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SPARSIFICATION OF TWO-VARIABLE VALUED CONSTRAINT
SATISFACTION PROBLEMS∗

ARNOLD FILTSER† AND ROBERT KRAUTHGAMER‡

Abstract. A valued constraint satisfaction problem (VCSP) instance (V,Π, w) is a set of vari-
ables V with a set of constraints Π weighted by w. Given a VCSP instance, we are interested in a
reweighted subinstance (V,Π′ ⊂ Π, w′) that preserves the value of the given instance (under every
assignment to the variables) within factor 1 ± ε. A well-studied special case is cut sparsification in
graphs, which has found various applications. We show that a VCSP instance consisting of a single
boolean predicate P (x, y) (e.g., for cut, P = XOR) can be sparsified into O(|V |/ε2) constraints iff the
number of inputs that satisfy P is anything but one (i.e., |P−1(1)| 6= 1). Furthermore, this sparsity
bound is tight unless P is a relatively trivial predicate. We conclude that also systems of 2SAT (or
2LIN) constraints can be sparsified.

Key words. valued constraint satisfaction problem, cut sparsification, boolean predicates,
MAX-CSP

AMS subject classifications. 68Q25, 68W25

DOI. 10.1137/15M1046186

1. Introduction. The seminal work of Benczúr and Karger [4] showed that
every edge-weighted undirected graph G = (V,E,w) admits cut sparsification within
factor (1+ε) using O(ε−2n log n) edges, where we denote throughout n = |V |. To state
it more precisely, assume that edge weights are always non negative and let CutG(S)
denote the total weight of edges in G that have exactly one endpoint in S. Then for
every such G and ε ∈ (0, 1), there is a reweighted subgraph Gε = (V,Eε ⊆ E,wε) with
|Eε| ≤ O(ε−2n log n) edges such that

(1) ∀S ⊂ V, CutGε(S) ∈ (1± ε) · CutG(S),

and moreover, such Gε can be computed efficiently.
This sparsification methodology turned out to be very influential. The original

motivation was to speed up algorithms for cut problems—one can compute a cut
sparsifier of the input graph and then solve an optimization problem on the sparsifier—
and indeed this has been a tremendously effective approach; see, e.g., [4, 5, 10, 14, 12].
Another application of this remarkable notion is to reduce space requirements, either
when storing the graph or in streaming algorithms [1]. In fact, followup work offered
several refinements, improvements, and extensions (such as to spectral sparsification
or to cuts in hypergraphs, which in turn have more applications); see, e.g., [16, 17, 15,
7, 8, 9, 13, 3, 11]. The current bound for cut sparsification is O(n/ε2) edges, proved
by Batson, Spielman, and Srivastava [3], and it is known to be tight [2].

We study the analogous problem of sparsifying constraint satisfaction problems
(CSPs), which was raised in [11, section 4] and goes as follows. Given a set of
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constraints on n variables, the goal is to construct a sparse subinstance that has
approximately the same value as the original instance under every possible assign-
ment ; see section 2 for a formal definition. Such sparsification of CSPs can be used
to reduce storage space and running time of many algorithms.

We restrict our attention to two-variable constraints (i.e., of arity 2) over boolean
domain (i.e., alphabet of size 2). To simplify matters even further we shall start with
the case where all the constraints use the same predicate P : {0, 1}2 → {0, 1}. This
restricted case of CSP sparsification already generalizes cut sparsification—simply
represent every vertex v ∈ V by a variable xv and every edge (v, u) ∈ E by the
constraint xv 6= xu.

Observe that such CSPs also capture other interesting graph problems, such as
the uncut edges (using the predicate xv = xu), covered edges (using the predicate
xv ∨ xu), or directed-cut edges (using the predicate xv ∧ ¬xu). Even though these
graph problems are well-known and extensively studied, we are not aware of any
sparsification results for them, and at a first glance such sparsification may even seem
surprising, because these problems do not have the combinatorial structure exploited
by [4] (a bound on the number of approximately minimum cuts) or the linear-algebraic
description used by [15, 3] (as quadratic forms over Laplacian matrices).

Results. For CSPs consisting of a single predicate P : {0, 1}2 → {0, 1}, we show in
Theorem 3.7 that a (1+ε)-sparsifier of size O(n/ε2) always exists iff |P−1(1)| 6= 1 (i.e.,
P has 0, 2, 3, or 4 satisfying inputs). Observe that the latter condition includes the
two graphical examples above uncut edges and covered edges but excludes directed-
cut edges. We further show in Theorem 4.1 that our sparsity bound above is tight,
except for some relatively trivial predicates P . We then build on our sparsification
result in section 5 to obtain (1 + ε)-sparsifiers for other CSPs, including 2SAT (which
uses four predicate types) and 2LIN (which uses two predicate types).

Finally, we explore future directions, such as more general predicates and a gen-
eralization of the sparsification paradigm to sketching schemes. In particular, we see
that the above dichotomy according to number of satisfying inputs to the predicate
extends to sketching.

2. Two-variable boolean predicates and digraphs. A predicate is a function
P : {0, 1}2 → {0, 1} (recall we restrict ourselves throughout to two variables and
a boolean domain). Given a set of variables V , a constraint 〈(v, u),P〉 consists of
a predicate P and an ordered pair (v, u) of variables from V . For an assignment
A : V → {0, 1}, we say that A satisfies the constraint whenever P(A(v), A(u)) = 1.
A valued constraint satisfaction problem (VCSP) instance I is a triple (V,Π, w),
where V is a set of variables, Π is a set of constraints over V (each of the form
πi = 〈(vi, ui), pi〉), and w : Π→ R+ is a weight function. The value of an assignment
A : V → {0, 1} is the total weight of the satisfied constraints, i.e.,

ValI (A) :=
∑
πi∈Π

w(πi) · pi(A(vi), A(ui)).

