑆 lies on level at most �̃� − 2 log 𝑟/𝜀′𝑟 ;
(iii) 𝑆 is non-expanding; and

(iv) for any other set 𝑆 ′ ∈ ˜𝒮 that lies on level at most �̃�−2 log 𝑟/𝜀′𝑟
and 𝑆 ⊆ 𝑆 ′, 𝑆 ′ is expanding.

We denote by
˜𝒮𝑔 the collection of all good sets in

˜𝒮 . We prove in

the following observation that all good sets in
˜𝒮𝑔 lie on level at

least �̃� −𝑂 (log 𝑟/𝜀′𝑟). From property (ii), and our assumption for

Case 2 that any set 𝑆 ∈ 𝒮 with 𝑟/5 ≤ |𝑆 | ≤ 4𝑟/5 is expanding, it is

easy to see that all good sets 𝑆 have size at most 𝑟/5 (we have used

the property that every non-singleton set in
˜𝒮 is also a set in 𝒮).

Observation 4.9. All good sets in
˜𝒮𝑔 lie on level at least �̃� −

10 log 𝑟/𝜀′𝑟 . Every terminal either forms a singleton set on level at

least �̃� − 10 log 𝑟/𝜀′𝑟 , or belongs to some good set in
˜𝒮𝑔 .

Now for each good set 𝑆 , we compute its border path set
˜𝒫𝑆

in instance (�̃�, �̃�) in the same way as in the Balanced Case (Sec-

tion 4.3.1). Now define
˜𝒫 =

⋃
𝑆∈�̃�𝑔

˜𝒫𝑆 . We show in the next obser-

vation that the collection 𝒫 of paths is non-crossing.

Observation 4.10. The collection
˜𝒫 of paths is non-crossing.

Proof: Assume for contradiction that the collection
˜𝒫 of paths

is not non-crossing. Then there exist two distinct sets 𝑆, 𝑆 ′ ∈
˜𝒮𝑔 , a border path 𝑃 connecting terminals 𝑢1, 𝑢2 in 𝑆 and a bor-

der path 𝑃 ′ of 𝑆 ′ connecting terminals 𝑢′
1
, 𝑢′

2
in 𝑆 ′, such that the

pairs (𝑢1, 𝑢2), (𝑢′
1
, 𝑢′

2
) are crossing. However, from the definition

of good sets, 𝑆 ∩ 𝑆 ′ = ∅. Therefore, from Observation 4.7, pairs

(𝑢1, 𝑢2), (𝑢′
1
, 𝑢′

2
) are non-crossing, a contradiction. □

Consider now a good set 𝑆 ∈ ˜𝒮𝑔 . We define 𝑆∗ = 𝑆 \𝑆 , where 𝑆 is

the parent set of 𝑆 in
˜𝒮𝑔 . Recall that a pair (𝑢,𝑢′) of terminals in 𝑆

is a border pair, if and only if the outer-boundary of �̃� connecting𝑢

to𝑢′ contains no other vertices of 𝑆 but at least one vertex that does

not lie in 𝑆 . Now for each border pair (𝑢,𝑢′) of terminals in 𝑆 , let

𝑃 (𝑢,𝑢′) be the 𝑢-𝑢
′
shortest path in

˜𝒫𝑆 that we have computed. We

apply the algorithm from Lemma 2.4 to each vertex𝑢∗ ∈ 𝑆∗ that lies
on the outer-boundary from 𝑢 clockwise to 𝑢′ with parameter 𝜀𝑟 ,

and compute an 𝜀𝑟 -cover of 𝑢
∗
on 𝑃 (𝑢,𝑢′) . We then let 𝑌𝑆

(𝑢,𝑢′) be the
union of all such 𝜀𝑟 -covers and the endpoints of 𝑃 (𝑢,𝑢′) . We then

let set 𝑌𝑆
be the union of the sets 𝑌𝑆

(𝑢,𝑢′) for all border pairs (𝑢,𝑢
′).

Finally, we set 𝑌 =
⋃

𝑆∈�̃�𝑔
𝑌𝑆

, so 𝑌 is a vertex set of 𝑉 (˜𝒫) that
contains all endpoints of paths in

˜𝒫 . Moreover, from Lemma 2.4,

|𝑌 | ≤ 𝑂

(∑︁
𝑆∈�̃�𝑔

|𝑆∗ |
𝜀𝑟

)
≤ 𝑂

((𝑒𝜀′𝑟 − 1) · ∑
𝑆∈�̃�𝑔

|𝑆 |

𝜀𝑟

)
≤ 𝑂

(
(𝑒𝜀′𝑟 − 1) · 𝑟

𝜀𝑟

)
= 𝑂

(
(1/𝑟0.7) · 𝑟
log

4 𝑟/𝑟0.1

)
= 𝑂

(
𝑟0.4

log
4 𝑟

)
.

