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Abstract. We present a framework for performing efficient regression in
general metric spaces. Roughly speaking, our regressor predicts the value
at a new point by computing a Lipschitz extension — the smoothest func-
tion consistent with the observed data — while performing an optimized
structural risk minimization to avoid overfitting. The offline (learning)
and online (inference) stages can be solved by convex programming, but
this naive approach has runtime complexity O(n3), which is prohibitive
for large datasets. We design instead an algorithm that is fast when the
doubling dimension, which measures the “intrinsic” dimensionality of the
metric space, is low. We make dual use of the doubling dimension: first,
on the statistical front, to bound fat-shattering dimension of the class of
Lipschitz functions (and obtain risk bounds); and second, on the compu-
tational front, to quickly compute a hypothesis function and a prediction
based on Lipschitz extension. Our resulting regressor is both asymptoti-
cally strongly consistent and comes with finite-sample risk bounds, while
making minimal structural and noise assumptions.
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1 Introduction

The classical problem of estimating a continuous-valued function from noisy ob-
servations, known as regression, is of central importance in statical theory with
a broad range of applications, see e.g. [BFOS84, Nad89, GKKW02]. When no
structural assumptions concerning the target function are made, the regression
problem is termed nonparametric. Informally, the main objective in the study
of nonparametric regression is to understand the relationship between the reg-
ularity conditions that a function class might satisfy (e.g., Lipschitz or Hölder
continuity, or sparsity in some representation) and the minimax risk convergence
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rates [Tsy04, Was06]. A further consideration is the computational efficiency of
constructing the regression function.

The general (univariate) nonparametric regression problem may be stated as
follows. Let (X , ρ) be a metric space, namely X is a set of points and ρ a distance
function, and let H be a collection of functions (“hypotheses”) h : X → [0, 1].
(Although in general, h is not explicitly restricted to have bounded range, typical
assumptions on the diameter of X and the noise distribution amount to an
effective truncation.) The space X × [0, 1] is endowed with some fixed, unknown
probability distribution µ, and the learner observes n iid draws (Xi, Yi) ∼ µ.
The learner then seeks to fit the observed data with some hypothesis h ∈ H so
as to minimize the risk, usually defined as the expected loss E |h(X)− Y |q for
(X,Y ) ∼ µ and some q ≥ 1.

Two limiting assumptions have traditionally been made when approaching
this problem: (i) the space X is Euclidean and (ii) Yi = h∗(Xi) + ξi, where h∗

is the target function and ξi is an iid noise process, often taken to be Gaussian.
Although our understanding of nonparametric regression under these assump-
tions is quite elaborate, little is known about nonparametric regression in the
absence of either assumption.

The present work takes a step towards bridging this gap. Specifically, we
consider nonparametric regression in an arbitrary metric space, while making no
assumptions on the distribution of the data or the noise. Our results rely on the
structure of the metric space only to the extent of assuming that the metric space
has a low “intrinsic” dimensionality. The dimension in question is the doubling
dimension of X , denoted ddim(X ), which was introduced by [GKL03] based on
earlier work of [Cla99], and has been since utilized in several algorithmic contexts,
including networking, combinatorial optimization, and similarity search, see e.g.
[KSW09, KL04, BKL06, HM06, CG06, Cla06]. Following the work in [GKK10]
on classification problems, our risk bounds and algorithmic runtime bounds are
stated in terms of the doubling dimension of the ambient space and the Lipschitz
constant of the regression hypothesis, although neither of these quantities need
be known in advance.

Our results. We consider two kinds of risk: L1 (mean absolute) and L2 (mean
square). More precisely, for q ∈ {1, 2} we associate to each hypothesis h ∈ H the
empirical Lq-risk

Rn(h) = Rn(h, q) =
1

n

n∑
i=1

|h(Xi)− Yi|q (1)

and the (expected) Lq-risk

R(h) = R(h, q) = E |h(X)− Y |q =

∫
X×[0,1]

|h(x)− y|q µ(dx, dy). (2)

It is well-known that h(x) = M[Y |X = x] (where M is the median) mini-
mizes R(·, 1) over all integrable h ∈ [0, 1]X and h(x) = E[Y |X = x] minimizes
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R(·, 2). However, these expressions are of little use as neither is computable
without knowledge of µ. To circumvent this difficulty, we minimize the empirical
Lq-risk and assert that the latter is a good approximation of the expected risk,
provided H meets certain regularity conditions.

To this end, we define the following random variable, termed uniform devia-
tion:

∆n(H) = ∆n(H, q) = sup
h∈H
|Rn(h)−R(h)| . (3)

It is immediate that

R(h) ≤ Rn(h) +∆n(H) (4)

holds for all h ∈ H (i.e., the expected risk of any hypothesis does not exceed

its empirical risk by much), and it can further be shown [BBL05] that R(ĥ) ≤
R(h∗) + 2∆n(H), where ĥ ∈ H is a minimizer of the empirical risk and h∗ ∈ H
is a minimizer of the expected risk (i.e., the expected risk of ĥ does not exceed
the risk of the best admissible hypothesis by much).

