
Networks on which hot-potato routing does not livelock

�

Uriel Feige and Robert Krauthgamer

Department of Computer Science and Applied Math

Weizmann Institute of Science

Rehovot 76100, Israel

ffeige,robig@wisdom.weizmann.ac.il

September 13, 1999

Abstract

Hot-potato routing is a form of synchronous routing which makes no use of bu�ers

at intermediate nodes. Packets must move at every time step, until they reach their

destination. If contention prevents a packet from taking its preferred outgoing edge,

it is de
ected on a di�erent edge. Two simple design principles for hot potato routing

algorithms are minimum advance, that advances at least one packet towards its destina-

tion from every nonempty node (and possibly de
ects all other packets), and maximum

advance, that advances the maximum possible number of packets.

Livelock is a situation in which packets keep moving inde�nitely in the network

without any packet ever reaching its destination. It is known that even maximum

advance algorithms might livelock on some networks. We show that minimum advance

algorithms never livelock on tree networks, and that maximum advance algorithms never

livelock on triangulated networks.

1 Introduction

A network of processors is modeled as a graph in which the processors are nodes and

communication links are edges. We assume here that communication links are bidirectional,

which gives rise to an undirected graph. Processors send messages to each other as packets.

Packets follow a path through the network from their source node to their destination node.

We assume that time proceeds in discrete time steps synchronized throughout the network,

and that a packet can cross one edge per time-step. We further assume that each edge can

carry at most one packet per time step in each direction.

A routing algorithm speci�es for every node at every time step what to do with the

packets currently at that node. That is, it determines for each packet, based on the local

state of the node and on information contained in the header of the packets, whether to

absorb it (we assume this happens if and only if the current node is the �nal destination of
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the packet), whether to keep it bu�ered at the node for the current time step, or whether

to send it out on an outgoing edge, respecting the limitations on edge capacity.

We study a form of packet routing algorithms known as hot potato routing (which is

a special form of de
ection routing). It uses no bu�er space for storing delayed packets.

Each packet must leave the node at the step following its arrival, unless it has arrived to

its destination. Thus, packets keep moving in the network, giving rise to the term \hot-

potato". In this form of routing some packets may have to be de
ected away from their

preferred direction due to congestion. This is di�erent from store-and-forward routing, where

a packet can be temporarily stored at a processor, and forwarded along the desired link once

it becomes available.

We consider shortest path hot potato algorithms, where every packet attempts to follow

a shortest path from its current location to its destination. Due to contention (two or more

packets who wish to traverse the same edge at the same time), this may not be always

possible. In the current paper we study the following contention resolution rules (similar to

rules considered in [12, 7, 6]). These rules apply at every time step and every non-empty

node.

� Minimum Advance: At least one packet advances towards its destination.

� Maximum Advance: The maximum possible number of packets advance.

The above rules provide a tradeo� between the progress guarantee that they give and

the di�culty of implementing them. Minimum advance algorithms are easy to implement.

Every node selects an arbitrary incoming packet and sends it out on its desired outgoing

edge. All other packets are sent out on arbitrary edges, possibly de
ected further away

from their destinations. Maximum advance algorithms are more di�cult to implement, as

they require �nding a maximum matching between the set of incoming packets and their

desired outgoing edges. However, they do not de
ect packets unless the de
ection cannot

be avoided, and hence are expected to make more progress at every time step.

Observe that even with maximum advance it is possible that at a certain time step more

packets are being de
ected than being advanced (e.g., if three packets want to cross the

same link). This leads to the issue of livelock, discussed next.

1.1 Livelock

The evacuation time of a routing algorithm is the number of time steps it takes it to deliver

all packets currently in the network to their respective destinations, assuming that no new

packets are injected into the network. A routing algorithm may fail to evacuate a network

for the following reasons:

� Deadlock: Packets in the network do not move because every packet waits for another

packet to free network resources (typically, bu�er space at nodes).

� Livelock: Packets do move in the network, but never reach their destination nodes.
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Deadlock avoidance is a major issue for store-and-forward routing, when bu�ers at the

nodes are of bounded size and nodes refuse to accept new packets unless they have su�cient

bu�er space for them. It becomes an even more acute danger for wormhole routing, where

a single packet can occupy bu�ers of several nodes. See [11] and references therein for more

details. However, for hot potato routing, deadlock cannot occur, because packets keep on

moving all the time.