1321

STOC ’22, June 20–24, 2022, Rome, Italy Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan

We now apply the algorithm Split to instance (�̃�, �̃�), the path
set

˜𝒫 and the vertex set 𝑌 . Let ˜ℋ be the collection of one-hole

instances we get. If all instances (�̂�,𝑈) in ˜ℋ satisfy that |𝑈 | ≤ 0.9𝑟 ,

then we terminate the algorithm and return
˜ℋ. Assume that there

is some instance (�̂�,𝑈) in ˜ℋ such that |𝑈 | > 0.9𝑟 . From similar

analysis in Step 1, there can be at most one such instance.We denote

such an instance by (�̂�,𝑈).
From the algorithm Split, (�̂�,𝑈) corresponds to a region of

�̃� surrounded by segments of paths in
˜𝒫 . Let 𝑄1, . . . , 𝑄𝑘 be the

segments of the boundary of �̂� . If there are two segments 𝑄𝑖 , 𝑄 𝑗

that are subpaths of shortest paths in the same set
˜𝒫𝑆 , then from

the definition of border pairs and border path sets, 𝑈 may not

contain terminals in any good set of
˜𝒮𝑔 other than 𝑆 . However, since

|𝑆 | ≤ 𝑟/5 and |𝑌 | ≤ 𝑂
(
𝑟 0.4

log
4 𝑟

)
, this contradicts to the assumption

that |𝑈 | > 0.9𝑟 . Therefore, for each set 𝑆 ∈ ˜𝒮𝑔 , the boundary of �̂�

contains at most one segment of some border path of
˜𝒫𝑆 .

We now modify the instance (�̂�,𝑈) as follows. Denote 𝐿∗ =

�̃� − 10 log 𝑟/𝜀′𝑟 . Let 𝐻∗
be the graph obtained from �̂� by applying

the terminal pulling operation to every terminal in 𝑈 \ 𝑆 via an

edge of weight 𝜇𝐿
∗−1

. We then define set 𝑈 ∗
to be the union of

(𝑈 ∩ 𝑆) and the set of all new terminals created in the terminal

pulling operation. We use the following observation.

Observation 4.11. Φ(𝐻∗,𝑈 ∗) ≤ 2
𝑂 (log

2 𝑟/𝜀′𝑟) .

Proof: From Observation 4.9, every pair of terminals in 𝑈 ∗
has

distance at least 𝜇𝐿
∗−1

in graph 𝐻∗
. On the other hand, since �̂� is a

subgraph of �̃� , every terminal pair in𝑈 ∗
has distance at most 𝜇�̃�+1

in 𝐻∗
. Therefore, Φ(𝐻∗,𝑈 ∗) ≤ 𝜇�̃�−𝐿

∗+2 = 2
𝑂 (log

2 𝑟/𝜀′𝑟) . □

Since 2
𝑂 (log

2 𝑟/𝜀′𝑟) < 2
𝑟 0.9

log
2 𝑟

when 𝑟 is larger than some large

enough constant, we apply the algorithm from Case 1 to (𝐻∗,𝑈 ∗)
and obtain a collection of instances ℋ(�̂�,𝑈). The output of the

algorithm is the collection

(
˜ℋ \ {(�̂�,𝑈)}

)
∪ℋ(�̂�,𝑈).

Analysis of Unbalanced Case. Recall that in this step we assume

that, after Step 1, there is an instance (𝐻𝑖∗ ,𝑈𝑖∗) with |𝑈𝑖∗ | > 0.9𝑟 ,

and we transformed it into another instance (�̃�, �̃�). We first show

that it is sufficient to prove Lemma 3.2 for instance (�̃�, �̃�). All other
conditions can be easily verified. We now show that when applying

the algorithm Glue to 𝜀-emulators {(�̃� ′, �̃�)} ∪ {(𝐻 ′
𝑖
,𝑈𝑖)}𝑖≠𝑖∗ , we

still obtain an (𝜀 +𝑂 (log
4 𝑟

𝑟 0.1))-emulator for (𝐻,𝑈). In fact, we only

need to consider the terminal pairs 𝑢,𝑢′ with 𝑢 ∈ 𝑆 and 𝑢′ ∉ 𝑆 .

Note that such a pair 𝑢,𝑢′ of terminals belongs to different level-

�̃� clusters in 𝒮 . From the construction of
˜𝒮 , dist𝐻 (𝑢,𝑢′) ≥ 𝜇�̃� .

Therefore, the transformation from instance (𝐻𝑖∗ ,𝑈𝑖∗) to instance

(�̃�, �̃�) adds at most an additive 𝜇�̃�−1
to their distance, which is at

most𝑂 (1

𝜇) = 𝑂 (1

𝑟 2
) ≤ 𝑂 (log

4 𝑟

𝑟 0.1)-fraction of their distance in graph

𝐻 . Therefore, by gluing the 𝜀-emulators {(�̃� ′, �̃�)} ∪ {(𝐻 ′
𝑖
,𝑈𝑖)}𝑖≠𝑖∗ ,

we still obtain an (𝜀 +𝑂 (log
4 𝑟

𝑟 0.1))-emulator for (𝐻,𝑈).
From now on, we focus on proving that the decomposition we

computed for instance (�̃�, �̃�) satisfies all properties in Lemma 3.2.