Our contribution is twofold: statistical and computational. The algorithm in
Theorem 3.1 computes an η-additive approximation to the empirical risk min-
imizer in time η−O(ddim(X ))n log3 n. This hypothesis can be evaluated on new
points in time η−O(ddim(X )) log n. The expected risk of this hypothesis decays
as the empirical risk plus 1/poly(n). Our bounds explicitly depend on the dou-
bling dimension, but the latter may be efficiently estimated from the data, see
e.g. [KL04, CG06, GK10, GKK13].

Related work. There are many excellent references for classical Euclidean non-
parametric regression assuming iid noise, see for example [GKKW02, BFOS84,
DGL96]. For metric regression, a simple risk bound follows from classic VC
theory via the pseudo-dimension, see e.g. [Pol84, Vap95, Ney06]. However, the
pseudo-dimension of many non-trivial function classes, including Lipschitz func-
tions, grows linearly with the sample size, ultimately yielding a vacuous bound.
An approach to nonparametric regression based on empirical risk minimization,
though only for the Euclidean case, may already be found in [LZ95]; see the com-
prehensive historical overview therein. Indeed, Theorem 5.2 in [GKKW02] gives
a kernel regressor for Lipschitz functions that achieves the minimax rate. Note
however that (a) the setting is restricted to Euclidean spaces; and (b) the cost
of evaluating the hypothesis at a new point grows linearly with the sample size
(while our complexity is roughly logarithmic). As noted above, another feature
of our approach is its ability to give efficiently computable finite-sample bounds,
as opposed to the asymptotic convergence rates obtained in [GKKW02, LZ95]
and elsewhere.

More recently, risk bounds in terms of doubling dimension and Lipschitz con-
stant were given in [Kpo09], assuming an additive noise model, and hence these
results are incomparable to ours; for instance, these risk bounds worsen with
an increasingly smooth regression function. Following up, a regression technique



4 Efficient Regression in Metric Spaces

based on random partition trees was proposed in [KD11], based on mappings
between Euclidean spaces and assuming an additive noise model. Another recent
advance in nonparametric regression was Rodeo [LW08], which escapes the curse
of dimensionality by adapting to the sparsity of the regression function.

Our work was inspired by the paper of von Luxburg and Bousquet [vLB04],
who were apparently the first to make the connection between Lipschitz classi-
fiers in metric spaces and large-margin hyperplanes in Banach spaces, thereby
providing a novel generalization bound for nearest-neighbor classifiers. They de-
veloped a powerful statistical framework whose core idea may be summarized
as follows: to predict the behavior at new points, find the smoothest function
consistent with the training sample. Their work raises natural algorithmic ques-
tions like how to estimate the risk for a given input, how to perform model selec-
tion (Structural Risk Minimization) to avoid overfitting, and how to perform the
learning and prediction quickly. Follow-up work [GKK10] leveraged the doubling
dimension simultaneously for statistical and computational efficiency, to design
an efficient classifier for doubling spaces. Its key feature is an efficient algorithm
to find the optimal balance between the empirical risk and the penalty term for
a given input. Minh and Hoffman [MH04] take the idea in [vLB04] in a more
algebraic direction, establishing a representer theorem for Lipschitz functions on
compact metric spaces.

2 Bounds on uniform deviation via fat shattering

In this section, we derive tail bounds on the uniform deviation ∆n(H) defined in
(3) in terms of the the smoothness properties of H and the doubling dimension
of the underlying metric space (X , ρ).

2.1 Preliminaries

We rely on the powerful framework of fat-shattering dimension developed by
[ABCH97], which requires us to incorporate the value of a hypothesis and the
loss it incurs on a sample point into a single function. This is done by associating
to any family of hypothesesHmapping X 7→ [0, 1], the induced family F = FqH of
functions mapping X×[0, 1] 7→ [0, 1] as follows: for each h ∈ H the corresponding
f = fqh ∈ F

q
H is given by

fqh(x, y) = |h(x)− y|q , q ∈ {1, 2} . (5)

In a slight abuse of notation, we define the uniform deviation of a class F of
[0, 1]-valued functions over X × [0, 1]:

∆n(F) = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi, Yi)−Ef(X,Y )

∣∣∣∣∣ , (6)

where the expectation is over µ, as in (2). Obviously, ∆n(FqH) = ∆n(H, q).
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2.2 Basic generalization bounds

Let us write

HL =
{
h ∈ [0, 1]X : ‖h‖

Lip
≤ L

}
(7)

to denote the collection of [0, 1]-valued L-Lipschitz functions on X . We proceed
to bound the γ-fat-shattering dimension of FqHL

.