Livelock is usually not an issue for store-and-forward routing, because there it is often

the case that a packet moves only if it makes progress towards its destination. However,

livelock is a concern for hot potato routing, where packets might alternate between advancing

towards their destination and being de
ected away from it. Some simple examples of livelock

are shown in [15] and [12].

There are certain contention resolution rules that are livelock-free on every network. For

example, livelock can be avoided in any algorithm of the minimum advance family, by adding

certain priority rules, e.g. priority given to packets that are closest to their destination, or

�xed priority levels according to a global ordering of the destination of packets, cf. [10, 12].

Neither the minimum advance principle nor the maximum advance principle by them-

selves guarantee evacuation on every network. See Section 1.5 for more details. However,

they are livelock-free on some networks. Identifying such networks is the motivation for the

current paper.

Throughout, we focus on the batch (also called static) model, where all packets are

injected to the network at time 0, as this more restricted model su�ces for our purposes of

identifying livelock-free networks. Indeed, we show in Section 1.6 that in this respect, the

batch model is equivalent to the continuous model, in which packets may be generated at

any time.

Remark: An important issue that is not addressed in this paper is that of starvation.

Starvation occurs when some packets fail to reach their destinations inde�nitely, whereas

other packets do reach their destinations. For batch routing problems, as studied in this

paper, either all packets are delivered, or a livelock occurs, making starvation a nonissue.

However, if new packets are continuously generated and injected into the network before the

older packets evacuate it, starvation may occur even on a livelock free network. A common

approach for avoiding starvation in this case is by giving priority to older packets over newer

ones.

1.2 Preliminaries

As mentioned above, a network is modeled as an undirected graph. We use the standard

notion of a graph G = (V;E) with a vertex set V and an edge set E, where the vertices

represent the processors and the edges represent the communication links. In this work we

consider only networks (graphs) that are �nite, connected and simple.

A (simple) cycle of length l in a network is a subset of l distinct vertices fv

1

; : : : ; v

l

g

and corresponding edges (v

1

; v

2

); (v

2

; v

3

); : : : ; (v

l�1

; v

l

); (v

l

; v

1

) 2 E. A triangle is a cycle of

length 3. A tree network is one which contains no cycles. The girth of a graph is the length

of the shortest cycle in it. Trees have in�nite girth.

A chord in a cycle is an edge both whose endpoints belong to the cycle, though not
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adjacent on it. A network is triangulated (or chordal) if any cycle of length more than 3 has

a chord. A good overview of the di�erent aspects of triangulated graphs can be found in

Golumbic's book [14], or in the exposition of Kloks [18, Chapter 2.1].

We consider the batch routing problem, where all packets are generated at time 0. We

assume that the number of packets generated at a node is no more than its degree. Hence

all packets can be sent out on outgoing edges at the �rst time step. There are no further

restrictions on the routing problem (e.g. we allow many packets to have the same destina-

tion). The goal of the routing algorithm is to evacuate the network, i.e. deliver each of the

packets to its destination.

We denote the number of vertices in the network as n = jV j, and the number of packets

in the routing problem as k. A con�guration of packets in a network is any placement

(mapping) of the packets to the nodes of the network. Let us denote by � the set of all

possible con�gurations of packets in the network. Then for k packets in a network with n

nodes, j�j � n

k

.

We note that in de�ning a con�guration of a network, we abstract away past information

about the network (e.g., on which link did a packet enter a node). In our context of studying

the livelock avoidance properties of minimum/maximum advance algorithms, this is done

without loss of generality, for the following reason. At every time step, we assume adversarial

decisions: the routing algorithm, having complete knowledge of the location of all packets in

the network, assigns packets to the worst possible outgoing edges, with the only constraint

being that the minimum/maximum advance principle is respected. As the choice of worst

possible outgoing edges is independent of the past, there is no reason for a con�guration

to encode past information. This also implies that if an algorithm does not livelock, the

network is evacuated in no more than n

k

steps, as no con�guration can repeat itself (using

a convention where a packet that reached its destination is \placed" in the con�guration at

its destination node).