For ε ∈ (0, 1), an ε-sparsifier of I is a (reweighted) subinstance Iε = (V,Πε ⊆ Π, wε)
where

∀A : V → {0, 1}, ValIε(A) ∈ (1± ε) ·ValI(A).

The goal is to minimize the number of constraints, i.e., |Πε|. There are 16 different
predicates P : {0, 1}2 → {0, 1}, which are listed in Table 1 with names for easy
reference.
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Table 1
All possible predicates P : {0, 1}2 → {0, 1}, where blank cells denote value 0. Predicates

0x, x0, x1, 1x are determined by a single variable. Predicates 01,Dicut, 10, 01 are satisfied by a single
assignment or all but a single one.

x1 x2 ~0 nOr 01 0x Dicut x0 Cut nAnd And unCut x1 10 1x 01 Or ~1

0 0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

We first focus on the case where all the constraints in Π use the same predicate
P1, in which case we can represent the VCSP I by an edge-weighted digraph GI =
(V,E,w). Each variable in V is represented by a vertex, and each constraint over the
pair (v, u) will be represented by a directed edge from v to u, with the same weight as
the constraint (formally, E = {(v, u) | (〈v, u〉,P) ∈ Π}, and abusing notation set edge
weights w(v, u) = w(〈(v, u), P 〉)). This transformation preserves all the information
about the VCSP and allows us to make reductions between VCSPs with different
predicates P as their sole predicate.

Given a digraph G, a predicate P and a subset S ⊆ V , define

PG(S) :=
∑

(v,u)∈E

P(1S(v),1S(u)) · w((v, u)),

where 1S denotes the indicator function. For example, applying this definition to the
cut predicate Cut : (x, y)→ 1{x 6=y}, we have

CutG(S) =
∑

(v,u)∈E

Cut(1S(v),1S(u)) · w((v, u)) =
∑

(v,u)∈E

|1S(v)− 1S(u)| · w((v, u)),

which is just the total weight of the edges crossing the cut S. This matches the
definition we gave in the introduction, except for the technical subtlety that G is now
a directed graph, which makes no difference for symmetric predicates like Cut. We
shall assume henceforth that G is directed.

We shall say that a subinstance Gε is an ε-P-sparsifier of G if

∀S ⊆ V, PGε(S) ∈ (1± ε) · PG(S).

Observe that given an assignment A for the variables V , we can set SA := {u |
A(u) = 1}. It then holds that ValI(A) = PGI (SA), where GI is the appropriate di-
graph for the VCSP. As there exists a bijection between such VCSPs and digraphs, we
conclude as follows.

Observation 2.1. The existence of an ε-P-sparsifier Gε = (V,Eε, wε) for GI im-
plies the existence of an ε-sparsifier Iε for I with |Eε| constraints.

Note that the converse is true as well, i.e., an ε-sparsifier for I implies the existence
of an ε-P-sparsifier for GI of size |Πε|. From now on, we focus on finding an ε-P-
sparsifier for an arbitrary digraph G (for different choices of the predicate P).

1The collection of predicates used in a VCSP is sometimes called its signature. In this paper we
mainly deal with VCSPs whose signature is of size one.
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3. A single predicate. In this section we go over all the predicates P : {0, 1}2 →
{0, 1} and classify them into sparsifiable and nonsparsifiable predicates; see
Theorems 3.5, 3.6, and 3.7. For simplicity, we state our sparsification results as
existential, but in fact all these sparsifiers can be computed in polynomial time.

Our main technique is a graph transformation, which is well-known but apparently
only in very different contexts. On the face of it, it is not clear which predicates other
than Cut do admit nontrivial sparsification. For example, the uncut edges in a graph
do not satisfy a key property of cuts that was used in [4] for cut-sparsification (namely,
a polynomial bound on the number of near-minimum cuts in a graph), and it is not
clear a priori which edges must be included in every sparsifier (again in analogy
with cuts, where all bridge edges must be retained), These deficiencies suggest that
the edge-sampling approach, which is very effective for cuts [4, 15, 8], would fail
for other predicates and may further be viewed as evidence for the impossibility of
sparsification. Thus, we were surprised to find out that different predicates can all
be analyzed using one simple graph transformation, which appears easy in retrospect
and provides a unifying explanation.

In our classification, we appeal to two basic predicates, the first of which is Cut,
which is already known to be sparsifiable.

Theorem 3.1 (see [3]). For every digraph G and parameter ε ∈ (0, 1), there is
an ε-Cut-sparsifier for G with O

(
|V |/ε2

)
edges.

Our second basic predicate is the predicate And, which behaves significantly dif-
ferently. We call a digraph G = (V,E) strongly asymmetric if for every (v, u) ∈ E it
holds that (u, v) /∈ E.

Theorem 3.2. For every strongly asymmetric digraph G = (V,E,w) with strictly
positive weights and ε ∈ (0, 1), every ε-And-sparsifier Gε = (V,Eε, wε) must satisfy
Eε = E.

Proof. Let Gε = (V,Eε, wε) be such a sparsifier, i.e., for every S ⊆ V it holds
that AndGε(S) ∈ (1 ± ε) · AndG(S). Then for every e = (v, u) ∈ E we must have
(v, u) ∈ Eε, as otherwise for the set S = {v, u} it will hold that AndGε({v, u}) = 0
while AndG({v, u}) = w(e) > 0, a contradiction.