Theorem 2.1. Let HL be defined on a metric space (X , ρ), where diam(X ) = 1.
Then

fatγ(FqHL
) ≤

(
1 +

1

γ(q+1)/2

)(
L

γ(q+1)/2

)ddim(X )+1

holds for q ∈ {1, 2} and all 0 < γ ≤ 1
2 .

Proof. (Sketch) Fix a γ > 0 and recall what it means for FqHL
to γ-shatter a set

S = (T,Z) = {(t, z) : t ∈ X , z ∈ [0, 1]}

(where T ∈ X |S| and Z ∈ [0, 1]|S|): there exists some function r ∈ RS such

that for each label assignment b ∈ {−1, 1}S there is an f ∈ FqHL
satisfying

b(s)(f(s)− r(s)) ≥ γ for all s ∈ S.
Put K =

⌈
γ−(q+1)/2

⌉
and define the map π : S → {0, 1, . . . ,K} by

π(s) = π(t, z) = bKzc .

Thus, we may view S as being partitioned into K + 1 buckets:

S =

K⋃
k=0

π−1(k). (8)

Consider two points, s = (t, z) and s′ = (t′, z′), belonging to some fixed bucket
π−1(k). By construction, the following hold:

(i) |z − z′| ≤ K−1 ≤ γ(q+1)/2

(ii) since FqHL
γ-shatters S (and recalling (5)), there is an h ∈ HL satisfying

|h(t)− z|q ≤ r − γ and |h(t′)− z′|q ≥ r′ + γ for some γ ≤ r ≤ r′ < 1− γ.

Conditions (i) and (ii) imply that

|h(t)− h(t′)| ≥ (r′ + γ)1/q − (r − γ)1/q − |z − z′| ≥ γ(q+1)/2. (9)

The fact that h is L-Lipschitz implies that ρ(t, t′) ≥ |h(t)− h(t′)|/L ≥
γ(q+1)/2/L and hence

∣∣π−1(k)
∣∣ ≤ ( L

γ(q+1)/2

)ddim(X )+1

(10)

for each k ∈
{

0, 1, . . . ,
⌈
γ−(q+1)/2

⌉}
. Together (8) and (10) yield our desired

bound on |S|, and hence on the fat shattering dimension of FqHL
. ut
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The following generalization bound, implicit in [ABCH97], establishes the
learnability of continuous-valued functions in terms of their fat-shattering di-
mension.

Theorem 2.2. Let F be any admissible function class mapping X × [0, 1] to
[0, 1] and define ∆n(F) as in (6). Then for all 0 < ε < 1 and all n ≥ 2/ε2,

P (∆n(F) > ε) ≤ 24n

(
288n

ε2

)d log(24en/ε)
exp(−ε2n/36)

where d = fatε/24(F).

Corollary 2.1. Fix an 1 > ε > 0 and q ∈ {1, 2}. Let HL be defined on a metric
space (X , ρ) and recall the definition of ∆n(HL, q) in (3). Then for all n ≥ 2/ε2,

P (∆n(HL, q) > ε) ≤ 24n

(
288n

ε2

)d log(24en/ε)
exp(−ε2n/36) (11)

where

d =

(
1 +

1

(ε/24)(q+1)/2

)(
L

(ε/24)(q+1)/2

)ddim(X )+1

.

We can conclude from Corollary 2.1 that there exists ε(n,L, δ) such that with
probability at least 1− δ,

∆n(HL, q) ≤ ε(n,L, δ), (12)

and by essentially inverting (11), we have

ε(n,L, δ) ≤ O

(
max

{√
log(n/δ)

n
,

(
Lddim(X )+1

n
log2 n

) 1

2+
q+1
2

(ddim(X)+1)

})
.(13)

(For simplicity, the dependence of ε(·) on ddim(X ) is suppressed.) This implies
via (4) that

R(h) ≤ Rn(h) + ε(n,L, δ)

uniformly for all h ∈ HL with high probability.

2.3 Simultaneous bounds for multiple Lipschitz constants

So far, we have established the following. Let (X , ρ) be a doubling metric space
and HL a collection of L-Lipschitz [0, 1]-valued functions on X . Then Corollary
2.1 guarantees that for all ε, δ ∈ (0, 1) and n ≥ n0(ε, δ, L,ddim(X )), we have

P (∆n(HL) > ε) ≤ δ, (14)

where ∆n(HL) is the uniform deviation defined in (3). Since our computational
approach in Section 3 requires optimizing over Lipschitz constants, we will need
a bound such as (14) that holds for many function classes of varying smooth-
ness simultaneously. This is easily accomplished by stratifying the confidence
parameter δ, as in [SBWA98]. We will need the following theorem:
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Theorem 2.3. Let
H(1) ⊂ H(2) ⊂ . . .

be a sequence of function classes taking X to [0, 1] and let pk ∈ [0, 1], k = 1, 2, . . .,
be a sequence summing to 1. Suppose that ε : N×N× (0, 1)→ [0, 1] is a function
such that for each k ∈ N, with probability at least 1− δ, we have

∆q
n(H(k)) ≤ ε(n, k, δ).

