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Efficient Classification for Metric Data
Lee-Ad Gottlieb, Aryeh Kontorovich and Robert Krauthgamer

Abstract—Recent advances in large-margin classifi-
cation of data residing in general metric spaces (rather
than Hilbert spaces) enable classification under various
natural metrics, such as string edit and earthmover
distance. A general framework developed for this pur-
pose by von Luxburg and Bousquet [JMLR, 2004] left
open the questions of computational efficiency and of
providing direct bounds on generalization error.

We design a new algorithm for classification in gen-
eral metric spaces, whose runtime and accuracy depend
on the doubling dimension of the data points, and
can thus achieve superior classification performance
in many common scenarios. The algorithmic core of
our approach is an approximate (rather than exact)
solution to the classical problems of Lipschitz exten-
sion and of Nearest Neighbor Search. The algorithm’s
generalization performance is guaranteed via the fat-
shattering dimension of Lipschitz classifiers, and we
present experimental evidence of its superiority to some
common kernel methods. As a by-product, we offer a
new perspective on the nearest neighbor classifier, which
yields significantly sharper risk asymptotics than the
classic analysis of Cover and Hart [IEEE Trans. Info.
Theory, 1967].

I. INTRODUCTION

A recent line of work extends the large-margin
classification paradigm from Hilbert spaces to less
structured ones, such as Banach or even metric
spaces, see e.g. [23], [34], [13], [40]. In this metric
approach, data is presented as points with distances
but lacking the additional structure of inner-products.
The potentially significant advantage is that the met-
ric can be precisely suited to the type of data, e.g.
earthmover distance for images, or edit distance for
sequences.

However, much of the existing machinery of
classification algorithms and generalization bounds,
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(e.g. [11], [32]) depends strongly on the data resid-
ing in a Hilbert space. This structural requirement
severely limits this machinery’s applicability — many
natural metric spaces cannot be represented in a
Hilbert space faithfully; formally, every embedding
into a Hilbert space of metrics such as `1, earth-
mover, and edit distance must distort distances by
a large factor [14], [29], [2]. Ad-hoc solutions such
as kernelization cannot circumvent this shortcoming,
because imposing an inner-product obviously embeds
the data in some Hilbert space.

To address this gap, von Luxburg and Bousquet
[34] developed a powerful framework of large-margin
classification for a general metric space X . They
first show that the natural hypotheses (classifiers)
to consider in this context are maximally-smooth
Lipschitz functions; indeed, they reduce classification
(of points in a metric space X ) with no training
error to finding a Lipschitz function f : X → R
consistent with the data, which is a classic problem in
Analysis, known as Lipschitz extension. Next, they es-
tablish error bounds in the form of expected surrogate
loss. Finally, the computational problem of evaluating
the classification function is reduced, assuming zero
training error, to exact nearest neighbor search. This
matches a popular classification heuristic, and in
retrospect provides a rigorous explanation for this
heuristic’s empirical success in general metric spaces,
extending the seminal analysis of Cover and Hart [12]
for the Euclidean case.

The work of [34] has left open some algorithmic
questions. In particular, allowing nonzero training
error is apt to significantly reduce the Lipschitz
constant, thereby producing classifiers that have lower
complexity and are less likely to overfit. This in-
troduces the algorithmic challenge of constructing a
Lipschitz classifier that minimizes the 0-1 training
error. In addition, exact nearest neighbor search in
general metrics has time complexity proportional
to the size of the dataset, rendering the technique
impractical when the training sample is large. Finally,
bounds on the expected surrogate loss may signifi-
cantly overestimate the generalization error, which is
the true quantity of interest.
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Our contribution: We solve the problems delin-
eated above by showing that data residing in a metric
space of low doubling dimension admits accurate and
computationally efficient classification. This is the
first result that ties the doubling dimension of the data
to either classification error or algorithmic runtime.1

Specifically, we (i) prove generalization bounds for
the classification (0-1) error as opposed to surrogate
loss, (ii) construct and evaluate the classifier in a
computationally-efficient manner, and (iii) perform
efficient structural risk minimization by optimizing
the tradeoff between the classifier’s smoothness and
its training error.

Our generalization bound for Lipschitz classifiers
controls the expected classification error directly
(rather than expected surrogate loss), and may be
significantly sharper than the latter in many common
scenarios. We provide this bound in Section III,
using an elementary analysis of the fat-shattering
dimension. In hindsight, our approach offers a new
perspective on the nearest neighbor classifier, with
significantly tighter risk asymptotics than the classic
analysis of Cover and Hart [12].

We further give efficient algorithms to implement
the Lipschitz classifier, both for the training and the
evaluation stages. In Section IV we prove that once
a Lipschitz classifier has been chosen, the hypothesis
can be evaluated quickly on any new point x ∈ X
using approximate nearest neighbor search, which is
known to be fast when points have a low doubling
dimension. In Section V we further show how to
quickly compute a near-optimal classifier (in terms
of classification error bound), even when the training
error is nonzero. In particular, this necessitates the
optimization of the number of incorrectly labeled
examples — and moreover, their identity — as part
of the structural risk minimization.

Finally, we give in Section VI two exemplary
setups. In the first, the data is represented using the
earthmover metric over the plane. In the second,
the data is a set of time series vectors equipped
with a popular distance function. We provide basic
theoretical and experimental analysis, which illustrate
the potential power of our approach.

II. DEFINITIONS AND NOTATION

Notation: We will use standard O(·),Ω(·) no-
tation for orders of magnitude. If f = O(g) and
g = O(f), we will write f = Θ(g). Whenever f =

1Previously, the doubling dimension of the space of classifiers
was used in [8], but this is less relevant to our discussion.

O(npolylog n), we will denote this by f = Õ(n).
If n ∈ N is a natural number [n] denotes the set
{1, . . . , n}.

Metric spaces: A metric ρ on a set X is
a positive symmetric function satisfying the tri-
angle inequality ρ(x, y) ≤ ρ(x, z) + ρ(z, y); to-
gether the two comprise the metric space (X , ρ).
The diameter of a set A ⊆ X , is defined by
diam(A) = supx,y∈A ρ(x, y) and the distance be-
tween two sets A,B ⊂ X is defined by ρ(A,B) =
infx∈A,y∈B ρ(x, y). The Lipschitz constant of a func-
tion f : X → R, denoted by ‖f‖Lip, is defined to be
the smallest L > 0 that satisfies |f(x)− f(y)| ≤
Lρ(x, y) for all x, y ∈ X .