Remark: For networks on which minimum advance algorithms cannot livelock, the

discussion above implies that every minimum advance algorithm evacuates them within n

k

steps. For other networks, some minimum advance algorithms might livelock, whereas other

minimum advance algorithms that do not livelock might take more than n

k

steps to evacuate

the network. Long evacuation times may happen if routing decisions depend on the past,

and hence a con�guration (in the sense that we de�ned it) may repeat without implying

livelock. For randomized routing algorithms (such as in [19]), it may happen that livelock

avoidance is guaranteed only in a probabilistic sense, and then the expected number of steps

it takes to evacuate the network need not be smaller than n

k

.

1.3 Results

Our main results are the following:

Theorem 1 Minimum advance algorithms cannot livelock on trees.

Theorem 2 Maximum advance algorithms cannot livelock on triangulated graphs.
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These theorems do not give a complete characterization of networks on which mini-

mum/maximum advance algorithms do not livelock. For example, the minimum advance

algorithm also evacuates every complete graph. However, we do give examples showing that

our theorems cannot be extended to much larger classes of networks. Perhaps the major

open question in this respect is whether the maximum advance algorithm can livelock on

the two dimensional mesh.

The proofs of our theorems do not provide upper bounds on the evacuation time (except

for the general upper bound of n

k

mentioned above). The issue of upper bounds is touched

upon in Section 3.1, but remains mostly unexplored.

1.4 Related work

Baran [1] is widely credited with having �rst proposed hot-potato routing. Borodin and

Hopcroft [8] proposed an algorithm for hot-potato routing on the hypercube. Although

they did not give a complete analysis of its behavior, they observed that \experimentally

the algorithm appears promising". Numerous experimental results on hot-potato routing

have been published, and several variants were implemented in massively parallel machines

and in high-speed communication networks, especially in optical networks. For more details

on experimental and practical issues, see the many references of [7].

Apparently, the �rst to consider worst case bounds for hot-potato routing was Hajek [15],

whose solutions include giving priority to packets closer to their destination. His work was

continued by Brassil and Cruz [10], who studied �xed priorities.

Several works consider design principles, i.e. families of algorithms. A certain class of

\greedy" algorithms (stronger than minimum advance but weaker than maximum advance)

was studied by Ben-Dor, Halevi and Schuster [7]. They give an upper bound for the time

it takes any algorithm of this class to evacuate a mesh network. Feige [12] gives an upper

bound for the time that an arbitrary maximum advance algorithm evacuates a tree network.

Nontrivial lower bounds on the worst case evacuation time are known for some hot-

potato routing algorithms. Feige [12] shows examples in which a packet su�ers 2

k

� 1

de
ections when there are k other packets in the network, and the routing algorithm is

maximum advance with �xed priorities. For the two dimensional mesh, Ben-Aroya, Chinn

and Schuster [3] show examples where certain shortest path algorithms have evacuation

times that are linear in the number of nodes.

Only few works consider hot-potato routing algorithms for general networks, cf. Feige [12]

and, independently, Symvonis [23]. The store and forward case for general networks was

addressed by Mansour and Patt-Shamir [20].

Most work on hot-potato routing suggest speci�c algorithms and analyze their worst

case bounds for certain networks such as trees, hypercubes, meshes and tori. Some of these

algorithms belong to the family of shortest path algorithms, cf. [4, 5, 7, 9, 12], while others

are structured, i.e. use prede�ned paths or certain structures, cf. [2, 13, 17, 16, 21, 22]. For

a recent discussion of these algorithms the reader is referred to [7] or [9].
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1.5 An example of livelock

For completeness, we demonstrate a livelock on networks with girth 5 or more (recall that

the girth of a graph is the length of the shortest cycle in it). Essentially, this example was

given in [12] where a few more vertices were added to make the routing problem one-to-one

(i.e. each node is the source and destination of at most one packet).

Proposition 1 There are maximum advance algorithms that livelock on any cycle-network

of length at least 5, and on any network with �nite girth at least 5.

Proof. Consider �rst a cycle of g � 5 nodes, and number the nodes on it from 0 to g�1. Let

each node i be the source of two packets, whose destinations are (i+1) mod g and (i+2) mod

g. Now attempt to route the packets using a maximum advance routing algorithm, resolving

contentions by giving priority to the packet which is furthest away from its destination.

Observe, that in the next time step, each node i will have two packets, whose destinations

are also (i+1) mod g and (i+2) mod g. This con�guration is exactly the initial one, leading

to a livelock.