Then, whenever some h ∈
⋃
k∈N[H(k)]η achieves empirical risk Rn(h) on a sam-

ple of size n, we have that with probability at least 1− δ,

R(h) ≤ Rn(h) + ε(n, k, δpk) ∀k. (15)

Proof. An immediate consequence of the union bound. ut

The structural risk minimization principle implied by Theorem 2.3 amounts
to the following model selection criterion: choose an h ∈ H(k) for which the
right-hand side of (15) is minimized.

In applying Theorem 2.3 to Lipschitz classifiers in Section 3 below, we impose
a discretization on the Lipschitz constant L to be multiples of η

24q . Formally, we

consider the stratification H(k) = HLk
,

HL1 ⊂ HL2 ⊂ . . . ,

where Lk = kη with corresponding pk = 2−k for k = 1, 2, . . .. This means that
whenever we need a hypothesis that is an L-Lipschitz regression function, we
may take k = dLηe and use ε(n, k, δ2−k) as the generalization error bound. Note
that all possible values of L are within a factor of 2 of the discretized sequence
Lk.

3 Structural risk minimization

In this section, we address the problem of efficient model selection when given
n observed samples. The algorithm described below computes a hypothesis that
approximately attains the minimum risk over all hypotheses. Since our approx-
imate Lipschitz extension algorithm will evaluate hypotheses up to an additive
error, we define an η-perturbation [H]η of a given hypothesis class H by

[H]η =
{
h′ ∈ RX : ∃h ∈ H s.t. ‖h− h′‖∞ ≤ η

}
. (16)

Recall the risk bound achieved as a consequence of Theorem 2.3. In the full
paper [GKK11], we extend this result to perturbations, showing that whenever
some h ∈

⋃
k∈N

[
H(k)

]
η

achieves empirical risk Rn(h) on a sample of size n, we

have the following bound on R(h), the true risk of h:

R(h) ≤ Rn(h) + ε(n, k, δpk) + 24qη, (17)
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with probability at least 1 − δ (where the diameter of the point set has been
taken as 1, and ε(n, k, δpk) ≥

√
2/n is the minimum value of ε for which the

right-hand side of (11) is at most δ). In the rest of this section, we devise an
algorithm that computes a hypothesis that approximately minimizes our bound
from (17) on the true risk, denoted henceforth

R̃η(h) = Rn(h) + ε(n, k, δpk) + 24qη.

Notice that on the right-hand side, the first two terms depend on L, but only
the first term depends on the choice of h, and only the third term depends on η.

Theorem 3.1. Let (Xi, Yi) for i = 1, . . . , n be an iid sample drawn from µ,
let η ∈ (0, 14 ), and let h∗ be a hypothesis that minimizes R̃η(h) over all h ∈⋃
k∈N

[
H(k)

]
η
. There is an algorithm that, given the n samples and η as input,

computes in time η−O(ddim(X ))n log3 n a hypothesis h′ ∈
⋃
k∈N

[
H(k)

]
η

with

R̃η(h′) ≤ 2R̃η(h∗). (18)

Remark. We show in Theorem 4.1 how to quickly evaluate the hypothesis h′ on
new points.

The rest of Section 3 is devoted to describing an algorithm that realizes the
bounds of Theorem 3.1 for q = 1 (Sections 3.1 and 3.2) and q = 2 (Section 3.3).
In proving the theorem, we will find it convenient to compare the output h′ to
a hypothesis h̄ that is smooth (i.e. Lipschitz but unperturbed). Indeed, let h∗

be as in the theorem, and h̄ ∈
⋃
k∈NH(k) be a hypothesis that minimizes R̃η(h̄).

Then Rn(h∗) ≤ Rn(h̄) ≤ Rn(h∗) + η, and we get R̃η(h∗) ≤ R̃η(h̄) ≤ R̃η(h∗) + η.

Accordingly, the analysis below will actually prove that R̃η(h′) ≤ 2R̃η(h̄) − 2η,
and then (18) will follow easily, essentially increasing the additive error by 2η.
Moreover, once (18) is proved, we can use the above to conclude that R̃η(h′) ≤
2R̃0(h̄) + O(η), which compares the risk bound of our algorithm’s output h′ to
what we could possibly get using smooth hypotheses.

In the rest of this section we consider the n observed samples as fixed values,
given as input to the algorithm, so we will write xi instead of Xi.