Remark 3.3. For every digraph (which is not necessarily strongly asymmetric),
the same proof shows that |Eε| ≥ 1

2 |E|.
Remark 3.4. Our definition of an ε-P-sparsifier requires Gε to be a subgraph of

G, but we can state Theorem 3.2 in a more general way: For every digraph Gε =
(V,Eε, wε) (not necessarily a subgraph) such that every S ⊆ V satisfies AndGε(S) ∈
(1± ε) · AndG(S) necessarily Eε agrees with E up to the directions of the edges.

Next, we show that every other predicate is similar either to Cut or to And in terms
of sparsifability. We describe a reduction that will be useful to show both sparsifability
and nonsparsifability. (This reduction is based on a well-known transformation of
a given graph, called the “bipartite double cover” (see, e.g., [6]), although we are
not aware of its use in the same way.) Let γ be a function that maps a digraph
G = (V,E,w) where V = {v1, v2, . . . , vn} to a digraph γ(G) = (V γ , Eγ , wγ) where
V γ = {v−n, . . . , v−1, v1, . . . , vn}, Eγ = {(vi, v−j) | (vi, vj) ∈ E}, wγ((vi, v−j)) =
w((vi, vj)). For every subset S ⊆ V , we introduce the notation −S := {v−i | vi ∈ S},
S̄ := {vi | vi ∈ V \ S} and −S̄ := {v−i | vi ∈ V \ S}. Figure 1 illustrates the effect of
γ on an arbitrary set S.

Theorem 3.5. For every digraph G = (V,E,w) and ε ∈ (0, 1) there
is a subdigraph Gε with O(|V |/ε2) edges such that for every predicate P ∈
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Fig. 1. The mapping γ applied on G and its effect on an arbitrary S ⊆ V . For example,
an edge from vi ∈ S to vj ∈ S̄ is represented by an arrow of type 3 and becomes in γ(G) an
edge from vi ∈ S to v−j ∈ −S̄.

{Cut, unCut,Or, nAnd, 10, 01, x0, x1, 0x, 1x,~1,~0}, the digraph Gε is an ε-P-sparsifier of
G. (Note that Gε does not depend on P.)

Proof. Given G and ε, first construct γ(G) as above. Next, apply Theorem 3.1
to obtain for γ(G) a cut sparsifier γ(G)ε = (V γ , Eγε ⊆ Eε, wγε ), which contains
O(|V γ |/ε2) = O(|V |/ε2) edges. Now construct a digraph Gε = (V,Eε, wε) where
Eε = {(vi, vj) | (vi, v−j) ∈ Eγε } and wε(vi, vj) = wγε (vi, v−j). Observe that γ(Gε) =
γ(G)ε, i.e., if we apply γ on Gε we get exactly γ(G)ε.

Now suppose that for a predicate P, there is a function fP : 2V → 2V
γ

such that
for every digraph H on the vertex set V , it holds that

∀S ⊂ V, PH(S) = Cutγ(H)(fP (S)).(2)

Then we could apply (2) twice, first to Gε and then to G, and obtain that

∀S ⊂ V, PGε(S) = Cutγ(G)ε(fP (S)) ∈ (1± ε) · Cutγ(G)(fP (S)) = (1± ε) · PG(S).

Hence, the existence of such a function fP implies that Gε is an ε-P-sparsifier. And
indeed, we can show such fP for some predicates P, as follows:

• funCut(S) = S ∪ −S̄;

• fCut(S) = S ∪ −S;

• f0x(S) = S̄;

• fx0(S) = −S̄;

• fx1(S) = −S;

• f1x(S) = S;

• f~1(S) = S ∪ S̄; and

• f~0(S) = ∅.
To verify that funCut(S) = S ∪ −S̄ satisfies Equation 2, i.e., that unCutH(S) =
Cutγ(H)(S ∪ S̄), observe that both sides consist exactly of the edges of types 1 and
2 in Figure 1. The other predicates can be easily verified similarly, which completes
the proof for all P ∈ {Cut, unCut, 0x, x0, x1, 1x,~1,~0}.

To show that Gε is a sparsifier also for predicates P ∈ {Or, nAnd, 10, 01} we need
a slightly more general argument. Suppose that for a predicate P, there are functions
f1
P , f

2
P , f

3
P : 2V → 2V

γ

such that for every digraph H on the vertex set V ,

PH(S) = 1
2

[
Cutγ(H)(f

1
P (S)) + Cutγ(H)(f

2
P (S)) + Cutγ(H)(f

3
P (S))

]
.(3)
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Then we could apply (3) twice, first to Gε and then to G, and obtain that

PGε (S) = 1
2

[
Cutγ(G)ε(f

1
P (S)) + Cutγ(G)ε(f

2
P (S)) + Cutγ(G)ε(f

3
P (S))

]
∈ (1± ε) · 1

2

[
Cutγ(G)(f

1
P (S)) + Cutγ(G)(f

2
P (S)) + Cutγ(G)(f

3
P (S))

]
= (1± ε) · PG(S).

Hence, the existence of three such functions will imply that Gε is an ε-P-sparsifier.
And indeed, we let

• f1
Or(S) = S, f2

Or(S) = −S, f3
Or(S) = S ∪ −S;

• f1
nAnd(S) = S̄, f2

nAnd(S) = −S̄, f3
nAnd(S) = S̄ ∪ −S̄;

• f1
10

(S) = S̄, f2
10

(S) = −S, f3
10

(S) = S̄ ∪ −S; and

• f1
01

(S) = S, f2
01

(S) = −S̄, f3
01

(S) = S ∪ −S̄.