Doubling dimension: For a metric space (X , ρ),
let λ be the smallest value such that every ball in
X can be covered by λ balls of half the radius. λ is
the doubling constant of X , the doubling dimension
of X is ddim(X ) = log2 λ. A metric is doubling
when its doubling dimension is bounded. Note that
while a low Euclidean dimension implies a low
doubling dimension (Euclidean metrics of dimension
d have doubling dimension Θ(d) [21]), low doubling
dimension is strictly more general than low Euclidean
dimension.

The following packing property can be demon-
strated via repeated applications of the doubling
property (see, for example [25]):

Lemma 1. Let X be a metric space, and suppose
that S ⊂ X is finite and has a minimum interpoint
distance at least α > 0. Then the cardinality of S is

|S| ≤
(

2diam(S)
α

)ddim(X )

.

Nets: Let (X , ρ) be a metric space and suppose
S ⊂ X . An ε-net of S is a subset T ⊂ S with the
following properties: (i) Packing: all distinct u, v ∈ T
satisfy ρ(u, v) ≥ ε, which means that T is ε-
separated; and (ii) Covering: every point u ∈ S is
strictly within distance ε of some point v ∈ T , namely
ρ(y, x) < ε.

Learning: Our setting in this paper is the ag-
nostic PAC learning model [27]. Examples are drawn
independently from X × {−1, 1} according to some
unknown probability distribution P and the learner,
having observed n such pairs (x, y) produces a hy-
pothesis h : X → {−1, 1}. The generalization error
is the probability of misclassifying a new point drawn
from P:

P {(x, y) : h(x) 6= y} .
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The quantity above is random, since it depends on
the n observations, and we wish to upper-bound it
in probability. Most bounds of this sort contain a
training error term, which is the fraction of observed
examples misclassified by h and roughly correspond-
ing to bias in Statistics, as well as a hypothesis com-
plexity term, which measures the richness of the class
of all admissible hypotheses [35], and roughly cor-
responding to variance in Statistics. Optimizing the
tradeoff between these two terms is known as Struc-
tural Risk Minimization (SRM).2 Keeping in line
with the literature, we ignore the measure-theoretic
technicalities associated with taking suprema over
uncountable function classes.

III. GENERALIZATION BOUNDS

In this section, we derive generalization bounds
for Lipschitz classifiers over doubling spaces. As
noted by [34] Lipschitz functions are the natural
object to consider in an optimization/regularization
framework. The basic intuition behind our proofs
is that the Lipschitz constant plays the role of the
inverse margin in the confidence of the classifier.
As in [34], small Lipschitz constant corresponds to
large margin, which in turn yields low hypothesis
complexity and variance. However, in contrast to [34]
(whose generalization bounds rely on Rademacher
averages) we use the doubling property of the metric
space directly to control the fat-shattering dimension.

We apply tools from generalized Vapnik-
Chervonenkis theory to the case of Lipschitz
classifiers. Let F be a collection of functions
f : X → R and recall the definition of the fat-
shattering dimension [1], [4]: a set X ⊂ X is said
to be γ-shattered by F if there exists some function
r : X → R such that for each label assignment
y ∈ {−1, 1}X there is an f ∈ F satisfying
y(x)(f(x) − r(x)) ≥ γ > 0 for all x ∈ X . The γ-
fat-shattering dimension of F , denoted by fatγ(F),
is the cardinality of the largest set γ-shattered by F .

For the case of Lipschitz functions, we will show
that the notion of fat-shattering dimension may be
somewhat simplified. We say that a set X ⊂ X is
γ-shattered at zero by a collection of functions F if
for each y ∈ {−1, 1}X there is an f ∈ F satisfying

2 Robert Schapire pointed out to us that these terms from
Statistics are not entirely accurate in the machine learning setting.
In particular, the classifier complexity term does not correspond
to the variance of the classifier in any quantitatively precise way.
However, the intuition underlying SRM corresponds precisely to
the one behind bias-variance tradeoff in Statistics, and so we shall
occasionally use the latter term as well.

y(x)f(x) ≥ γ for all x ∈ X . (This is the definition
above with r ≡ 0.) We write fat0γ(F) to denote the
cardinality of the largest set γ-shattered at zero by F
and show that for Lipschitz function classes the two
notions are the same.

Lemma 2. Let F be the collection of all f : X → R
with ‖f‖Lip ≤ L. Then fatγ(F) = fat0γ(F).

Proof: We begin by recalling the classic Lip-
schitz extension result, essentially due to [26] and
[36]. Any real-valued function f defined on a subset
X of a metric space X has an extension f∗ to all of X
satisfying ‖f∗‖Lip = ‖f‖Lip. Thus, in what follows we
will assume that any function f defined on X ⊂ X is
also defined on all of X via some Lipschitz extension
(in particular, to bound ‖f‖Lip it suffices to bound the
restricted

∥∥f|X∥∥Lip
).

Consider some finite X ⊂ X . If X is γ-shattered
at zero by F then by definition it is also γ-shattered.
Now assume that X is γ-shattered by F . Thus,
there is some function r : X → R such that for
each y ∈ {−1, 1}X there is an f = fr,y ∈ F
such that fr,y(x) ≥ r(x) + γ if y(x) = +1 and
fr,y(x) ≤ r(x) − γ if y(x) = −1. Let us define
the function f̃y on X and as per above, on all of
X , by f̃y(x) = γy(x). It is clear that the collection{
f̃y : y ∈ {−1, 1}X

}
γ-fat-shatters X at zero; it only

remains to verify that f̃y ∈ F , i.e.,

sup
y∈{−1,1}X

∥∥∥f̃y∥∥∥
Lip
≤ sup

y∈{−1,1}X

‖fr,y‖Lip
.

Indeed,

sup
y∈{−1,1}X ,x,x′∈X

fr,y(x)− fr,y(x′)
ρ(x, x′)

≥ sup
x,x′∈X

r(x)− r(x′) + 2γ
ρ(x, x′)

≥ sup
x,x′∈X

2γ
ρ(x, x′)

= sup
y∈{−1,1}X

∥∥∥f̃y∥∥∥
Lip
.

A consequence of Lemma 2 is that in considering
the generalization properties of Lipschitz functions
we need only bound the γ-fat-shattering dimension
at zero. The latter is achieved by observing that the
packing number of a metric space controls the fat-
shattering dimension of Lipschitz functions defined
over the metric space:
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Theorem 3. Let (X , ρ) be a metric space. Fix some
L > 0, and let F be the collection of all f : X → R
with ‖f‖Lip ≤ L. Then for all γ > 0,

fatγ(F) = fat0γ(F) ≤M(X , ρ, 2γ/L)

where M(X , ρ, ε) is the ε-packing number of X ,
defined as the cardinality of the largest ε-separated
subset of X .