For arbitrary networks with �nite girth g � 5, observe that the same routing embedded

on a shortest cycle in the network is a maximum advance one. Indeed, the shortest path

between a node i and a destination (i+2) mod g must be unique, or otherwise the network

would contain a cycle of length 4. Hence, the only edges which advance a packet towards

its destination (either (i+1) mod g or (i+2) mod g) are along the cycle edges, so the same

routing is a maximum advance one and, of course, livelocks. 2

1.6 Continuous Routing

In the continuous routing problem, packets may be generated at any time. Note that it might

be impossible for a source node to inject the packet into the network if all its outgoing edges

are occupied by other packets. We thus need to assume that a source node is able to store

the packets it generates until it has a vacant outgoing edge.

We next show that for our purposes of identifying livelock-free networks, the batch and

continuous models are equivalent.

Proposition 2 A network is livelock-free for minimum (resp. maximum) advance algo-

rithms in the batch model if and only if it is livelock-free for minimum (resp. maximum)

advance algorithms in the continuous model.

Proof. We show that a network might have a livelock in the batch model, if and only if it

might have a livelock in the continuous model (with respect to the same class of algorithms).

Clearly, livelock in the batch model implies livelock in the continuous model. Conversly,

assume a livelock in the continuous model occurs, so no packets are delivered to their

destination. Since the network is �nite, at some point no more packets are injected to

the network, and we remain in a batch scenario that livelocks. If the continuous algorithm

satis�ed the minimum (resp. maximum) advance principle, then so does the batch algorithm.

Note that the implied batch algorithm might be nondeterministic even if the continuous

algorithm was deterministic, because the continuous algorithm might have used additional
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information which is not available to the batch algorithm, such as the number of packets that

wait to be injected to the network. However, our model of batch routing considers adversarial

decisions at every time step, including nondeterministic choices (see Section 1.2). With an

appropriate adversary, we get a livelock in the batch model. 2

2 Maximum Advance Algorithms

A pair of adjacent edges (i.e. having a common endpoint) in a network is said to satisfy the

shortcut property if it participates in a triangle of the network.

Proposition 3 In a triangulated network, every cycle contains at least two pairs of edges

with the shortcut property.

Proof. If the length of the cycle is 3 (a triangle), then every pair of edges from it satisfy the

shortcut property with the cycle itself being the required triangle. Otherwise, the length of

the cycle is at least 4 so it must have at least one chord. This chord divides the edges of

the cycle into two parts, each containing at least 2 edges. To complete the proof, it su�ces

to show that each of the two parts of the cycle contains at least one pair with the shortcut

property.

Consider one part of the cycle, P , of k � 2 edges, and the dividing chord e. Together

they form a cycle of length k+1. So if k = 2, then P itself is a pair of edges with the shortcut

property, as claimed. If k > 2, then the formed cycle must have a chord e

0

, and is thus also

divided into two parts. Observe that the part not containing e, which we denote by P

0

, is

strictly contained in P , i.e. P

0

� P and 2 � jP

0

j � jP j � 1. Repeating this argument at

most k� 2 times, we end up with a subset of size 2 of P , i.e. a pair of edges, which satis�es

the shortcut property, because the corresponding chord forms triangle, as required. 2

We now prove Theorem 2, that maximum advance algorithms do not livelock on chordal

graphs.

Proof. Assume to the contrary that there is a routing execution obeying the maximum

advance principle which livelocks, and consider a sequence of advances A, constructed as

follows. Start with some packet p advancing in an arbitrary j-th step. If p advances also

in the next step (step j + 1), then add this advance to A. Otherwise (p does not advance),

all edges which would advance p are assigned to other packets p

0

, which advance on it (or

otherwise swapping between p and p

0

would contradict the maximum advance principle). In

this case, choose one such edge and an advancing packet p

0

and add it to A. The rest of the

advances are de�ned in the same manner.

Due to the livelock in a �nite network, the sequence of advances A must repeat some

node, closing a cycle in the network. Note that the cycle is simple if we consider the �rst

time a node occurs twice in the sequence A, and its length is at least 3, by the way it was

constructed.