To verify that f1
Or, f

2
Or, f

3
Or satisfies (3), observe that both sides consist exactly of the

edges of types 1, 3, 4 in Figure 1. The other predicates can be easily verified similarly,
which completes the proof for all P ∈ {Or, nAnd, 10, 01}.

Next, we use γ for a reduction from And to all the remaining predicates. In
particular it will imply their “resistance to sparsification.”

Theorem 3.6. Given parameters n and m ≤
(
n
2

)
, there is a digraph G = (V,E,w)

with 2n vertices and m edges such that for every ε ∈ (0, 1) and every predicate P ∈
{nOr, 01,Dicut,And}, for every ε-P-sparsifier Gε = (V,Eε, wε) of G it holds that that
Eε = E. (Note that G does not depend on P.)

Proof. Let G = (V,E,w) be an arbitrary strongly asymmetric digraph with n
vertices, m edges, and strictly positive weights. Let γ(G) be the digraph constructed
by our reduction. Note that γ(G) consist of 2n vertices and m edges. γ(G) will be
the digraph for which we will prove the theorem.

Fix some predicate P. Let γ(G)ε = (V γ , Eγε ⊆ Eε, wγε ) be some ε-P-sparsifier for
γ(G). Let Gε = (V,Eε, wε) be a digraph where Eε = {(vi, vj) | (vi, v−j) ∈ Eγε } and
wε ((vi, vj)) = wγε ((vi, v−j)). Note that γ(Gε) = γ(G)ε.

Now suppose that there is a function fP : 2V → 2V
γ

such that for every digraph
H on the vertex set V , it holds that

∀S ⊂ V, AndH (S) = Pγ(H) (fP (S)) .(4)

Then we could apply (4) twice, first to Gε and then to G, and obtain that

∀S ⊂ V, AndGε(S) = Pγ(G)ε(fP (S)) ∈ (1± ε) · Pγ(G)(fP (S)) = (1± ε) · AndG(S).

Hence, assuming such a function f exists, Gε is an ε-And-sparsifier for G. According
to Theorem 3.2, necessarily Eε = E, and in particular Eγε = Eγ .

Hence, the existence of such functions fP for all P ∈ {nOr, 01,Dicut,And} will
imply our theorem. And indeed, we let

• fAnd(S) = S ∪ −S;
• fnOr(S) = S̄ ∪ −S̄;
• fDicut(S) = S ∪ −S̄; and
• f01(S) = S̄ ∪ −S.

To verify that fDicut(S) = S ∪ −S̄ satisfies (4), observe that both sides consist
exactly of the edges of type 1 in Figure 1. The other predicates can be easily verified
similarly.
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We conclude our main theorem, which basically puts together Theorems 3.5
and 3.6.

Theorem 3.7. Let P be a binary predicate, and let ε ∈ (0, 1) be some parameter.
• If P has a single “1” in its truth table, then there exist a VCSP I = (V,Π, w)

with a single predicate P such that every ε-P-sparsifier of I will have Ω(|V |2)
constraints.

• If P does not has a single “1” in its truth table, then for every VCSP I =
(V,Π, w) with single predicate P, there exists an ε-P-sparsifier with O

(
|V |/ε2

)
constraints.

4. Lower bounds (for a single predicate). In this section we will show
that Theorem 3.5 is tight. More precisely, we will show that for every P ∈
{Cut, unCut,Or, nAnd, 10, 01}, there exists an n-vertex graph G such that every ε-
P-sparsifier Gε of G must contain Ω(n/ε2) edges.2 The first step was done by [2], who
showed that Theorem 3.1 is tight, i.e., for every n and ε ∈ (1/

√
n, 1), there exists an

n-vertex graph G such that every ε-Cut-sparsifier Gε of G must contain Ω(n/ε2) edges.
Using our reduction γ in a similar manner to Theorem 3.5, this lower bound can be
extended to unCut based on the fact that CutG(S) = unCutγ(G)

(
S ∪ −S̄

)
. However,

γ fails to extend the lower bound to predicates with three 1’s in their truth table. To
this end, we will define sketching schemes, a variation of sparsification where the goal
is to maintain the approximate value of every assignment using a small data structure,
possibly without any combinatorial structure; see the definition below. We will use a
lower bound on the sketch-size of Cut from [2] to prove the lower bound on the number
of edges in a sparsifier (and also on the sketch-size) for Or. The extension to other
predicates with three 1’s in their truth table is straightforward using γ. Sketching
is interesting on its own, and we have further discussion and lower bounds regarding
sketching in section 6.3.

Formally, a sketching scheme (or a sketch in short) is a pair of algorithms (sk, est).
Given a weighted digraph G = (V,E,w) and a predicate P, algorithm sk returns a
string skG (intuitively, a short encoding of the instance). Given skI and a subset S ⊆
V , algorithm est returns a value (without looking at G) that estimates PG(S). We say
that it is an ε-P-sketching-scheme if for every digraph G, and for every subset S ⊆ V ,
est(skG, S) ∈ (1± ε) · PG(S). The sketch-size is maxG | skG |, the maximum length of
the encoding string over all the digraphs with n variables, often measured in bits. sk
might be probabilistic algorithm, but for our purposes it is enough to think only about
the deterministic case. Note that an algorithm for constructing ε-sparsifiers always
provides an ε-sketching-scheme, where the sketch-size is asymptotically equal to the
number of constraints in the constructed sparsifiers when measured in machine words
(and up to logarithmic factors when measured in bits). Sparsification is advantageous
over general sketching as it preserves the combinatorial structure of the problem.
Nevertheless, one may be interested in constructing sketches as they may potentially
require significantly smaller storage.