Proof: Suppose that S ⊆ X is fat γ-shattered
at zero. The case |S| = 1 is trivial, so we assume
the existence of x 6= x′ ∈ S and f ∈ F such that
f(x) ≥ γ > −γ ≥ f(x′). The Lipschitz property
then implies that ρ(x, x′) ≥ 2γ/L, and the claim
follows.

Corollary 4. Let metric space X have doubling
dimension ddim(X ), and let F be the collection of
real-valued functions over X with Lipschitz constant
at most L. Then for all γ > 0,

fatγ(F) ≤
(
Ldiam(X )

γ

)ddim(X )

.

Proof: The claim follows immediately from The-
orem 3 and the packing property of doubling spaces
(Lemma 1).

Equipped with these estimates for the fat-shattering
dimension of Lipschitz classifiers, we can invoke a
standard generalization bound stated in terms of this
quantity. For the remainder of this section, we take
γ = 1 and say that a function f classifies an example
(xi, yi) correctly if

yif(xi) ≥ 1. (1)

The following generalization bounds appear in [4].

Theorem 5. Let F be a collection of real-valued
functions over some set X , define D = fat1/16(F)
and let and P be some probability distribution on
X × {−1, 1}. Suppose that (xi, yi), i = 1, . . . , n are
drawn from X ×{−1, 1} independently according to
P and that some f ∈ F classifies the n examples
correctly, in the sense of (1). Then with probability
at least 1− δ,

P {(x, y) : sgn(f(x)) 6= y} ≤
2
n

(D log2(34en/D) log2(578n) + log2(4/δ)) .

Furthermore, if f ∈ F is correct on all but k
examples, we have with probability at least 1− δ

P {(x, y) : sgn(f(x)) 6= y} ≤
k

n
+

√
2
n

(D ln(34en/D) log2(578n) + ln(4/δ)).

Applying Corollary 4, we obtain the following
consequence of Theorem 5.

Corollary 6. Let metric space X have doubling
dimension ddim(X ), and let F be the collection of
real-valued functions over X with Lipschitz constant
at most L. Then for any f ∈ F that classifies a
sample of size n correctly, we have with probability
at least 1− δ

P {(x, y) : sgn(f(x)) 6= y} ≤ (2)
2
n

(D log2(34en/D) log2(578n) + log2(4/δ)) .

Likewise, if f is correct on all but k examples, we
have with probability at least 1− δ

P {(x, y) : sgn(f(x)) 6= y} ≤ (3)

k

n
+

√
2
n

(D ln(34en/D) log2(578n) + ln(4/δ)).

In both cases, D = fat1/16(F) ≤
(16Ldiam(X ))ddim(X ).

A. Comparison with previous generalization bounds

Our generalization bounds are not directly com-
parable to those of von Luxburg and Bousquet [34].
In general, two approaches exist to analyze binary
classification by continuous-valued functions: thresh-
olding by the sign function or bounding some ex-
pected surrogate loss function. They opt for the latter
approach, defining the surrogate loss function

`(f(x), y) = min(max(0, 1− yf(x)), 1)

and bound the risk E[`(f(x), y)]. We take the for-
mer approach, bounding the generalization error
P(sgn(f(x)) 6= y) directly. Although for {−1, 1}-
valued labels the risk upper-bounds the generalization
error, it could potentially be a crude overestimate.

von Luxburg and Bousquet [34] demonstrated that
the Rademacher average of Lipschitz functions over
the p-dimensional unit cube (p ≥ 3) is of order
Θ(n−1/p), and since the proof uses only covering
numbers, a similar bound holds for all metric spaces
with bounded diameter and doubling dimension. In
conjunction with Theorem 5(b) of [5], this observa-
tion yields the following bound.

Lemma 7. Let X be a metric space with diam(X ) ≤
1, and let F be the collection of all f : X → R with
‖f‖Lip ≤ 1. If (xi, yi) ∈ X × {−1, 1} are drawn iid
with respect to some probability distribution P , then
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with probability at least 1− δ every f ∈ F satisfies

P {(x, y) : f(x) 6= y} ≤
O
(
kf/n+ n−1/ddim(X ) +

√
ln(1/δ)/n

)
,

where kf is the number of examples f labels incor-
rectly.

Our results compare favorably to those of [34]
when we assume fixed diameter diam(X ) ≤ 1
and Lipschitz constant L ≤ 1 and the number of
observations n goes to infinity. Indeed, Lemma 7
bounds the excess error decay by O(n−1/ddim(X )),
whereas Corollary 6 gives a rate of Õ(n−1/2).

B. Comparison with previous nearest-neighbor
bounds

Corollary 6 also allows us to significantly sharpen
the asymptotic analysis of [12] for the nearest-
neighbor classifier. Following the presentation in [33]
with an appropriate generalization to general metric
spaces, the analysis of [12] implies that the 1-nearest-
neighbor classifier hNN achieves

E[err(hNN)] ≤ (4)

2 err(h∗) +O

(‖η‖Lip diam(X )
n1/(ddim(X )+1)

)
,

where η(x) = P(Y = 1 |X = x) is the conditional
probability of the 1 label, and h∗(x) = sgn(η(x) −
1/2) is the Bayes optimal classifier. The curse of
dimensionality exhibited in the term n1/(ddim(X )+1)

is real — for each n, there exists a distribution such
that for sample size n � (L + 1)ddim(X ), we have
E[err(hNN)] ≥ Ω(1). However, Corollary 6 shows
that this analysis is overly pessimistic. Comparing (4)
with (2) in the case where err(h∗) = 0, we see that
once the sample size passes a critical number on the
order of (Ldiam(X ))ddim(X ), the expected general-
ization error begins to decay as Õ(1/n), which is
much faster than the rate suggested by (4).

IV. LIPSCHITZ EXTENSION CLASSIFIER

Given n labeled points (x1, y1), . . . , (xn, yn) ∈
X × {−1, 1}, we construct our classifier in a similar
manner to [34], via a Lipschitz extension of the label
values yi to all of X . Let S+, S− ⊂ {x1, . . . , xn} be
the sets of positive and negative labeled points. Our
starting point is the same extension function used in
[34], namely, for α ∈ [0, 1] define fα : X → R by

fα(x) = αmin
i∈[n]

(
yi + 2

ρ(x, xi)
ρ(S+, S−)

)
(5)

+ (1− α) max
j∈[n]

(
yj − 2

ρ(x, xj)
ρ(S+, S−)

)
.