Recall that we have first computed a collection
˜𝒮𝑔 of good sets,

computed a path set
˜𝒫 and a subset 𝑌 of vertices in𝑉 (˜𝒫) based on

sets in
˜𝒮𝑔 , and then applied the procedure Split to ((�̃�, �̃�), ˜𝒫, 𝑌)

and obtained a collection
˜ℋ of one-hole instances.

Assume first that all instances (�̂�,𝑈) in collection
˜ℋ satisfy

that |𝑈 | ≤ 0.9𝑟 . Since |𝑌 | ≤ 𝑂
(
𝑟 0.4

log
4 𝑟

)
, from Claim 4.2, we get that∑

(�̂�,�̂�) ∈ℋ̃ |𝑈 | ≤ 𝑂 (𝑟 log
2 𝑟) and ∑

(�̂�,�̂�) ∈ℋ̃: |�̂� |>𝜆 |𝑈 | ≤ 𝑟 ·
(
1 +

𝑂 (1

log
2 𝑟
)
)
. We now describe the algorithm Combine that, takes

as input, for each instance (�̂�,𝑈) ∈ ℋ, an 𝜀-emulator (�̂� ′,𝑈),
computes an

(
𝜀 +𝑂 (𝜀𝑟)

)
=

(
𝜀 +𝑂 (log

4 𝑟

𝑟 0.1)
)
-emulator for (�̃�, �̃�). We

simply apply the algorithm Glue to instances {(�̂� ′,𝑈) | (�̂�,𝑈) ∈
˜ℋ} and denote the obtained instance by (�̃� ′, �̃�). The proof that
instance (�̃� ′, �̃�) is indeed a

(
𝜀 + 𝑂 (𝜀𝑟)

)
-emulator for (�̃�, �̃�) and

the proof that |𝑉 (�̃� ′) | ≤
(∑

1≤𝑖≤𝑠 |𝑉 (�̂� ′
𝑖
) |
)
+ 𝑂 (log

2 𝑟 · |𝑈 |) use
identical arguments in the Balanced Case, and is omitted here.

Assume now that there exists an instance (�̂�,𝑈) in collection

˜ℋ with |𝑈 | > 0.9𝑟 . Denote ˜ℋ′ = ˜ℋ \ {(�̂�,𝑈)} and denote by

ℋ =
(

˜ℋ \ {(�̂�,𝑈)}
)
∪ℋ(�̂�,𝑈) the output collection of instances.

First, note that all instances (𝐻,𝑈) in collection
˜ℋ′

satisfy that

|𝑈 | ≤ 0.9𝑟 . Since the remaining instances in ℋ are obtained by

applying the algorithm from Case 1 to the instance (𝐻∗,𝑈 ∗), that
is obtained from modifying the unique large instance in (�̂�,𝑈).
From the algorithm in Case 1, we know that each instance in the

output collection contains at most 0.9𝑟 terminals. Second, from

similar arguments, we get that

∑
(𝐻,𝑈) ∈ℋ |𝑈 | ≤ 𝑂 (𝑟 log

2 𝑟) and∑
(𝐻,𝑈) ∈ℋ: |𝑈 |>𝜆 |𝑈 | ≤ 𝑟 ·

(
1 + 𝑂 (1

log
2 𝑟
)
)
. We now describe the

algorithm Combine that, takes as input, for each instance (𝐻,𝑈) ∈
ℋ, an 𝜀-emulator (𝐻 ′

,𝑈), computes an

(
𝜀+𝑂 (𝜀𝑟)

)
=

(
𝜀+𝑂 (log

4 𝑟

𝑟 0.1)
)
-

emulator for (�̃�, �̃�). First, consider the instances inℋ(�̂�,𝑈) that
are obtained from applying the algorithm in Case 1 to (𝐻∗,𝑈 ∗). We

simply use the algorithm Combine described in Case 1 to compute

an

(
𝜀 + 𝑂 (𝜀𝑟)

)
-emulator (𝐻∗∗,𝑈 ∗) for instance (𝐻∗,𝑈 ∗). Finally,

we apply the algorithm Glue to instances in {(𝐻 ′
,𝑈) | (𝐻,𝑈) ∈

˜ℋ′} ∪ {(𝐻∗∗,𝑈 ∗)} and denote the obtained instance by (�̃� ′, �̃�).
Note that, for different sets 𝑆, 𝑆 ′ ∈ ˜𝒮𝑔 such that 𝑆∩𝑈 ≠ ∅, 𝑆′∩𝑈 ≠ ∅
and 𝑆 ∩ 𝑆 = ∅, if set 𝑆 lies on level 𝑖 and set 𝑆 ′ lies on level 𝑖′,
then dist(𝑆, 𝑆 ′) ≥ 𝜇 (max{𝑖,𝑖′ }+1) ≥ 𝜇𝐿

∗
. Therefore, from similar

arguments at the beginning of the analysis, the terminal pulling

operation only incurs a multiplicative factor-𝑂 (1/𝑟) error of the
distances between terminals in disjoint sets in

˜𝒮𝑔 .
The rest of the proof that instance (�̃� ′, �̃�) is indeed an

(
𝜀+𝑂 (𝜀𝑟)

)
-

emulator for (�̃�, �̃�) uses almost identical arguments in the Balanced

Case, and is omitted here.