3.1 Motivation and construction

Suppose that the Lipschitz constant of an optimal unperturbed hypothesis h̄ were
known to be L = L̄. Then ε(n, k, δpk) is fixed, and the problem of computing both
h̄ and its empirical risk Rn(h̄) can be described as the following optimization
program with variables f(xi) for i ∈ [n] to represent the assignments h(xi). Note
it is a Linear Program (LP) when q = 1 and a quadratic program when q = 2.

Minimize
∑
i∈[n] |yi − f(xi)|q

subject to |f(xi)− f(xj)| ≤ L · ρ(xi, xj) ∀i, j ∈ [n]
0 ≤ f(xi) ≤ 1 ∀i ∈ [n]

(19)
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It follows that h̄ could be computed by first deriving L̄, and then solving the
above program. However, it seems that computing these exactly is an expensive
computation. This motivates our search for an approximate solution to risk
minimization. We first derive a target Lipschitz constant L′ that “approximates”
L̄, in the sense that there exists an h′ with Lipschitz constant L′ which minimizes
the objective max{Rn(h′), ε(n, k, δpk)}. Notice that Rn(h′) may be computed
by solving LP (19) using the given value L′ for L. We wish to find such L′

via a binary search procedure, which requires a method to determine whether
a candidate L satisfies L ≤ L′, but since our objective need not be a monotone
function of L, we cannot rely on the value of the objective at the candidate
L. Instead, recall that the empirical risk term Rn(h′) is monotonically non-
increasing, and the penalty term ε(n, k, δpk) is monotonically non-decreasing,
and therefore we can take L′ to be the minimum value L for which Rn(h′) ≤
ε(n, k, δpk) (notice that both terms are right-continuous in L). Our binary search
procedure can thus determine whether a candidate L satisfies L ≤ L′ by checking
instead whether Rn(h′) ≤ ε(n, k, δpk).

Were the binary search on L to be carried out indefinitely (that is, with
infinite precision), it would yield L′ and a smooth hypothesis h′ satisfying
R̃η(h′) ≤ 2R̃η(h̄), where the factor 2 originates from the gap between maxi-
mum and summation. In fact, a slightly stronger bound holds:

R̃η(h′)−24qη ≤ 2 max{Rn(h′), ε(n, k, δpk)} ≤ 2
(
Rn(h̄)+ε(n, k, δpk)

)
≤ 2
(
R̃η(h̄)−24qη

)
.

(In our actual LP solver below, h′ will not be necessarily smooth, but rather a
perturbation of a smooth hypothesis.) However, to obtain a tractable runtime,
we fix an additive precision of η to the Lipschitz constant, and restrict the target
Lipschitz constant to be a multiple of η. Notice that R̃η(h̄) ≤ 2 for sufficiently
large n (since this bound can even be achieved by a hypothesis with Lipschitz
constant 0), so by (13) it must be that L̄ ≤ nO(1), since L̄ is the optimal Lips-
chitz constant. It follows that the binary search will consider only O(log(n/η))
candidate values for L′.

To bound the effect of discretizing the target L′ to multiples of η, we shall
show the existence of a hypothesis ĥ that has Lipschitz constant L̂ ≤ max{L̄−
η, 0} and satisfies R̃η(ĥ) ≤ R̃η(h̄)+η. To see this, assume by translation that the
minimum and maximum values assigned by h̄ are, respectively 0 and a ≤ 1. Thus,
its Lipschitz constant is L̄ ≥ a (recall we normalized diam(X ) = 1). Assuming

first the case a ≥ η, we can set ĥ(x) = (1− η
a ) · h̄(x), and it is easy to verify that

its Lipschitz constant is at most (1− η
a )L̄ ≤ L̄− η, and R̃η(ĥ) ≤ R̃η(h̄) + η. The

case a < η is even easier, as now there is trivially a function ĥ with Lipschitz
constant 0 and R̃η(ĥ) ≤ R̃η(h̄) + η. It follows that when the binary search is

analyzed using this ĥ instead of h̄, we actually get

R̃η(h′) ≤ 2R̃η(ĥ)− 24qη ≤ 2R̃η(h̄)− 22qη ≤ 2R̃η(h∗)− 20qη.

It now remains to show that given L′, program (19) may be solved quickly
(within certain accuracy), which we do in Sections 3.2 and 3.3.
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3.2 Solving the linear program

We show how to solve the linear program, given the target Lipschitz constant
L′.

Fast LP-solver framework. To solve the linear program, we utilize the framework
presented by Young [You01] for LPs of the following form: Given non-negative
matrices P,C, vectors p, c and precision β > 0, find a non-negative vector x such
that Px ≤ p and Cx ≥ c. Young shows that if there exists a feasible solution
to the input instance, then a solution to a relaxation of the input program
(specifically, Px ≤ (1+β)p and Cx ≥ c) can be found in time O(md(logm)/β2),
where m is the number of constraints in the program and d is the maximum
number of constraints in which a single variable may appear.