It is easy to verify, see also [34, Lemmas 7 and 12],
that fα(xi) agrees with the sample label yi for all
i ∈ [n], and that its Lipschitz constant is identical to
the one induced by the labeled points, which in turn
is obviously 2/ρ(S+, S−). However, computing the
exact value of fα(x) for a point x ∈ X (or even the
sign of fα(x) at this point) requires an exact nearest
neighbor search, and in arbitrary metric space nearest
neighbor search requires Ω(n) time.

In this section, we design a classifier that is
evaluated at a point x ∈ X using an approxi-
mate nearest neighbor search.3 It is known how
to build a data structure for a set of n points
in time 2O(ddim(X ))n log n, so as to support (1 +
ε)-approximate nearest neighbor searches in time
2O(ddim(X )) log n+ε−O(ddim(X )) [10], [22] (see also
[25], [7]). Our classifier below relies only on a given
subset of the given n points, which may eventually
lead to improved generalization bounds (i.e., it pro-
vides a tradeoff between k and L in Theorem 5).

Theorem 8. Let (X , ρ) be a metric space, and fix
0 < ε < 1

32 . Let S be a sample consisting of n
labeled points (x1, y1), . . . , (xn, yn) ∈ X × {−1, 1}.
Fix a subset S1 ⊂ S of cardinality n − k, on which
the constructed classifier must agree with the given
labels, and partition it into S+

1 , S
−
1 ⊂ S1 according

to the labels, letting L = 2/ρ(S+
1 , S

−
1 ). Then there

is a binary classification function h : X → {−1, 1}
satisfying:
(a) h(x) can be evaluated at each x ∈ X in

time 2O(ddim(X )) log n + ε−O(ddim(X )), after
an initial computation of (2O(ddim(X )) log n +
ε−O(ddim(X )))n time.

(b) With probability at least 1−δ (over the sampling
of S)

P {(x, y) : h(x) 6= y} ≤
k

n
+

√
2
n

(D ln(34en/D) log2(578n) + ln(4/δ)),

where

D =
(

16Ldiam(X )
1− 32ε

)ddim(X )

.

We will use the following simple lemma.

Lemma 9. For any function class F mapping X to
R, define its ε-perturbation Fε to be

Fε =
{
f̃ ∈ RX : ‖f − f̃‖∞ ≤ ε, f ∈ F

}
,

3If x∗ is the nearest neighbor for a test point x, then any point
x̃ satisfying ρ(x, x̃) ≤ (1 + ε)ρ(x, x∗) is called a (1 + ε)-
approximate nearest neighbor of x.
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where ‖f − f̃‖∞ = supx∈X |f(x)− f̃(x)|. Then for
0 < ε < γ,

fatγ(Fε) ≤ fatγ−ε(F).

Proof: Suppose that Fε is able to γ-shatter the
finite subset X ⊂ X . Then there is an r ∈ RX so
that for all y ∈ {−1, 1}X , there is an f̃y ∈ Fε such
that

y(x)(f̃y(x)− r(x)) ≥ γ, ∀x ∈ X. (6)

Now by definition, for each f̃y ∈ Fε there is some
fy ∈ F such that supx∈X |fy(x) − f̃y(x)| ≤ ε. We
claim that the collection

{
fy : y ∈ {−1, 1}X

}
is able

to (γ − ε)-shatter X . Indeed, replacing f̃y(x) with
fy(x) in (6) perturbs the left-hand side by an additive
term of at most ε.

Proof of Theorem 8: Without loss of generality,
assume S1 ⊂ S corresponds to points indexed by
i = 1, . . . , n − k. We begin by observing that since
all of the sample labels have values in {±1}, any
Lipschitz extension may be truncated to the range
[−1, 1]. Formally, if g is a Lipschitz extension of the
labels yi from the sample S to all of X , then so is
T[−1,1] ◦ g, where

T[a,b](z) = max {a,min {b, z}}

is the truncation operator. In particular, take g to be
as in (5) with α = 1 and write

ri(x) = 2
ρ(x, xi)
ρ(S+

1 , S
−
1 )
.

Now defining

f(x) = T[−1,1]

(
min

i∈[n−k]
{yi + ri(x)}

)
(7)

= min
i∈[n−k]

{
T[−1,1](yi + ri(x))

}
,

where the second equality is by monotonicity of the
truncation operator, we conclude that f is a Lipschitz
extension of the data, with the same Lipschitz con-
stant L = 2/ρ(S+

1 , S
−
1 ).

Now precompute4 in time 2O(ddim(X ))n log n a
data structure that supports (1+ε)-approximate near-
est neighbor searches on the point set S+

1 , and a
similar one for the point set S−1 . Now compute (still
during the learning phase) an estimate ρ̃(S+

1 , S
−
1 ) for

ρ(S+
1 , S

−
1 ), by searching the second data structure for

4The word precompute underscores the fact that this computa-
tion is done during the “offline” learning phase. Its result is then
used to achieve fast “online” evaluation of the classifier on any
point x ∈ X during the testing phase.

each of the points in S+
1 , and taking the minimum of

all the resulting distances. This estimate satisfies

1 ≤ ρ̃(S+
1 , S

−
1 )

ρ(S+
1 , S

−
1 )
≤ 1 + ε, (8)

and this entire precomputation process takes
(2O(ddim(X )) log n+ ε−O(ddim(X )))n time.

Given a test point x ∈ X to be classified, search
for x in the two data structures (for S+

1 and for S−1 ),
and denote the indices of the points answered by
them by a+, a− ∈ [n− k], respectively. The (1 + ε)-
approximation guarantee means that

1 ≤ ρ(x, xa+)
ρ(x, S+

1 )
≤ 1 + ε, and 1 ≤ ρ(x, xa−)

ρ(x, S−1 )
≤ 1 + ε.

Define, as a computationally-efficient estimate of f ,
the function

f̃(x) = min
a∈{a+,a−}

{
T[−1,1]

(
ya + 2

ρ(x, xa)
ρ̃(S+

1 , S
−
1 )

)}
,

and let our classifier be h(x) = sgn(f̃(x)). We
remark that the case a = a− always attains the
minimum in the definition of f̃ (because a = a+

only produces values greater or equal than ya+ = 1),
and therefore one can avoid the computation of a+,
and even the construction of a data structure for
S+

1 . In fact, the same argument shows that also in
the definition of f in (7) we can omit from the
minimization points with label yi = +1.