5 EMULATOR FOR EDGE-WEIGHTED
PLANAR GRAPHS, AND APPLICATIONS

In this section we sketch a proof of Theorem 1.1, followed by a

bootstrapping idea so that an 𝜀-emulator for any𝑂 (1)-hole instance
of size𝑂𝜀 (𝑘 polylog𝑘) can be computed in𝑂𝜀 (𝑛 poly(log

∗ 𝑛)) time.

Using this extremely fast emulator construction we obtain new

efficient algorithms for the optimization problems on planar graphs.

Intuitively, our algorithm first computes an 𝑂 (𝑛/𝑘)-division of

graph 𝐺 using the algorithm from Lemma 5.1, reducing it to a

1322

Almost-Linear 𝜀-Emulators for Planar Graphs STOC ’22, June 20–24, 2022, Rome, Italy

collection of𝑂 (1)-hole instances each containing𝑂 (1) many termi-

nals in 𝑇 . For each instance we further decompose it into one-hole

instances. Compute an 𝜀-emulator for each one-hole instance us-

ing Theorem 3.1, and finally glue all these 𝜀-emulators together

to get the 𝜀-emulator for the input instance (𝐺,𝑇). Due to space

constraint, we defer the complete proof to the full version.

Separators and recursive decomposition. For any 𝑟 ≥ 0, an 𝑟 -

division [23] of a planar graph 𝐺 is a decomposition of 𝐺 into

edge-disjoint subgraphs of 𝐺 , called the pieces, such that

• there are at most 𝑂 (|𝑉 (𝐺) |/𝑟) pieces,
• each piece has size at most 𝑟 ,

• each piece has at most 𝑂 (
√
𝑟) boundary vertices, where a

boundary vertex is one that belongs to multiple pieces, and

• the number of holes in each piece is bounded by 𝑂 (1).
An 𝑟 -division can be computed in linear time [36]. For our appli-

cation we want the 𝑟 -division to evenly distribute the terminals

among the pieces as well.

Lemma 5.1. Given a planar graph 𝑃 with𝑛 vertices and 𝑡 terminals,

one can compute in𝑂 (𝑛)-time an 𝑟 -division for 𝑃 such that each piece

has 𝑂 (𝑡𝑟/𝑛) terminals.

Given the pieces each containing 𝑂 (1) holes, we use a split-and-
glue strategy similar to the one in Section 4.1 to reduce the problem

to one-hole instances, and apply Theorem 3.1 to compute 𝜀-emulator

for each one-hole instance. We summarize the construction with

the following lemma.

Lemma 5.2. For any parameter 𝜀 ∈ (0, 1) and any ℎ-hole in-

stance (𝐻,𝑈) with 𝑛 B |𝐻 | and 𝑟 B |𝑈 |, there is another ℎ-

hole instance (𝐻 ′,𝑈) that is an 𝜀-emulator for (𝐻,𝑈), such that

|𝑉 (𝐻 ′) | ≤ �̃� (𝑟) · 𝑓 (ℎ) · 𝜀−𝑂 (ℎ)
for some function 𝑓 (ℎ). The running

time of the algorithm is (𝑛 + 𝑟2) · (ℎ log𝑛/𝜀)𝑂 (ℎ)
.

Replace the input general planar graph 𝐺 with an 𝜀-emulator

of size 𝑁 B 𝑂 (𝑘2
log

2 𝑛/𝜀2) using a slight modification of the

construction of Cheung, Goranci, and Henzinger [13, Theorem 6.9]

(by removing the processing step of reducing the graph size to

𝑂 (𝑘4)). Apply 𝑟 -division from Lemma 5.1 to 𝐺 for 𝑟 B 𝑂 (𝑁 /𝑘) =
�̃� (𝑘/𝜀2) to even distribute the vertices, boundary vertices, holes,

and terminals into the pieces. Each piece in the 𝑟 -division now

has 𝑟 = 𝑂 (𝑁 /𝑘) vertices,
√
𝑟 = 𝑂 (𝑁 1/2/𝑘1/2) boundary vertices,

𝑂 (1) number of holes, and 𝑂 (1) number of terminals. Now apply

Lemma 5.2 on each piece 𝑃 to obtain a planar emulator on the set

of boundary vertices and terminals in 𝑃 . Stitching the emulators

for all the pieces together into a new graph 𝐺 ′
, which has size

𝑂

(
𝑁

𝑁 /𝑘 · 𝑁 1/2

poly 𝜀 · 𝑘1/2

)
= 𝑂

(
𝑁 1/2 · 𝑘1/2

poly 𝜀

)
= 𝑂

(
𝑘3/2

poly 𝜀

)
.

Graph 𝐺 ′
is in fact a planar emulator of 𝐺 with respect to the

terminals 𝑇 . The construction of 𝜀-emulator by Cheung-Goranci-

Henzinger takes 𝑂 (𝑛 log𝑛/𝜀) time (without the preprocessing).