Consider pairs of adjacent edges on the cycle. All of them but one (the pair of the last

edge and the �rst edge in the construction of the cycle), participate in a shortest path of
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c+

p+

p’
+

Legend:

packet ’c’ advances

packet ’c’ is deflectedc-

Figure 1: A minimum chord is actually a shortcut for a shortest path

some packet p to its destination, according to our construction of the cycle from the sequence

of advances. By Proposition 3 there is a shortcut in the network for at least one of these

pairs (see Figure 1). However, such a shortcut edge is in contradiction with the de�nition

of a shortest path. 2

3 Minimum Advance Algorithms

We prove Theorem 1, that minimum advance algorithms do not livelock on trees.

Proof. Assume to the contrary that there is a routing execution obeying the minimum

advance principle which livelocks. Since the number of possible con�gurations is �nite, then

some con�guration must be repeated at some time. W.l.o.g. assume that after r time steps

the network returns to its initial con�guration.

Let p be an advancing packet in an arbitrary j-th time step. Notice that the edge (u; v)

on which p advances (from u to v), is a bridge between two subtrees of the tree network, as

shown in �gure 2. We de�ne the leftover tree T

p;j

to be the subtree which contains v (and

also the destination of p).

Consider all leftover trees in the �rst r steps, and let T

min

= T

p

0

;j

0

be the tree of minimum

size among them, de�ned as the leftover tree of a packet p

0

advancing at time step j

0

. If T

min

contains only one node v then necessarily this node is the destination of p

0

, which reaches

its destination at this step, in contradiction to the assumption of a livelock.

So we can assume that T

min

contains at least two nodes. Let j

00

> j

0

be the �rst step

in which p

0

leaves the leftover tree T

min

, namely traverses from v to u. There must be such

a step because p

0

must return to u at some time by the livelock assumption. Packet p

0

is

clearly de
ected at this step (the edge (v; u) leads it further away from its destination). So

by the minimum advance principle some other packet p

00

must advance from v at this time

step (see �gure 3). However, the edge (v; u) is occupied by p

0

, so p

00

must advance further
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c+

packet ’c’ is deflected

packet ’c’ advances

c-

Legend:
p+

u  v T
p,j

Figure 2: Packet p separates the tree and de�nes the leftover tree.

into T

min

. Thus, p

00

de�nes a strictly smaller leftover tree T

p

00

;j

00

� T

min

, which contradicts

the minimality of T

min

. 2

c+

packet ’c’ is deflected

packet ’c’ advances

c-

Legend:

u  v

p’-

p’’+
T 

Tp’’,j’’

min

Figure 3: A smaller leftover tree T

p

00

;j

00

� T

min

Theorem 1 is nearly best possible, as the following proposition shows.

Proposition 4 A minimum advance algorithm may enter a livelock on a network with one

cycle of arbitrary length.

Proof. For simplicity, we demonstrate a livelock on a network with one cycle of length 3.

Examples with a larger cycle are similar. The network and a corresponding step sequence are

described in �gure 4. Circles denote packets destinations and arrows represent the traversal

of a packet.

Observe that the routing satis�es the minimum advance principle but enters a livelock.

2

3.1 Evacuation times

Both minimum advance and maximum advance algorithms evacuate any tree network. How-

ever, their evacuation time is di�erent. For a packet p, let d

p

be the distance between

the packet's source and destination nodes, and let k denote the number of packets in the

routing problem. It was shown in [12] that every maximum advance algorithm achieves
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Legend:

packet ’c’ advances

packet ’c’ is deflected

destination of packet ’c’c

b-
e+d-

a+

c+

t = 0:

a
d

b e

cf-

f
a-

d+

f+ c-

e-
b+

t = 1:

ca
d

b e

f

Figure 4: An example of minimum advance livelock on a network with one cycle

t

p

� d

p

+ 2(k � 1) on trees, where t

p

is the number of steps required for the packet to

reach its destination. We show that this bound does not hold for some minimum advance

algorithms.

Proposition 5 There is a minimum advance algorithm on a tree network which does not

deliver some packet p within d

p

+ 2(k � 1) steps.

Proof. We show an example of routing 3 packets (denoted a; b and c) on a small tree

network of 6 nodes. The network and the corresponding step sequence are described in

�gure 5. Circles denote packets destinations and arrows represent the traversal of a packet.

Observe that the routing satis�es the minimum advance principle, but although k = 3,

packet a is de
ected 3 times, and is thus delivered only after d

p

+ 6 > d

p

+ 2(k � 1) steps.

2
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