This classifier h = sgn(f̃) can be evaluated on
a new point x ∈ X in time 2O(ddim(X )) log n +
ε−O(ddim(X )), and it thus remains to bound the gen-
eralization error of h. To this end, we will show that

sup
x∈X

∣∣∣f(x)− f̃(x)
∣∣∣ ≤ 2ε. (9)

This means that f̃ is a 2ε-perturbation of f , as
stipulated by Lemma 9, and the generalization error
of h will follow from Corollary 6 using the fact that
f has Lipschitz constant L.

To prove (9), fix an x ∈ X . Now let i∗ ∈ [n − k]
be an index attaining the minimum in the definition
of f(x) in (7), and similarly a∗ ∈ [n − k] for
f̃(x). Using the remark above, we may assume that
their labels are yi∗ = ya∗ = −1. Moreover, by
inspecting the definition of f we may further assume
that i∗ attains the minimum of ri(x) (over all points
labeled −1) and thus also of its numerator ρ(x, xi).
And since index a∗ was chosen as an approximate
nearest neighbor (among all points labeled −1), we
get 1 ≤ ρ(x,xa∗ )

ρ(x,xi∗ )
≤ 1 + ε. Together with (8), we have

1
1 + ε

ri∗(x) ≤ 2
ρ(x, xa∗)
ρ̃(S+

1 , S
−
1 )
≤ (1 + ε) ri∗(x). (10)
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We now need the following simple claim:

0 ≤ B ≤ (1 + ε)C =⇒
T[−1,1](−1 +B) ≤ 2ε+ T[−1,1](−1 + C).

To verify the claim, assume first that C ≤ 2; then
B ≤ C + εC ≤ C + 2ε, and now use the fact
that adding −1 and truncating are both monotone
operations, to get T[−1,1](−1 + B) ≤ T[−1,1](−1 +
C + 2ε), and the right-hand side is clearly at most
T[−1,1](−1+C)+2ε. Assume next that C ≥ 2; then
obviously T[−1,1](−1 +B) ≤ 1 = T[−1,1](−1 +C).
The claim follows.

Applying this simple claim twice, once for each
inequality in (10), we obtain that

− 2ε ≤ T[−1,1]

(
yi∗ + ri∗(x)

)
− T[−1,1]

(
ya∗ + 2

ρ(x, xa∗)
ρ̃(S+

1 , S
−
1 )

)
≤ 2ε,

which proves (9), and completes the proof of the
theorem.

V. STRUCTURAL RISK MINIMIZATION

In this section, we show how to efficiently con-
struct a classifier that optimizes the “bias-variance
tradeoff” implicit in Corollary 6, equation (3). Let X
be a metric space, and assume we are given a labeled
sample S = (xi, yi) ∈ X×{−1, 1}. For any Lipschitz
constant L, let k(L) be the minimal training error of
S over all classifiers with Lipschitz constant L. We
rewrite the generalization bound as follows:

P {(x, y) : sgn(f(x)) 6= y} ≤ (11)

k(L)
n

+

√
2
n

(D ln(34en/D) log2(578n) + ln(4/δ))

=: G(L)

where D = (16Ldiam(X ))ddim(X ). This bound
contains a free parameter, L, which may be tuned in
the course of structural risk minimization. More pre-
cisely, decreasing L drives the “bias” term (number of
mistakes) up and the “variance” term (fat-shattering
dimension) down. We thus seek an (optimal) value
of L where G(L) achieves a minimum value, as
described in the following theorem, which is our
SRM result.

Theorem 10. Let X be a metric space and 0 <
ε < 1

32 . Given a labeled sample S = (xi, yi) ∈
X × {−1, 1}, i = 1, . . . , n, there exists a binary
classification function h : X → {−1, 1} satisfying
the following properties:

(a) h(x) can be evaluated at each x ∈ X in
time 2O(ddim(X )) log n + ε−O(ddim(X )), after
an initial computation of 2O(ddim(X ))n log n +(

ddim(X )
ε

)O(ddim(X ))

n time.
(b) The generalization error of h is bounded by

P {(x, y) : sgn(f(x)) 6= y} ≤ c · inf
L>0

[
k(L)
n

+√
2
n

(
D ln(34en/D) log2(578n) + ln

4
δ

)]
.

for some constant c ≤ 2(1 + ε), and where

D = D(L) =
(

16Ldiam(X )
1− 32ε

)ddim(X )

.

We proceed with a description of our
algorithm. We first give an algorithm with
runtime O(n4.373), and then improve the
runtime, first to O

(
ddim(X )

ε n2.373 log n
)

,
then to O(ddim(X )n2 log n), and finally to

2O(ddim(X ))n log n+
(

ddim(X )
ε

)O(ddim(X ))

n.

Algorithm description: We start by giving a
randomized algorithm that finds a value L∗ that is
optimal, namely, G(L∗) = infL>0G(L) for G(L)
that was defined in (11). The runtime of this algo-
rithm is O(n4.373) with high probability. First note
the behavior of k(L) as L increases. k(L) decreases
only when the value of L crosses certain critical
values, each determined by a pair xi ∈ S+, xj ∈ S−
(that is, L = 2

ρ(xi,xj)
); for such L, the classification

function h can correctly classify both these points.
There are O(n2) critical values of L, and these can
be determined by enumerating all interpoint distances
between subsets S+, S− ⊂ S.

Below, we will show that for any given L, the
value k(L) can be computed in randomized time
O(n2.373). More precisely, we will show how to
compute a partition of S into sets S1 (with Lipschitz
constant L) and S0 (of size k(L)) in this time. Given
sets S0, S1 ⊂ S, we can construct the classifier of
Corollary 6. Since there are O(n2) critical values of
L, we can calculate k(L) for all critical values in
O(n4.373) total time, and thereby determine L∗. Then
by Corollary 6, we may compute a classifier with a
bias-variance tradeoff arbitrarily close to optimal.

To compute k(L) for a given L in randomized
time O(n2.373), consider the following algorithm:
Construct a bipartite graph G = (V +, V −, E). The
vertex sets V +, V − correspond to the labeled sets
S+, S− ∈ S, respectively. The length of edge e =
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(u, v) connecting vertices u ∈ V + and v ∈ V −

is equal to the distance between the points, and
E includes all edges of length less than 2

L . (This
E can be computed in O(n2) time.) Now, for all
edges e ∈ E, a classifier with Lipschitz constant L
necessarily misclassifies at least one endpoint of e.
Hence, finding a classifier with Lipschitz constant
L that misclassifies a minimum number of points
in S is exactly the problem of finding a minimum
vertex cover for the bipartite graph G. (This is an
unweighted graph – the lengths are used only to
determine E.) By König’s theorem, the minimum
vertex cover problem in bipartite graphs is equivalent
to the maximum matching problem, and a maximum
matching in bipartite graphs can be computed in ran-
domized time O(n2.373) [28], [37]. This maximum
matching immediately identifies a minimum vertex
cover, which in turn gives the subsets S0, S1, allowing
us to compute a classifier achieving nearly optimal
SRM.