Constructing the emulators for the pieces using Lemma 5.2 takes

time (𝑁 /𝑟) · 𝑟 (log 𝑟/𝜀)𝑂 (1) ≤ 𝑁 · (log𝑁 /𝜀)𝑂 (1)
. Therefore the

running time is 𝑛 log
𝑂 (1) 𝑛/poly 𝜀 overall.

We can further bootstrap the construction to reduce the size

of the emulator to 𝑘1+𝑜 (1)/poly 𝜀, and derive Theorem 1.1. On the

other hand, we can also bootstrap the construction time when the

input is an 𝑂 (1)-hole instance.

Theorem 5.3. Given any parameter 0 < 𝜀 < 1 and any planar

graph 𝑃 with 𝑛 vertices and 𝑘 terminals where 𝑘 ≤
√
𝑛 all lying

on a constant number of faces of 𝑃 , one can compute an 𝜀-emulator

of 𝑃 with respect to the terminals of size 𝑂 (𝑘 polylog𝑘/poly 𝜀) in
𝑂 (𝑛 log

(𝑐) 𝑛/poly 𝜀 + 𝑐𝑛) time for any integer 𝑐 ≥ 1.
5

Proof (sketch): To get an intuition of the proof, let’s look at the

case when 𝑐 = 2, and ignore the restriction on the number of

terminals and the 𝜀-factors in the running time for a moment.

• First compute 𝑟 -division of 𝑃 for 𝑟 = (log log𝑛)4𝐶
, where 𝐶

is bigger than the number of logs we need in the running

time of Lemma 5.2. Replace each piece in the 𝑟 -division by

an 𝜀-emulator with respect to the boundary vertices and

terminals using Lemma 5.2; the total time on the emulator

construction is 𝑂𝜀 (𝑛(log log log𝑛)𝑂 (1)) and the new graph

𝑃 ′ has size 𝑂𝜀 (𝑛/(log log𝑛)2𝐶).
• Now the graph is (log log𝑛)2𝐶

-factor smaller than original,

we can compute another 𝑟 ′-division for 𝑟 ′ = (log𝑛)4𝐶
, and

replace each piece in the 𝑟 ′-division by an 𝜀-emulator with

respect to the boundary vertices and terminals. This way,

instead of spending 𝑂𝜀 (𝑛 poly log log𝑛) time if we perform

𝑟 ′-division directly on the original graph, now it takes

𝑂𝜀

(
𝑛

(log log𝑛)2𝐶
· (log log𝑛)𝐶

)
time. The new graph 𝑃 ′′ has size 𝑛/(log𝑛)2𝐶

.

• Finally, compute an 𝜀-emulator for 𝑃 ′′ with respect to the

terminals, which takes

𝑂𝜀

(
𝑛

(log𝑛)2𝐶
· (log𝑛)𝐶

)
= 𝑂𝜀 (𝑛/(log𝑛)𝐶)

time. The final emulator has size 𝑂𝜀 (𝑘 polylog𝑘).
• Overall the bottleneck is the compute the first set of emu-

lators in the 𝑟 -division, which takes 𝑂 (𝑛 poly log log log𝑛)
time. The accumulated distortion in distance is 3𝜀. □

By taking 𝑐 = log
∗ 𝑛, we have the following immediate corollary.

Corollary 5.4. Given any parameter 0 < 𝜀 < 1 and any planar

graph 𝑃 with 𝑛 vertices and 𝑘 terminals where 𝑘 ≤
√
𝑛 on𝑂 (1) many

faces, one can compute an 𝜀-emulator of 𝑃 with respect to the terminals

of size 𝑂 (𝑘 poly log𝑘/poly 𝜀) in time 𝑂 (𝑛 poly log
∗ 𝑛/𝜀𝑂 (1)) time.

REFERENCES
[1] Alok Aggarwal, Maria M Klawe, Shlomo Moran, Peter Shor, and Robert Wilber.

1987. Geometric applications of a matrix-searching algorithm. Algorithmica 2

(Nov. 1987), 195–208. https://doi.org/10.1007/BF01840359

[2] Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad

Javad Latifi Jebelli, Stephen Kobourov, and Richard Spence. 2020. Graph spanners:

A tutorial review. Computer Science Review 37 (2020), 100253. https://doi.org/10.

1016/j.cosrev.2020.100253

[3] A. Andoni, A. Gupta, and R. Krauthgamer. 2014. Towards (1 + 𝜀)-Approximate

Flow Sparsifiers. In 25th Annual ACM-SIAM Symposium on Discrete Algorithms.

279–293. https://doi.org/10.1137/1.9781611973402.20

[4] Yair Bartal and Lee-Ad Gottlieb. 2013. A Linear Time Approximation Scheme for

Euclidean TSP. In 2013 IEEE 54th Annual Symposium on Foundations of Computer

Science. IEEE, Berkeley, CA, USA, 698–706. https://doi.org/10.1109/FOCS.2013.80

5
Here log

(𝑐) 𝑛 = log(. . . log(log𝑛)) , where the logarithm is applied 𝑐 times.