In utilizing this framework for our problem, we encounter a difficulty that
both the input matrices and output vector must be non-negative, while our LP
(19) has difference constraints. To bypass this limitation, for each LP variable
f(xi) we introduce a new variable x̃i and two new constraints:

f(xi) + x̃i ≤ 1
f(xi) + x̃i ≥ 1

By the guarantees of the LP solver, we have that in the returned solution
1− f(xi) ≤ x̃i ≤ 1− f(xi) +β and x̃i ≥ 0. This technique allows us to introduce
negated variables−f(xi) into the linear program, at the loss of additive precision.

Reduced constraints. A central difficulty in obtaining a near-linear runtime for
the above linear program is that the number of constraints in LP (19) is Θ(n2).
We show how to reduce the number of constraints to near-linear in n, namely,
η−O(ddim(X ))n. We will further guarantee that each of the n variables f(xi)
appears in only η−O(ddim(X )) constraints. Both these properties will prove useful
for solving the program quickly.

Recall that the purpose of the Θ(n2) constraints is solely to ensure that
the target Lipschitz constant is not violated between any pair of points. We
will show below that this property can be approximately maintained with many
fewer constraints: The spanner described in our full paper [GKK11], has stretch
1 + δ, degree δ−O(ddim(X )) and hop-diameter c′ log n for some constant c′ > 0,
that can be computed quickly. Build this spanner for the observed sample points
{xi : i ∈ [n]} with stretch 1+η (i.e., set δ = η) and retain a constraint in LP (19)
if and only if its two variables correspond to two nodes that are connected in the
spanner. It follows from the bounded degree of the spanner that each variable
appears in η−O(ddim(X )) constraints, which implies that there are η−O(ddim(X ))n
total constraints.

Modifying remaining constraints. Each spanner-edge constraint |f(xi)−f(xj)| ≤
L′ · ρ(xi, xj) is replaced by a set of two constraints

f(xi) + x̃j ≤ 1 + L′ · ρ(xi, xj)
f(xj) + x̃i ≤ 1 + L′ · ρ(xi, xj)
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By the guarantees of the LP solver we have that in the returned solution,
each spanner edge constraint will satisfy

|f(xi)− f(xj)| ≤ −1 + (1 + β)[1 + L′ · ρ(xi, xj)]
= β + (1 + β)L′ · ρ(xi, xj).

Now consider the Lipschitz condition for two points not connected by a span-
ner edge: Let x1, . . . , xk+1 be a (1 + η)-stretch (k ≤ c′ log n)-hop spanner path
connecting points x = x1 and x′ = xk+1. Then the spanner stretch guarantees
that

|f(x)− f(x′)| ≤
∑k
i=1[β + (1 + β)L′ · ρ(xi, xi+1)]

≤ βc′ log n+ (1 + β)L′ · (1 + η)ρ(x, x′).

Choosing β = η2

24qc′ logn , and noting that (1 + β)(1 + η) < (1 + 2η), we have
that for all point pairs

|f(x)− f(x′)| < η2

24q + (1 + 2η)L′ · ρ(x, x′).

We claim that the above inequality ensures that the computed hypothesis
h′ (represented by variables f(xi) above) is a 6η-perturbation of some hypoth-
esis with Lipschitz constant L′. To prove this, first note that if L′ = 0, then
the statement follows trivially. Assume then that (by the discretization of L′),
L′ ≥ η. Now note that a hypothesis with Lipschitz constant (1 + 3η)L′ is a 3η-
perturbation of some hypothesis with Lipschitz constant L′. (This follows easily
by scaling down this hypothesis by a factor of (1+3η), and recalling that all values
are in the range [0, 1].) Hence, it suffices to show that the computed hypothesis
h′ is a 3η-perturbation of some hypothesis h̃ with Lipschitz constant (1 + 3η)L′.
We can construct h̃ as follows: Extract from the sample points S = {xi}i∈[n] a

(η/L′)-net N , then for every net-point z ∈ N set h̃(z) = h′(z), and extend this
function h̃ from N to all of S without increasing Lipschitz constant by using the
McShane-Whitney extension theorem [McS34, Whi34] for real-valued functions.
Observe that for every two net-points z 6= z′ ∈ N ,

|h̃(z)− h̃(z′)| ≤ η2

24q
+ (1 + 2η)L′ · ρ(z, z′) < (1 + 3η)L′ · ρ(z, z′).

It follows that h̃ (defined on all of S) has Lipschitz constant L̃ ≤ 1 + 3η. Now,
consider any point x ∈ S and its closest net-point z ∈ N ; then ρ(x, z) ≤ η/L′.
Using the fact h̃(z) = h′(z), we have that |h′(x)− h̃(x)| ≤ |h′(x)−h′(z)|+ |h̃(z)−
h̃(x)| ≤

[
η2

24q + (1 + 2η)L′ · ρ(x, z)
]

+ (1 + 3η)L′ · ρ(x, y) ≤ η2

24q + (2 + 5η)η ≤ 3η.