Theorem 4.1. Fix a predicate P ∈ {Cut, unCut,Or, nAnd, 10}, an integer n, and
ε ∈ (1/

√
n, 1). The sketch-size of every ε-P-sketching-scheme on n variables is

Ω(n/ε2). Moreover, there is an n-vertex digraph G, such that every ε-P-sparsifier
of G has Ω(n/ε2) edges.

2The other predicates {x0, x1, 0x, 1x,~1,~0} are kind of trivial in the sense of sparsification. ~0
sparsified by the empty graph. ~1 can be sparsified using a single edge. {x0, x1, 0x, 1x} could be
sparsified using n edges.
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Proof. We follow the line-of-proof of Theorems 2.3 and 2.4 in [2]. Specifically,
they show that the sketch-size of every ε-Cut-sketching-scheme is Ω(n/ε2) bits, by
proving that a certain family F of n-vertex graphs is hard to sketch and consequently
to sparsify. By similar arguments to Theorem 3.5, this lower bound easily extends
to unCut. Indeed, recall that CutG(S) = unCutγ(G)

(
S ∪ −S̄

)
, and thus a ε-unCut-

sparsifier (or sketch) for γ(G) yields an ε-Cut-sparsifier (or sketch) for G with the
same number of edges (size).

Once we prove the lower bound for predicate Or, a reduction from Or using γ will
extend it also to nAnd, 10 and 01, because

(5) OrG(S) = nAndγ(G)(S̄ ∪ −S̄) = 01γ(G)(S ∪ −S̄) = 10γ(G)(S̄ ∪ −S).

We will thus focus on the predicate Or. As it is a symmetric predicate, we can work
with graphs rather then digraphs. The main observation in our proof is that for every
undirected graph G = (V,E,w), if degG(v) denotes the degree of vertex v, then

(6) ∀S ⊂ V, CutG(S) = 2 · OrG(S)−
∑
v∈S

degG(v).

The graph family F consists of graphs G constructed as follows. Let s1, . . . , sn/2 ∈
{0, 1}1/ε2 be balanced 1/ε2 bit-strings (i.e., each si has normalized Hamming weight
exactly 1/2), and let the graph G be a disjoint union of the graphs {Gj | j ∈ [ε2n/2]},
where each Gj is a bipartite graph, whose two sides, each of size 1/ε2, are denoted
L(Gj) and R(Gj). The edges of G are determined by s1, . . . , sn/2, where each bit
string si is indicates the adjacency between vertex i ∈ ∪jL(Gj) and the vertices in
the respective R(Gj). They further observe (in the proof of [2, Theorem 2.4]) that
the lower bound holds even if the sketching scheme is relaxed as follows:

1. The estimation is required only for cut queries contained in a single Gj ,
namely, cut queries S ∪ T , where S ⊂ L(Gj) and T ⊂ R(Gj) for the same j.

2. The estimation achieves additive error µ/ε3, where µ = 10−4 (instead of
multiplicative error 1± ε).

To prove a sketch-size lower bound for a (µε)-Or-sketching-scheme (skOr, estOr),
we assume it has sketch-size s = s(n, ε) bits and use it to construct a Cut-sketching-
scheme (skCut, estCut) that achieves the estimation properties 1 and 2 on graphs of
the aforementioned form and has sketch-size s + 2n log(1/ε) bits. Then by [2], this
sketch-size must be Ω(n/ε2), and we conclude that s = Ω(n/ε2) as required.

Given a graph G ∈ F , let skCut
G be a concatenation of skOr

G and a list of all vertex
degrees in G. The degrees in G are bounded by 1/ε2, hence the size of skCut

G is
indeed s+ 2n log(1/ε) bits. Given a cut query S ∪T contained in some Gj , define the
estimation algorithm (which we now construct for Cut) to be

(7) estCut(skCut
G , S ∪ T ) := 2 · estOr(skOr

G , S ∪ T )−
∑

v∈S∪T
degG(v).

Let us analyze the error of this estimate. First, observe that as in each Gj there
are precisely 1

2ε4 edges, OrG(S ∪ T ) ≤ 1
2ε4 , and thus

estOr(skOr
G , S ∪ T ) ∈ (1± µε) · OrG(S ∪ T ) ⊆ OrG(S ∪ T )± µ

2ε3
.

Plugging this estimate into (7) and then recalling our initial observation (6), we obtain
as desired
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estCut(skCut
G , S ∪ T ) ∈ 2 · OrG(S ∪ T )± µ

ε3
−

∑
v∈S∪T

degG(v)

= CutG(S ∪ T )± µ

ε3
.

To prove a lower bound on the size of an Or-sparsifier, we follow the argument
in [2, Theorem 2.4], which shows that given an ε-Cut-sparsifier Gε with s = s(n, ε)
edges for a graph G ∈ F , there is a Cut-sparsifier Gµ of Gε, with additive error
µ/2ε3, such that Gµ has only integer weights and henceforth can be encoded using
O(s(µ−2 + log(ε−2n/s))) bits. In fact, there is nothing special here about Cut. The
same proof will work (with the same properties) for predicate Or, assuming a sparsifier
is required to be a subgraph (to remove this restriction, just erase all the edges between
Gj to Gi for i 6= j, which adds only a small additive error).