1323

https://doi.org/10.1007/BF01840359
https://doi.org/10.1016/j.cosrev.2020.100253
https://doi.org/10.1016/j.cosrev.2020.100253
https://doi.org/10.1137/1.9781611973402.20
https://doi.org/10.1109/FOCS.2013.80

STOC ’22, June 20–24, 2022, Rome, Italy Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan

[5] A. Basu and A. Gupta. 2008. Steiner Point Removal in Graph Metrics. (2008).

Unpublished manuscript, available from http://www.math.ucdavis.edu/~abasu/

papers/SPR.pdf.

[6] T. Chan, Donglin Xia, Goran Konjevod, and Andrea Richa. 2006. A Tight Lower

Bound for the Steiner Point Removal Problem on Trees. In 9th International

Workshop on Approximation, Randomization, and Combinatorial Optimization

(Lecture Notes in Computer Science, Vol. 4110). Springer, 70–81. https://doi.org/

10.1007/11830924_9

[7] Timothy M. Chan and Dimitrios Skrepetos. 2019. Faster Approximate Diameter

and Distance Oracles in Planar Graphs. Algorithmica 81, 8 (Aug. 2019), 3075–3098.

https://doi.org/10.1007/s00453-019-00570-z

[8] Hsien-Chih Chang, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. 2018.

Near-Optimal Distance Emulator for Planar Graphs. In 26th Annual European

Symposium on Algorithms (ESA 2018) (Leibniz International Proceedings in In-

formatics (LIPIcs), Vol. 112). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

16:1–16:17. https://doi.org/10.4230/LIPIcs.ESA.2018.16

[9] Hsien-Chih Chang and Tim Ophelders. 2020. Planar Emulators for Monge

Matrices. (2020), 7.

[10] Moses Charikar, Tom Leighton, Shi Li, and Ankur Moitra. 2010. Vertex Sparsifiers

and Abstract Rounding Algorithms. In 51st Annual Symposium on Foundations

of Computer Science. IEEE Computer Society, 265–274. https://doi.org/10.1109/

FOCS.2010.32

[11] S. Chaudhuri, K. V. Subrahmanyam, F. Wagner, and C. D. Zaroliagis. 2000.

Computing Mimicking Networks. Algorithmica 26 (2000), 31–49. Issue 1.

https://doi.org/10.1007/s004539910003

[12] Yun Kuen Cheung. 2018. Steiner Point Removal: Distant Terminals Don’t (Really)

Bother. In 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’18).

SIAM, 1353–1360. https://doi.org/10.1137/1.9781611975031.89

[13] Yun Kuen Cheung, Gramoz Goranci, and Monika Henzinger. 2016. Graph Minors

for Preserving Terminal Distances Approximately – Lower and Upper Bounds. In

43rd International Colloquium on Automata, Languages, and Programming, ICALP.

131:1–131:14. https://doi.org/10.4230/LIPIcs.ICALP.2016.131

[14] Julia Chuzhoy. 2012. On vertex sparsifiers with Steiner nodes. In 44th symposium

on Theory of Computing. ACM, 673–688. https://doi.org/10.1145/2213977.2214039

[15] Vincent Cohen-Addad, Andreas Feldmann, and David Saulpic. 2019. Near-Linear

Time Approximations Schemes for Clustering in Doubling Metrics. In 2019 IEEE

60th Annual Symposium on Foundations of Computer Science (FOCS). 540–559.

https://doi.org/10.1109/FOCS.2019.00041

[16] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-Cohen, and K. Talwar.

2014. Vertex Sparsifiers: New Results from Old Techniques. SIAM J. Comput. 43,

4 (2014), 1239–1262. https://doi.org/10.1137/130908440 arXiv:1006.4586

[17] Jeff Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. 2018. Holiest minimum-

cost paths and flows in surface graphs. In Proceedings of the 50th Annual ACM

SIGACT Symposium on Theory of Computing - STOC 2018. ACMPress, Los Angeles,

CA, USA, 1319–1332. https://doi.org/10.1145/3188745.3188904

[18] Jeff. Erickson, Kyle. Fox, and Amir. Nayyeri. 2012. Global Minimum Cuts in

Surface Embedded Graphs. In Proceedings of the Twenty-Third Annual ACM-

SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied

Mathematics, 1309–1318. https://doi.org/10.1137/1.9781611973099.103

[19] Jittat Fakcharoenphol and Satish Rao. 2006. Planar graphs, negative weight edges,

shortest paths, and near linear time. J. Comput. System Sci. 72, 5 (Aug. 2006),

868–889. https://doi.org/10.1016/j.jcss.2005.05.007

[20] Arnold Filtser. 2018. Steiner Point Removal with Distortion𝑂 (log𝑘) . In 29th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’18). Society for

Industrial and Applied Mathematics, 1361–1373. https://doi.org/10.1137/1.

9781611975031.90

[21] Arnold Filtser, Robert Krauthgamer, and Ohad Trabelsi. 2019. Relaxed Voronoi:

A Simple Framework for Terminal-Clustering Problems. In 2nd Symposium on

Simplicity in Algorithms (SOSA 2019), Vol. 69. 10:1–10:14. https://doi.org/10.4230/

OASIcs.SOSA.2019.10

[22] Kyle Fox and Jiashuai Lu. 2020. A Near-Linear Time Approximation Scheme for

Geometric Transportation with Arbitrary Supplies and Spread. (2020), 18.