We conclude that h′ is 3η-perturbation of h̃, and a 6η-perturbation of some
hypothesis with Lipschitz constant L′.

Objective function. We now turn to the objective function 1
n

∑
i |yi− f(xi)|. We

use the same technique as above for handling difference constraints: For each
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term |yi − f(xi)| in the objective function we introduce the variable wi and the
constraint

f(xi) + wi ≥ yi

Note that the solver imposes the constraint that wi ≥ 0, so we have that
wi ≥ max{0, yi − f(xi)}. Now consider the term f(xi) + 2wi, and note that
the minimum feasible value of this term in the solution of the linear program is
exactly equal to yi + |yi − f(xi)|: If f(xi) ≥ yi then the minimum feasible value
of wi is 0, which yields f(xi)+2wi = f(xi) = yi+(f(xi)−yi) = yi+ |yi−f(xi)|.
Otherwise we have that f(xi) < yi, so the minimum feasible value of wi is
yi − f(xi), which yields f(xi) + 2wi = 2yi − f(xi) = yi + |yi − f(xi)|.

The objective function is then replaced by the constraint

1
n

∑
i(f(xi) + 2wi) ≤ r,

which by the above discussion is equal to 1
n

∑
i(yi + |yi− f(xi)|) ≤ r, and hence

is a direct bound on the empirical error of the hypothesis. We choose bound r via
binary search: Recalling that R̃n(h′) ≤ 1 (since even a hypothesis with Lipschitz
constant 0 can achieve this bound), we may set r ≤ 1. By discretizing r in
multiples of η (similar to what was done for L′), we have that the binary search
will consider only O(log η−1) guesses for r. Note that for guess r′, the solver
guarantees only that the returned sum is less than (1 + β)r′ ≤ r′ + β < r′ + η.
It follows that the discretization of r and its solver relaxation of r introduce,
together, at most an additive error of 2η in the LP objective, i.e., in Rn(h′) and
in R̃η(h′).

Correctness and runtime analysis. The fast LP solver ensures that h′ computed
by the above-described algorithm is a 6η-perturbation of a hypothesis with Lips-
chitz constant L′. As for R̃(h′), which we wanted to minimize, an additive error of
2η is incurred by comparing h′ to h̄ instead of to h∗, another additive error of 2η
arises from discretizing L̄ into L′ (i.e., comparing to ĥ instead of h̄), and another
additive error 4η introduced through the discretization of r and its solver relax-
ation. Overall, the algorithm above computes a hypothesis h′ ∈

⋃
k∈N

[
H(k)

]
6η

with R̃η(h′) ≤ 2R̃η(h∗) − 16η. The parameters in Theorem 3.1 are achieved by

scaling down η to η
6 and the simple manipulation R̃η/6(h) = R̃η(h)− 20qη.

Finally, we turn to analyze the algorithmic runtime. The spanner may be
constructed in time O(η−O(ddim(X ))n log n). Young’s LP solver [You01] is in-
voked O(log n

η log 1
η ) times, where the log n

η term is due to the binary search

for L′, and the log 1
η term is due to the binary search for r. To determine

the runtime per invocation, recall that each variable of the program appears
in d = η−O(ddim(X )) constraints, implying that there exist m = η−O(ddim(X ))n
total constraints. Since we set β = O(η2/ log n), we have that each call to the
solver takes time O(md(logm)/β2) ≤ η−O(ddim(X ))n log2 n, for a total runtime
of η−O(ddim(X ))n log2 n log n

η log 1
η ≤ η−O(ddim(X ))n log3 n. This completes the

proof of Theorem 3.1 for q = 1.
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3.3 Solving the quadratic program

Above, we considered the case when the loss function is linear. Here we modify
the objective function construction to cover the case when the loss function is
quadratic, that is 1

n

∑
i |yi − f(xi)|2. We then use the LP solver to solve our

quadratic program. (Note that the spanner-edge construction above remains as
before, and only the objective function construction is modified.)

Let us first redefine wi by the constraints

f(xi) + wi ≤ 1
f(xi) + wi ≥ 1

It follows from the guarantees of the LP solver that in the returned solution,
1− f(xi) ≤ wi ≤ 1− f(xi) + β and wi ≥ 0.

Now note that a quadratic inequality v ≥ x2 can be approximated for x ∈
[0, 1] by a set of linear inequalities of the form

v ≥ 2(jη)x− (jη)2

for 0 ≤ j ≤ 1
η ; these are just a collection of tangent lines to the quadratic

function. Note that the slope of the quadratic function in the stipulated range
is at most 2, so this approximation introduces an additive error of at most 2η.