Now suppose that every graph G of the form specified above admits a µ
2 ε-Or-

sparsifier Gε with s edges. Then as explained above (about repeating the argument
of [2]) there is a graph Gµ that sparsifies Gε with additive error µ/2ε3 and can be
encoded by a string IG of size O(s log(ε−2n/s)) bits (recall that µ is a constant). Use
it to construct a Cut-sketching-scheme with additive error µ/ε3 as follows. Given the
graph G, set skCut

G to be the concatenation of IG and a list of the degrees of all the
vertices in G. Then |IG| = O(s log(ε−2n/s)) + 2n log(1/ε). For a cut query S ∪ T
contained in some Gj , define the estimation algorithm (using the Or sparsifier) to be

estCut(skCut
G , S ∪ T ) := 2 · OrGµ(S ∪ T )−

∑
v∈S∪T

degG(v).

Then we can again analyze it by plugging the above error bounds and then using (6),

estCut(skCut
G , S ∪ T ) ∈ 2 · OrGε(S ∪ T )± µ

2ε3
−

∑
v∈S∪T

degG(v)

∈ 2 · OrG(S ∪ T )± µ

ε3
−

∑
v∈S∪T

degG(v)

= CutG(S ∪ T )± µ

ε3
.

By [2], the sketch-size must be |IG| = Ω(n/ε2), hence s = Ω(n/ε2) (for at least one
graph G ∈ F) as required.

5. Multiple predicates and applications. In this section we extend
Theorem 3.5 to VCSPs using multiple types of predicates. In particular, we prove
sparsifability for some classical problems. Again, our sparsification results are stated
as existential bounds, but these sparsifiers can actually be computed in polynomial
time.

Theorem 5.1. For every ε ∈ (0, 1) and a VCSP (V,Π, w) whose constraints
〈(v, u) ,P〉 ∈ Π all satisfy P /∈ {nOr, 01,Dicut,And}, there exists an ε-sparsifier for
I with O(|V |/ε2) constraints.

This bound is tight, according to Theorem 4.1. We prove it by a straightfor-
ward application of Theorem 3.5. Partition I to disjoint VCSPs according to the
predicates in the constraints, and then for each sub-VCSP find an ε-sparsifier using
Theorem 3.5. The union of this sparsifiers is an ε-sparsifier for I. A formal proof
follows.
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Proof of Theorem 5.1. For each predicate P, let ΠP = {π ∈ Π | π = 〈(v, u) ,P〉}.
Note that {ΠP } forms a partition of Π. For each P, let IP = (V,ΠP , wP ), where
wP is the restriction of w to ΠP . Let IPε = (V,ΠP

ε , w
P
ε ) be an ε-P-sparsifier for

IP with |ΠP
ε | = O(|V |/ε2) constraints according to Theorem 3.5 (recall that P /∈

{nOr, 01,Dicut,And}). Set Iε = (V,Πε, wε), Πε =
⋃
P ΠP

ε and wε =
⋃
P w

P
ε . For every

assignment A,

ValIε(A) =
∑
πi∈Πε

wε (πi) · pi (A(vi), A(ui))

=
∑
P

∑
πi∈ΠPε

wPε (πi) · P (A(vi), A(ui))

∈ (1± ε) ·
∑
P

∑
πi∈ΠP

wP (πi) · P (A(vi), A(ui))

= (1± ε) ·
∑
πi∈Π

w (πi) · pi (A(vi), A(ui))

= (1± ε) ·ValI(A),

and note that indeed |Πε| ≤ O
(
n/ε2

)
.

2SAT (boolean satisfiability problem over constraints with two variables) can
be viewed as a VCSP which uses only the predicates Or, nAnd, 10, and 01. By
Theorem 5.1, for every 2SAT formula Φ over n variables, and for every ε ∈ (0, 1),
there is a sub-formula Φε with O(n/ε2) clauses, such that Φ and Φε have the same
value for every assignment up to factor 1 + ε.3

2LIN is a system of linear equations (modulo 2), where each equation contains
two variables and has a nonnegative weight. Notice that the equation x + y = 1 is
a constraint using the Cut predicate, while the equation x + y = 0 is a constraint
using the unCut predicate. By Theorem 5.1, if n denotes the number of variables,
then for every ε ∈ (0, 1) we can construct a sparsifier with only O(n/ε2) equations
(i.e., a reweighted subset of equations, such that on every assignment it agrees with
the original system up to factor 1 + ε).

We note that by our lower bound (Theorem 4.1), there are instances of 2SAT
(2LIN) for which every ε-sparsifier must contain Ω(n/ε2) clauses (equations).

6. Further directions. Based on the past experience of cut sparsification in
graphs—which has been extremely successful in terms of techniques, applications,
extensions, and mathematical connections—we expect VCSP sparsification to have
many benefits. A challenging direction is to identify which predicates admit sparsifi-
cation, and our results make the first strides in this direction.

We now discuss potential extensions to our results in the previous sections (which
characterize two-variable predicates over a boolean alphabet). We first consider pred-
icates with more variables, and in particular show sparsification for k-SAT formulas,
in section 6.1. We then consider predicates with large alphabets in section 6.2, show-
ing in particular a sparsifier construction for k-Cut and that linear equations (modulo
k ≥ 3) are not sparsifiable. We also consider sketching schemes; notably we discuss
a looser sketching model called for-each in section 6.3. Finally, we study spectral
sparsification for unCut, a notion that preserves some algebraic properties in addition
to the “uncuts” in section 6.4.

3We use here the version of 2SAT where each clause has weight and every assignment has value,
rather than the version when we only ask whether there is an assignment that satisfies all the clauses.
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6.1. Predicates over more variables and k-SAT. It is natural to ask for the
best bounds on the size of ε-P-sparsifiers for different predicates P : {0, 1}k → {0, 1}.
A first step toward answering this question was already done by [11].