[23] Greg N. Frederickson. 1987. Fast Algorithms for Shortest Paths in Planar Graphs,

with Applications. SIAM J. Comput. 16, 6 (Dec. 1987), 1004–1022. https://doi.

org/10.1137/0216064

[24] Gramoz Goranci, Monika Henzinger, and Pan Peng. 2020. Improved Guarantees

for Vertex Sparsification in Planar Graphs. SIAM Journal on Discrete Mathematics

34, 1 (2020), 130–162. https://doi.org/10.1137/17M1163153

[25] Gramoz Goranci and Harald Räcke. 2016. Vertex Sparsification in Trees. In

Approximation and Online Algorithms - 14th International Workshop, WAOA. 103–

115. https://doi.org/10.1007/978-3-319-51741-4_9

[26] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. 2021.

The expander hierarchy and its applications to dynamic graph algorithms. In

Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms. SIAM,

2212–2228. https://doi.org/10.1137/1.9781611976465.132

[27] Anupam Gupta. 2001. Steiner points in tree metrics don’t (really) help. In 12th

Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 220–227. http:

//dl.acm.org/citation.cfm?id=365411.365448

[28] Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde.

1998. Characterizing multiterminal flow networks and computing flows in

networks of small treewidth. J. Comput. Syst. Sci. 57 (1998), 366–375. Issue

3. https://doi.org/10.1006/jcss.1998.1592

[29] Monika R. Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. 1997.

Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55, 1

(1997), 3–23. http://dx.doi.org/10.1006/jcss.1997.1493

[30] Alon Itai and Yossi Shiloach. 1979. Maximum flow in planar networks. SIAM J.

Comput. 8, 2 (May 1979), 16.

[31] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-

Nilsen. 2011. Improved algorithms for min cut and max flow in undirected planar

graphs. In Proceedings of the 43rd annual ACM symposium on Theory of computing

(STOC ’11). San Jose, California, USA, 313–322. https://doi.org/10.1145/1993636.

1993679

[32] Lior Kamma, Robert Krauthgamer, and Huy L. Nguyen. 2015. Cutting Corners

Cheaply, or How to Remove Steiner Points. SIAM J. Comput. 44, 4 (2015), 975–995.

https://doi.org/10.1137/140951382

[33] Nikolai Karpov, Marcin Pilipczuk, and Anna Zych-Pawlewicz. 2017. An Expo-

nential Lower Bound for Cut Sparsifiers in Planar Graphs. 12th International

Symposium on Parameterized and Exact Computation, IPEC (2017), 24:1–24:11.

https://doi.org/10.4230/LIPIcs.IPEC.2017.24

[34] Arindam Khan and Prasad Raghavendra. 2014. On mimicking networks rep-

resenting minimum terminal cuts. Inf. Process. Lett. 114, 7 (2014), 365–371.

https://doi.org/10.1016/j.ipl.2014.02.011

[35] Philip N Klein. 2005. Multiple-source shortest paths in planar graphs. In Pro-

ceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms.

146–155.

[36] Philip N. Klein, Shay Mozes, and Christian Sommer. 2013. Structured recursive

separator decompositions for planar graphs in linear time. In Proceedings of the

45th annual ACM symposium on Symposium on theory of computing - STOC ’13.

ACM Press, Palo Alto, California, USA, 505. https://doi.org/10.1145/2488608.

2488672

[37] P. N. Klein and S. Subramanian. 1998. A Fully Dynamic Approximation Scheme

for Shortest Paths in Planar Graphs. Algorithmica 22, 3 (Nov. 1998), 235–249.

https://doi.org/10.1007/PL00009223

[38] R. Krauthgamer, H. Nguyen, and T. Zondiner. 2014. Preserving Terminal Distances

Using Minors. SIAM Journal on Discrete Mathematics 28, 1 (2014), 127–141.

https://doi.org/10.1137/120888843

[39] Robert Krauthgamer and Havana (Inbal) Rika. 2020. Refined Vertex Sparsifiers

of Planar Graphs. SIAM Journal on Discrete Mathematics 34, 1 (2020), 101–129.

https://doi.org/10.1137/17M1151225

[40] Robert Krauthgamer and Inbal Rika. 2013. Mimicking Networks and Succinct

Representations of Terminal Cuts. In 24th Annual ACM-SIAM Symposium on

Discrete Algorithms. SIAM, 1789–1799. https://doi.org/10.1137/1.9781611973105.