First improvement: The runtime given above
can be reduced from randomized O(n4.373) to ran-
domized O(ddim(X )/ε · n2.373 log n), if we are
willing to settle for a generalization bound G(L)
within a (1 + ε) factor of the optimal G(L∗), for
any ε ∈ (0, 1). To achieve this improvement, we
discretize the candidate values of L, and evaluate
k(L) only for O(ddim(X )/ε · log n) values of L,
rather than all Θ(n2) values as above. In the extreme
case where the optimal hypothesis fails on all points
of a single label, the classifier h is a constant function
and L∗ = 0. In all other cases, L∗ must take values in
the range

[
2

diam(X ) ,
n

diam(X )

]
; indeed, every hypoth-

esis correctly classifying a pair of opposite labelled
points has Lipschitz constant at least 2

diam(X ) , and if
L∗ > n

diam(X ) then the complexity term (and G(L∗))
is greater than 1.

Our algorithms evaluates k(L) for values

of L = 2
diam(X )

(
1 + ε

ddim(X )

)i
for

i = 0, 1, . . . ,
⌈
log1+ε/ddim(X )

n
2

⌉
, and uses the

candidate that minimizes G(L). The number of
candidate values for L is O(ddim(X )/ε · log n),
and one of these values — call it L′ — satisfies
L∗ ≤ L′ < (1 + ε

ddim(X ) )L∗. Observe that
k(L′) ≤ k(L∗) and that the complexity term for
L′ is greater than that for L∗ by at most a factor√(

1 + ε
ddim(X )

)ddim(X )

≤ eε/2 ≤ 1 + ε (where the
final inequality holds since ε < 1). It follows that
G(L′) < (1 + ε)G(L∗), implying that this algorithm

achieves a (1 + ε)-approximation to G(L∗).

Second improvement: The runtime can be
further reduced from randomized O(ddim(X )/ε ·
n2.373 log n) to deterministic O(ddim(X )n2 log n),
if we are willing to settle for a generalization bound
G(L) within a constant factor 2 of the optimal G(L∗).
The improvement comes from a faster vertex-cover
computation. It is well known that a 2-approximation
to vertex cover can be computed (in arbitrary graphs)
by a greedy algorithm in time linear in the graph
size O(|V + ∪ V −| + |E|) = O(n2), see e.g. [3].
Hence, we can compute in O(n2) time a function
k′(L) that satisfies k(L) ≤ k′(L) ≤ 2k(L). We
replace the randomized O(n2.373) algorithm with this
O(n2) time greedy algorithm. Then k′(L) ≤ 2k(L),
and because we can approximate the complexity term
to a factor smaller than 2 (as above, by choosing
a constant ε < 1), our resulting algorithm finds a
Lipschitz constant L′ for which G(L′) ≤ 2 ·G(L∗).

Final improvement: We can further im-
prove the runtime from O(ddim(X )n2 log n) to
2O(ddim(X ))n log n + (ddim(X )/ε)O(ddim(X ))

n, at
the cost of increasing the approximation factor to
2(1+ε). The idea is to work with a sparser represen-
tation of the vertex cover problem. Recall that we dis-
cretized the values of L to powers of

(
1 + ε

ddim(X )

)
.

As was already observed by [25], [10] in the context
of hierarchies for doubling metric, X contains at most
ε−12O(ddim(X ))n of these distinct rounded critical
values. After constructing a standard hierarchy (in
time 2O(ddim(X ))n log n), these ordered values may

be extracted with
(

ddim(X )
ε

)O(ddim(X ))

n more work.
Let L be a discretized value considered above.

We extract from S a subset S′ ⊂ S that is a(
ε

ddim(X ) ·
2
L

)
-net for S. Map each point p ∈ S to

its closest net point p′ ∈ S′, and maintain for each
net point two lists of points of S that are mapped
to it — one list for positively labeled points and
one for negatively labeled points. We now create an
instance of vertex cover for the points of S: An edge
e = (u, v) for u ∈ V + and v ∈ V − is added to the
edge set E′ if the distance between the respective net
points u′ and v′ is at most

(
1− 2ε

ddim(X )

)
2
L . Notice

that E′ ⊂ E, because the distance between such u, v
is at most

(
1− 2ε

ddim(X )

)
2
L + 2ε

ddim(X ) ·
2
L = 2

L .
Moreover, the edge set E′ can be stored implicitly by
recording every pair of net points that are within dis-
tance

(
1− 2ε

ddim(X )

)
2
L — oppositely labeled point

pairs that map (respectively) to this net-point pair is
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considered (implicitly) to have an edge in E′. By the
packing property, the number of net-point pairs to be
recorded is at most (ddim(X )/ε)O(ddim(X ))

n, and
by employing a hierarchy, the entire (implicit) con-
struction may be done in time 2O(ddim(X ))n log n +
(ddim(X )/ε)O(ddim(X ))

n.
Now, for a given L, the run of the greedy algorithm

for vertex cover can be implemented on this graph
in time (ddim(X )/ε)O(ddim(X ))

n, as follows. The
greedy algorithm considers a pair of net points within
distance

(
1− 2ε

ddim(X )

)
2
L . If there exist u ∈ V + and

v ∈ V − that map to these net points, then u, v are
deleted from S and from the respective lists of the
net points. (And similarly if u, v map to the same net
point.) The algorithm terminates when there are no
more points to remove, and correctness follows.

We now turn to the analysis. Since E′ ⊂ E, the
guarantees of the earlier greedy algorithm still hold.
The resulting point set may contain opposite labeled
points within distance

(
1− 2ε

ddim(X )

)
2
L −

2ε
ddim(X ) ·

2
L =

(
1− 4ε

ddim(X )

)
2
L , resulting in a Lipschitz

constant L/(1 − 4ε
ddim(X ) ). This Lipschitz constant

is slightly larger than the given L, which has the
effect of increasing the complexity term in G(L) by

factor
(

1− 4ε
ddim(X )

)−ddim(X )/2

= 1 + Θ(ε). The
final result is achieved by scaling down ε to remove
the leading constant.

VI. EXAMPLE: EARTHMOVER AND TIME-SERIES
METRICS

To illustrate the potential power of our approach,
we analyze its potential for two well-known metrics,
the earthmover distance which operates on geometric
sets, and Edit Distance with Real Penalty, which op-
erates on time-series. We use the earthmover distance
again in Section VII for our experiments.