Theorem 6.1 (see [11]). For every hypergraph H = (V,E,w) with hyperedges
containing at most r vertices, and ε ∈ (0, 1), there is a reweighted subhypergraph Hε

with O(n(r + log n)/ε2) hyperedges such that

∀S ⊆ V, CutHε(S) ∈ (1± ε) · CutH(S).

Here we say that a hyperedge e is cut by S if S ∩ e /∈ {∅, e} (i.e., not all the
vertices in e are in the same side). Observe that Cut is equivalent to the predicate
NAE (not all equal). In particular Theorem 6.1 implies that for every VCSP using
only NAE, there is an ε-sparsifier with O(n(r + log n)/ε2) constraints.

A k-SAT is essentially a VCSP that uses only predicates with a single 0 in
their truth table. Kogan and Krauthgamer [11] use Theorem 6.1 to construct an
ε-sketching-scheme with sketch-size Õ(nk/ε2) for k-SAT formulas (i.e., only for VC-
SPs of this particular form). We observe that their sketching scheme can be further
used to construct an ε-sparsfier, as follows.

First, recall how the sketching scheme of [11] works. Given a k-SAT formula
Φ = (V, C, w) (variables, clauses, weight over C), construct a hypergraph H on vertex
set V ∪−V ∪ {f}. We associate the literal vi with vertex vi, associate the literal ¬vi
with vertex v−i, and use f to represent the “false.” Each clause becomes a hyper-
edge consisting of f and (the vertices associated with) the literals in C (for example,
v5 ∨ ¬v7 ∨ v12 becomes {f, v5, v−7, v12}). Observe that given a truth assignment
A : V → {0, 1}, if we define SA := {u | A(u) = 0}, then ValΦ(A) = CutH(SA ∪ {f}),
and using Theorem 6.1 this provides a sketching scheme. Moreover, given an ε-Cut-
sparsifier Hε for H, let Φε be the formula which has only the clauses associated with
edges that “survived” the sparsification, with the same weight. Notice that for every
assignment A,

ValΦε(A) = CutHε(SA ∪ {f}) ∈ (1± ε) · CutH(SA ∪ {f}) = (1± ε) ·ValΦ(A).

Theorem 6.2. Given k-SAT formula Φ over n variables and parameter ε ∈ (0, 1),
there is an ε-sparsifier subformula φε with O(n(k + log n)/ε2) clauses.

In contrast, we are not aware of any nontrivial sparsification result for the par-
ity predicate (on k ≥ 3 boolean variables), and this remains an interesting open
problem.

6.2. Predicates over larger alphabets. Our results deal only with predicates
that get two input values in {0, 1}. A natural generalization is to sparsify a VCSP
that uses a predicate over an alphabet of size k, i.e., P : [k]× [k]→ {0, 1}, where [k] :=
{0, 1, . . . , k−1}. One predicate that we can easily sparsify is NE (not-equal), which is
satisfied if the two constrained variables are assigned different values. Indeed, in the
graphs language, this is called a k-Cut, where the value of a partition (S0, . . . , Sk−1) of
the vertices is the total weight of all edges with endpoints in different parts. It turns
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out that the ε-Cut-sparsifier is in particular an ε-k-Cut-sparsifier, using the following
well-known double-counting argument:

k-CutGε (S0, . . . , Sk−1) =
1

2
·
[
CutGε

(
S0, S0

)
+ · · ·+ CutGε

(
Sk−1, Sk−1

)]
∈ (1± ε) · 1

2
·
[
CutG

(
S0, S0

)
+ · · ·+ CutG

(
Sk−1, Sk−1

)]
= (1± ε) · k-CutG (S0, . . . , Sk−1).

In contrast, linear equation predicates are nonsparsifiable for alphabet [k] of size
k ≥ 3. Specifically, for a ∈ [k], let the predicate Suma be satisfied by x, y ∈ [k]
iff x + y = a (mod k). Then for every positively weighted digraph G = (V,E,w),
and every ε ∈ (0, 1), a ∈ [k], every Suma-ε-sparsifier Gε = (V,Eε, wε) of G must
have E = Eε. The argument is similar to the proof of Theorem 3.2. Assume for
contradiction there exist e ∈ E \ Eε. Choose x, y, z ∈ [k] that satisfy x + y = a,
however the three sums z + x, z + y, z + z are all not equal to a (modulo k); this is
clearly possible for k ≥ 4 and easily verified by case analysis for k = 3. Consider an
assignment where the endpoints of e have values x and y, respectively, and all other
vertices have value z. Under this assignment, the value of G is w(e) > 0, while the
value of Gε is zero, a contradiction.

6.3. Sketching. In Theorem 4.1 we showed that for every predicate P ∈
{Cut, unCut,Or, nAnd, 10}, the sketch-size of every ε-P-sketching-scheme is Ω(n/ε2).

Let us now address predicates with a single 1 in their truth table. In the spirit
of the proof of Theorem 3.2, given encoding skG by an ε-And-sketching-scheme we

can completely restore the graph G. As there are 2(n2) different graphs, the sketch-
size of every ε-And-sketching-scheme is at least Ω(n2) bits. Imitating the proof of
Theorem 3.6, we can extend this lower bound to Dicut, 01, and 10.

For-each sketches. In order to reduce storage space of a sketch, one might weaken
the requirements even further and allow the sketch to give a good approximation only
with high probability. A for-each sketching scheme is a pair of algorithms (sk, est);
algorithm sk is a randomized algorithm that given a graph G returns a string skG,
whose distribution we denote by DG; algorithm est is given such a string skG and a
subset S ⊆ V and returns (deterministically) a value est(skG, S). We say that it is
an (ε, δ)-P-sketching-scheme if

∀G = (V,E,w),∀S ⊆ V, Pr
skG∈DG

[est(skG, S) ∈ (1± ε) · PG (S)] ≥ 1− δ .