128

[41] Robert Krauthgamer and Tamar Zondiner. 2012. Preserving Terminal Distances

Using Minors. In 39th International Colloquium on Automata, Languages, and

Programming (Lecture Notes in Computer Science, Vol. 7391). Springer, 594–605.

https://doi.org/10.1007/978-3-642-31594-7_50

[42] Konstantin Makarychev and Yury Makarychev. 2016. Metric extension operators,

vertex sparsifiers and Lipschitz extendability. Israel Journal of Mathematics 212,

2 (2016), 913–959. https://doi.org/10.1007/s11856-016-1315-8

[43] Ankur Moitra. 2009. Approximation Algorithms for Multicommodity-Type

Problems with Guarantees Independent of the Graph Size. In 50th Annual

Symposium on Foundations of Computer Science (FOCS). IEEE, 3–12. https:

//doi.org/10.1109/FOCS.2009.28

[44] Shay Mozes, Cyril Nikolaev, Yahav Nussbaum, and Oren Weimann. 2018. Min-

imum cut of directed planar graphs in 𝑂 (𝑛 log log𝑛) time. In Proceedings of

the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. New

Orleans, Louisiana, 477–494. arXiv:1512.02068

[45] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. 1987. Matching is

as easy as matrix inversion. Combinatorica 7, 1 (March 1987), 105–113. https:

//doi.org/10.1007/BF02579206

[46] John H Reif. 1981. Minimum s-t Cut of a Planar Undirected Network in

𝑂 (𝑛 log
2 (𝑛)) Time. (1981), 12.

[47] R. Sharathkumar and Pankaj K. Agarwal. 2012. Algorithms for the Transportation

Problem in Geometric Settings. In Proceedings of the Twenty-Third Annual ACM-

SIAM Symposium on Discrete Algorithms, Yuval Rabani (Ed.). Society for Industrial

and Applied Mathematics, Philadelphia, PA, 306–317. https://doi.org/10.1137/1.

9781611973099.29

[48] Mikkel Thorup. 2004. Compact oracles for reachability and approximate distances

in planar digraphs. J. ACM 51, 6 (Nov. 2004), 993–1024. https://doi.org/10.1145/

1039488.1039493

[49] Oren Weimann and Raphael Yuster. 2016. Approximating the Diameter of Planar

Graphs in Near Linear Time. ACM Transactions on Algorithms 12, 1 (Feb. 2016),

1–13. https://doi.org/10.1145/2764910

1324

http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
https://doi.org/10.1007/11830924_9
https://doi.org/10.1007/11830924_9
https://doi.org/10.1007/s00453-019-00570-z
https://doi.org/10.4230/LIPIcs.ESA.2018.16
https://doi.org/10.1109/FOCS.2010.32
https://doi.org/10.1109/FOCS.2010.32
https://doi.org/10.1007/s004539910003
https://doi.org/10.1137/1.9781611975031.89
https://doi.org/10.4230/LIPIcs.ICALP.2016.131
https://doi.org/10.1145/2213977.2214039
https://doi.org/10.1109/FOCS.2019.00041
https://doi.org/10.1137/130908440
https://arxiv.org/abs/1006.4586
https://doi.org/10.1145/3188745.3188904
https://doi.org/10.1137/1.9781611973099.103
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1137/1.9781611975031.90
https://doi.org/10.1137/1.9781611975031.90
https://doi.org/10.4230/OASIcs.SOSA.2019.10
https://doi.org/10.4230/OASIcs.SOSA.2019.10
https://doi.org/10.1137/0216064
https://doi.org/10.1137/0216064
https://doi.org/10.1137/17M1163153
https://doi.org/10.1007/978-3-319-51741-4_9
https://doi.org/10.1137/1.9781611976465.132
http://dl.acm.org/citation.cfm?id=365411.365448
http://dl.acm.org/citation.cfm?id=365411.365448
https://doi.org/10.1006/jcss.1998.1592
http://dx.doi.org/10.1006/jcss.1997.1493
https://doi.org/10.1145/1993636.1993679
https://doi.org/10.1145/1993636.1993679
https://doi.org/10.1137/140951382
https://doi.org/10.4230/LIPIcs.IPEC.2017.24
https://doi.org/10.1016/j.ipl.2014.02.011
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1007/PL00009223
https://doi.org/10.1137/120888843
https://doi.org/10.1137/17M1151225
https://doi.org/10.1137/1.9781611973105.128
https://doi.org/10.1137/1.9781611973105.128
https://doi.org/10.1007/978-3-642-31594-7_50
https://doi.org/10.1007/s11856-016-1315-8
https://doi.org/10.1109/FOCS.2009.28
https://doi.org/10.1109/FOCS.2009.28
https://arxiv.org/abs/1512.02068
https://doi.org/10.1007/BF02579206
https://doi.org/10.1007/BF02579206
https://doi.org/10.1137/1.9781611973099.29
https://doi.org/10.1137/1.9781611973099.29
https://doi.org/10.1145/1039488.1039493
https://doi.org/10.1145/1039488.1039493
https://doi.org/10.1145/2764910

	Abstract
	1 Introduction
	1.1 Main Result
	1.2 Algorithmic Applications
	1.3 Technical Contributions
	1.4 Related Work

	2 Preliminaries
	3 Emulators for One-Hole Instances
	3.1 The Algorithm and Its Analysis

	4 Recursive Emulator Construction
	4.1 Splitting and Gluing
	4.2 Small Spread Case
	4.3 Large Spread Case

	5 Emulator for Edge-Weighted Planar Graphs, and Applications
	References