Since |yi−f(xi)|2 takes values in the range [0, 1], we will consider an equation
set of the form

vi ≥ 2(jη)|yi − f(xi)| − (jη)2 + 2η

which satisfies that the minimum feasible value of vi is in the range [|yi −
f(xi)|2, |yi − f(xi)|2 + 2η]. It remains to model these difference constraints in
the LP framework: When f(xi) ≤ yi, the equation set

vi + 2(jη)f(xi) ≥ 2(jη)yi − (jη)2 + 2η

exactly models the above constraints. When f(xi) > yi, the lower bound of this
set may not be tight, and instead the equation set

vi + 2(jη)wi ≥ −2(jη)yi − (jη)2 + 2η + 2(jη)(1 + β)

models the above constraints, though possibly increasing the value of vi by
2(jη)β < η. (Note that when f(xi) < yi, the lower bound of the second equa-
tion set may not be tight, so the first equation set is necessary. Also, note that
whenever the right hand side of an equation is negative, the equation is vacuous
and may be omitted.)

The objective function is then replaced by the inequality

1
n

∑
i vi ≤ r,

where r is chosen by binary search as above.
Turning to the runtime analysis, the replacement of a constraint by O(1/η)

new constraints does not change the asymptotic runtime. For the analysis of the
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approximation error, first note that a solution to this program is a feasible solu-
tion to the original quadratic program. Further, given a solution to the original
quadratic program, a feasible solution to the above program can be found by
perturbing the quadratic program solution by at most 3η (since additive terms
of 2η and η are lost in the above construction). The proof of Theorem 3.1 for
q = 2 follows by an appropriate scaling of η.

4 Approximate Lipschitz extension

In this section, we show how to evaluate our hypothesis on a new point. More
precisely, given a hypothesis function f : S → [0, 1], we wish to evaluate a
minimum Lipschitz extension of f on a new point x /∈ S. That is, denoting S =

{x1, . . . , xn}, we wish to return a value y = f(x) that minimizes maxi{ |y−f(xi)|
ρ(x,xi)

}.
Necessarily, this value is not greater than the Lipschitz constant of the classifier,
meaning that the extension of f to the new point does not increase the Lipschitz
constant of f and so Theorem 2.3 holds for the single new point. (By this local
regression analysis, it is not necessary for newly evaluated points to have low
Lipschitz constant with respect to each other, since Theorem 2.3 holds for each
point individually.)

First note that the Lipschitz extension label y of x /∈ S will be determined by
two points of S. That is, there are two points xi, xj ∈ S, one with label greater
than y and one with a label less than y, such that the Lipschitz constant of (x, y)

relative to each of these points (that is, L = f(xi)−y
ρ(x,xi)

=
y−f(xj)
ρ(x,xj)

) is maximum

over the Lipschitz constant of (x, y) relative to any point in S. Hence, y cannot
be increased or decreased without increasing the Lipschitz constant with respect
to one of these points.

Note then that an exact Lipschitz extension may be derived in Θ(n2) time in
brute-force fashion, by enumerating all point pairs in S, calculating the optimal
Lipschitz extension for x with respect to each pair alone, and then choosing the
candidate value for y with the highest Lipschitz constant. However, we demon-
strate that an approximate solution to the Lipschitz extension problem can be
derived more efficiently.

Theorem 4.1. An η-additive approximation to the Lipschitz extension problem
can be computed in time η−O(ddim(X )) log n.

Proof. The algorithm is as follows: Round up all labels f(xi) to the nearest term
jη/2 (for any integer 0 ≤ j ≤ 2/η), and call the new label function f̃ . We seek the
value of f̃(x), the optimal Lipschitz extension value for x for the new function
f̃ . Trivially, f(x) ≤ f̃(x) ≤ f(x) + η/2. Now, if we were given for each j the
point with label jη/2 that is the nearest neighbor of x (among all points with this
label), then we could run the brute-force algorithm described above on these 2/η
points in time O(η−2) and derive f̃(x). However, exact metric nearest neighbor
search is potentially expensive, and so we cannot find these points efficiently.
We instead find for each j a point x′ ∈ S with label f̃(x′) = jη/2 that is a
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(1 + η
2 )-approximate nearest neighbor of x among points with this label. (This

can be done by presorting the points of S into 2/η buckets based on their f̃ label,
and once x is received, running on each bucket a (1 + η

2 )-approximate nearest

neighbor search algorithm due to [CG06] that takes η−O(ddim(X )) log n time.)
We then run the brute force algorithm on these 2/η points in time O(η−2). The
nearest neighbor search achieves approximation factor 1 + η

2 , implying a similar
multiplicative approximation to L, and thus also to |y−f(x′)| ≤ 1, which means
at most η/2 additive error in the value y. We conclude that the algorithm’s
output solves the Lipschitz extension problem with additive η. ut
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