Earthmover distance: We will analyze the dou-
bling dimension of an earthmover metric, which is a
natural metric for comparing two sets of k geometric
features. It is often used in computer vision; for
instance, an image can be represented as a set of
pixels in a color space, yielding an accurate measure
of dissimilarity between color characteristics of the
images [31]. In an analogous manner, an image
can be represented as a set of representative geo-
metric features, such as object contours [19], other
features [20], and SIFT descriptions [30]. In these
contexts, k ≥ 2 is usually a parameter which models
the number of geometric features identified inside
each image.

We use a simple yet common version, denoted
(Xk,EMD), where each point in Xk is a multiset
of size k in the unit square in the Euclidean plane,
formally S ⊂ [0, 1]2 and |S| = k (allowing and
counting multiplicities). The distance between such
sets S, T ∈ Xk is given by

EMD(S, T ) = min
π:S→T

{
1
k

∑
s∈S
‖s− π(s)‖2

}
, (12)

where the minimum is over all one-to-one mappings
π : S → T . In other words, EMD(S, T ) is the
minimum-cost bipartite matching between the two
sets S, T , where costs correspond to Euclidean dis-
tance.

Lemma 11. The earthmover metric over Xk satisfies
diam(Xk) ≤

√
2 and ddim(Xk) ≤ O(k log k).

Proof: For the rest of this proof, a point refers
to one in the unit square, not Xk. Consider a ball in
Xk of radius r > 0 around some S. Let N be an
r/2-net of the unit square [0, 1]2, according to the
definition in Section II. Now consider all multisets
T ⊂ [0, 1]2 of size k that satisfy the following
condition: every point in T belongs to the net N
and is within (Euclidean) distance (k + 1/2)r from
at least one point of S. Points in such a multiset
T are chosen from a collection of size at most
k ·
⌈

(k+1/2)r
r/2

⌉O(1)

≤ kO(1) (by the packing property
of the net points in the Euclidean plane). Thus, the
number of such multisets T is λ ≤ (kO(1))k = kO(k).

To complete the proof of the lemma, it suffices
to show that the radius r ball (in Xk) around S is
covered by the λ balls of radius r/2 whose centers are
given by the above multisets T . To see this, consider
a multiset S′ such that EMD(S, S′) ≤ r, and let us
show that S′ is contained in an r/2-ball around one
of the above multisets T . Observe that every point
in S′ is within distance at most kr from at least one
point of S. Now “map” each point in S′ to its nearest
point in the net N , which must be less than r/2 away,
by the covering property of the net. The result is a
multiset T as above with EMD(S′, T ) ≤ r/2.

Time-series distance metric: To present another
example of the utility of our classification algorithms,
we show that a commonly used metric model of
sparse time-series vectors (with unbounded real co-
ordinates) actually has a low doubling dimension.
A widely used similarity function for time series is
the Dynamic Time Warp (DTW) [39], a non-metric
distance function between two time series which is
similar to the `1 norm, except that it also allows
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coordinate deletions or insertions in order to align the
two series. The latter operations are used to ensure
that the resulting series are of equal length, and these
operations can also correlate the respective peaks
and troughs of the series. We will consider a simple
and popular metric version of DTW known as Edit
Distance with Real Penalty (ERP) [9], which allows
for insertions of zero-valued elements only.

The ERP distance is formally defined as follows.
Given time-series vectors r and s with unbounded
real coordinates and where the length of the longer
series is exactly m, we may insert into r and s any
number of zero-valued coordinates (called gaps) to
produce new series r̃ and s̃ of equal length. Let Rp be
the set of all time series of length p ≥ m which may
be derived from r via gap insertions, and similarly
Sp for s. Then dERP(r, s) = minp≥m,r̃∈Rp,s̃∈Sp ‖r̃−
s̃‖1. The ERP distance can be computed in quadratic
time [9].

Our contribution is twofold: We show in Lemma
13 that a set of time series of length at most m
may have doubling dimension Ω(m) under ERP,
even when the coordinate range is limited to {1, 2}.
This dimension is quite high, and motivates us to
consider sparse time series, which form an active
field of study [15], [41], [18], [24], [38]. We show
in Lemma 14 that the set of time series vectors with
only k non-zero elements — that is, k-sparse vectors
— has doubling dimension O(k log k) under ERP,
irrespective of the vector length m and even when the
coordinates are real and unbounded. We first prove
the claim below, and then proceed to the lower-bound
on the dimension of length m vectors under ERP.

Claim 12. Consider the set T = {1, 2}m, and an
integer d ∈ [4,m/2]. Then every vector r ∈ T is
within ERP distance d of fewer than

(
3em
d

)2d
other

vectors of T .

Proof: We may view ERP on the vectors of T
as a procedure transforming a vector r ∈ T into
some vector s ∈ T as follows: The procedure inserts
gaps in r to produce vector r̃, uses substitutions to
transform r̃ to s̃, and then deletes all gaps (i.e., zero-
valued elements) from s̃ to produce vector s. Here,
the cost of a substitution from r̃ to s̃ is considered to
be |r̃i−s̃i| ∈ {1, 2}, while the insertions and deletions
entail no cost. But without loss of generality, we may
assume that r̃i and s̃i are not both gaps. It follows
that whenever r̃i is produced by a gap insertion or
s̃i is a gap coordinate to be deleted, there must be a
substitution from r̃i to s̃i. Thus, if dERP(r, s) ≤ j for
r, s ∈ T , then the ERP procedure includes at most j

substitutions, and consequently at most j insertions
and at most j deletions.

For a fixed r, the vector r̃ can be produced in one
of at most

d∑
j=0

(
m+ j

j

)
< d

(
3m/2
d

)
≤ d

(
3em
2d

)d
possible ways of inserting j ≤ d gaps elements
among the m coordinates of r. (Here we used the
standard formula for combination with replacement.)
Having produced r̃, the vector s̃ can be produced in
at most

d∑
j=0

(
m+ d

j

)
2d < d

(
3m/2
d

)
2d ≤ d

(
3em
d

)d
possible ways via substitutions in j ≤ d elements,
where a single substitution sets some s̃i to one of two
possible values different from r̃i. Having produced
s̃, the vector s is produced by simply removing
all gaps in s̃. It follows that there are fewer than
d2
(

3em
2d

)d ( 3em
d

)d ≤ (
3em
d

)2d
vectors of T within

distance d of r, as claimed.

Lemma 13. There exists a set S ⊂ {1, 2}m whose
doubling dimension under the ERP metric is Ω(m).