In [2], it was showed that if we consider n-vertex graphs with weights only in the
range [1,W ], then there is an (ε, 1/poly(n))-Cut-sketching-scheme with sketch-size
Õ
(
nε−1 · log logW

)
bits. Imitating Theorem 3.5, we can construct (ε, 1/poly(n))-

P-sketching-scheme with the same sketch-size for every predicate P whose truth ta-
ble does not have a single 1 (and weights restricted to the range [1,W ]). A nearly
matching lower bound by [2] shows that for every ε ∈ (2/n, 1/2), every (ε, 1/10)-Cut-
sketching-scheme must have sketch-size Ω(n/ε). Using γ, this lower bound can be
extended to unCut. This technique does not work for predicates with three 1’s in
their truth table. Fortunately, we can duplicate the proof of [2] while replacing Cut
by Or and using the fact that for every two vertices v, u in the graph G, it holds that
Or({v}) + Or({u})−Or({v, u}) = 1{{u,v}∈E}. We omit the details of this straightfor-
ward argument. A reduction from Or using γ and (5) will extend the lower bound
also to nAnd,10 and 01.
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Given a sketch skG (i.e., one sample from distribution DG) which encodes an (ε, δ)-
And-sketching-scheme, one can reconstruct every edge of G (every bit of the adjacency
matrix) with constant probability. Standard information-theoretical arguments (in-
dexing problem) imply that the sketch-size of every (ε, δ)-And-sketching-scheme is
Ω(n2) bits. Using γ we can extend this lower bound to Dicut, 01 and 10.

6.4. unCut spectral sparsifiers. Given an undirected n-vertex graph G =
(V,E,w), the Laplacian matrix is defined as LG = DG − AG, where AG is the adja-
cency matrix (i.e., Ai,j = wi,j = w({vi, vj})) and DG is a diagonal matrix of degrees
(i.e., Di,i =

∑
j 6=i wi,j and for i 6= j, Di,j = 0). For every x ∈ Rn it holds that

xtLGx =
∑
{vi,vj}∈E wi,j · (xi − xj)

2
. In particular, for 1S the indicator vector of

some subset S ⊆ V it holds that 1tSLG1S = CutG(S). A subgraph H of G is called
an ε-spectral -sparsifier of G if

∀x ∈ Rn, xtLHx ∈ (1± ε) · xtLGx .

Note that an ε-spectral-sparsifier is in particular an ε-Cut-sparsifier. Nonetheless,
spectral sparsifiers preserve additional properties such as the eigenvalues of the Lapla-
cian matrix (approximately). Batson, Spielman, and Srivastava [3] showed that every
graph admits an ε-spectral-sparsifier with O(n/ε2) edges.

Definition 6.3. Given a graph G, we call UG = (DG +AG) the negated Lapla-
cian of G. Given a subset S ⊆ V , let φS ∈ Rn be a vector such that φS,i = 1 if vi ∈ S
and φS,i = −1 otherwise.

One can verify that for arbitrary x ∈ Rn,

xtUGx =
∑
i<j

wi,j · (xi + xj)
2
.

In particular, for every subset S ⊆ V , it holds that

φtSUGφS = 4 · unCutG(S) .

Next, we will show how we can use UG to construct an unCut-sparsifier Gε (in
an alternative way to Theorem 3.5) such that UGε has (approximately) the same
eigenvalues as UG. A matrix M ∈ Rn×n is called balanced symmetric diagonally
dominant (BSDD) if M = M t and for every index i, Mi,i =

∑
j 6=i |Mi,j |. Note that

LG and UG are both BSDD. A matrix M ′ is governed by M if whenever M ′i,j 6= 0,
also Mi,j 6= 0 and has the same sign. Note that if H is a subgraph of G, then UH is
governed by UG. A matrix M ′ is called an ε-spectral-sparsifier of M if M ′ is governed
by M and

∀x ∈ Rn, xtM ′x ∈ (1± ε) · xtMx .

The following was implicitly shown in [2].

Theorem 6.4 (see [2]). Given BSDD matrix M ∈ Rn×n and parameter ε ∈
(0, 1), there is an ε-spectral-sparsifier M ′ for M , where M ′ is BSDD matrix with
O(n/ε2) nonzero entries.

Fix a graph G and parameter ε; according to Theorem 6.4, there is a BSDD
balanced matrix H with O(n/ε2) nonzero entries, which is a ε-spectral-sparsifier for
UG. Moreover, H is governed by UG. These properties define a graph Gε such that
UGε = H. In particular Gε is an ε-unCut-sparsifier of G with O(n/ε2) edges.



1276 ARNOLD FILTSER AND ROBERT KRAUTHGAMER

REFERENCES

[1] K. J. Ahn and S. Guha, Graph sparsification in the semi-streaming model, in 36th In-
ternational Colloquium on Automata, Languages and Programming, Lecture Notes in
Comput. Sci. 5556, Springer-Verlag, Berlin, 2009, pp. 328–338, https://doi.org/10.1007/
978-3-642-02930-1 27.

[2] A. Andoni, J. Chen, R. Krauthgamer, B. Qin, D. P. Woodruff, and Q. Zhang, On
sketching quadratic forms, in Proceedings of ITCS’16, ACM, 2016, pp. 311–319, https:
//doi.org/10.1145/2840728.2840753.

[3] J. D. Batson, D. A. Spielman, and N. Srivastava, Twice-Ramanujan sparsifiers, SIAM
Rev., 56 (2014), pp. 315–334, https://doi.org/10.1137/130949117.
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