Proof: We will demonstrate that for all m ≥
4 · 35 = 140, there exists a set S ⊂ {1, 2}m
of cardinality 2m/2 with diameter at most m and
minimum interpoint distance at least d = bm35c. As
a consequence of Lemma 1, this S has doubling
dimension Ω(m). Our proof uses a neighborhood
counting argument similar to the one presented in [6,
Lemma 8].

We begin with the set T = {1, 2}m of cardinality
2m. The maximum interpoint distance under ERP in
T is at most m, as this is the maximum distance under
`1 in T . By Claim 12 with d = bm35c, each vector
r ∈ T is within distance d of fewer than

(
3em
d

)2d ≤(
3e m

m/35−1

)2m/35

=
(

3 · 35e 1
1−35/m

)2m/35

≤ (4 ·
35e)2m/35 < 2m/2 other points of T . We now use T
to construct S greedily, starting with the empty set
and repeatedly placing in S a point of T at distance
at least d = bm35c from all points currently in S. Each
point added to S invalidates fewer than 2m/2 other
points in T from appearing in S in the future — these
are the points within distance d of the new point. It
follows that S contains at least 2m

2m/2 = 2m/2 points,
as claimed.

Although the doubling dimension of time-series
vectors under ERP is large, the situation for sparse
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vectors is much better, irrespective of the vector
length and even when the coordinates are unbounded
reals.

Lemma 14. Every set S of k-sparse time-series
vectors of real unbounded coordinates and arbitrary
length has doubling dimension O(k log k) under the
ERP metric.

Proof: Similar to [17], let the density constant
µ(S) of S be the smallest number such that for every
p > 0, every ball of radius p contains at most µ(S)
points of S at mutual distance strictly greater than
p
2 . It is known that the doubling constant of S is at
most the density constant, i.e., λ(S) ≤ µ(S). Indeed,
for each radius p ball in S, take a maximal set (with
respect to containment) of points at mutual distance
strictly greater than p

2 , and let each point be the center
of a ball of radius p

2 ; the maximality implies that the
small balls cover all points of the larger one. We get
that every ball in S can be covered by at most µ(S)
balls of half the radius.

It thus suffices to prove an upper bound on the
density constant µ(S). To this end, consider a subset
T ⊂ S such that for some p > 0, all interpoint
distances in T are in the range (4p, 8p]. In what
follows, we prove an upper bound on |T |. First, for
each vector r ∈ T , discretize the vector by rounding
down each coordinate ri to the nearest multiple of p

k ,
producing new set T ′. Done over all coordinates, the
rounding alters interpoint ERP distances by less than
2k · pk = 2p in total, and therefore all interpoint ERP
distances in T ′ are in the range (2p, 10p]. We further
remove from each r ∈ T ′ all zero-valued coordinates,
and this has no effect on interpoint ERP distances.
The resulting set is T ′ of the same size as T , i.e.,
|T ′| = |T |.

To bound |T ′|, fix an arbitrary vector r ∈ T ′, and
consider the number of distinct discretized k-sparse
vectors at ERP distance at most 10p from r. The ERP
procedure may add up to k gaps to r to produce
r̃, and there are

∑k
j=0

(
k+j
j

)
≤
∑k
j=0

(
2k
j

)
< 22k

possible gap configurations. Note that the length of
r̃ is at most 2k. Moving to the substitutions, since
all vectors of T ′ are discretized into multiples of
p
k and are at distance at most 10p, we can view
the substitutions as adding or removing from these
coordinates weight in units (multiples) of p

k , and
there are in total 10p

p/k = 10k such units. If we view
each substitution as accounting for a unit weight, and
associate each coordinate with a sign that encodes
whether the weight will be added or subtracted from
that coordinate, then there are at most (2k)10k · 22k

possible substitution configurations to produce s̃.
Having produced s̃, the vector s is produced from it
by removing all gap elements. Altogether, 2ddim(S) ≤
µ(S) = |T | = |T ′| ≤ 22k(2k)10k22k = kO(k), from
which the lemma follows.

VII. EXPERIMENTS

We considered the task of distinguishing five-
petaled flowers from six-petaled ones. The images
were taken from a shape matching/retrieval database
called MPEG-7 Test Set5, and are displayed in Fig.
1. The original images were represented as 512×512
black and white matrices; we sampled these down to
128× 128. To render the task nontrivial, we retained
only the image contour, as otherwise, it would suffice
to consider the ratio of black/white pixels to achieve
100% accuracy. To illustrate the relative advantage
of earthmover distance over the Euclidean one, we
translated each image in the plane by various random
shifts. We ran four classification algorithms on this
data:
• Euclidean Nearest Neighbor. The images were

treated as vectors in R128×128, endowed with the
Euclidean metric `2.

• EMD Nearest Neighbor. The images were cut
up into 16 × 16 = 256 square blocks, where
each block b is viewed as a vector b ∈ R8×8.
Each image is thus represented as a sequence of
256 blocks, and over these sequences, EMD is
defined as in (12) — except we used `1 instead
of `2 as the base distance.

• Euclidean SVM. The Support Vector Machine
(SVM) algorithm [11] was used, operating on
vectors in R128×128 with the Euclidean kernel
〈x, y〉 = xTy and the regularization constant
tuned by cross-validation.

• SVM with RBF kernel. The SVM algorithm
was used, operating on vectors in R128×128 with
the Radial Basis Function (RBF) kernel 〈x, y〉 =
exp(−‖x− y‖22 /σ2), where the regularization
constant and σ were tuned by cross-validation.

Our experimental results are listed in Table I. The
relative magnitudes carry more significance than the
absolute values, as the latter fluctuate with experiment
design choices, such as the magnitude of the image
translations, the thickness of the contour retained, and
so forth. These results exhibit a natural setting in
which classification algorithms for a non-Hilbertian

5http://www.dabi.temple.edu/∼shape/MPEG7/dataset.html; the
5-petaled flowers are under device0-1 and 6-petaled are under
device1-1.

http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
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Fig. 1. The raw flower-contour data, 512 × 512 pixel black-and-white images. The two kinds of flowers (five- and six-petaled) are
displayed in separate rows.

Method Error
EMD nearest-neighbor 0.13
Euclidean nearest-neighbor 0.39
Euclidean SVM 0.43
SVM with RBF kernel 0.39

TABLE I
EXPERIMENTS CLASSIFYING THE FLOWER IMAGES. EACH

METHOD IS AVERAGED OVER HUNDREDS OF EXPERIMENTS.

metric significantly outperforms the Hilbert-space
algorithms, which is the main point we wished to
illustrate here.
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