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Abstract—We study the problem of approximating edit dis-
tance in sublinear time. This is formalized as the (k, kc)-GAP
EDIT DISTANCE problem, where the input is a pair of strings
X,Y and parameters k, c > 1, and the goal is to return YES
if ED(X,Y ) ≤ k, NO if ED(X,Y ) > kc, and an arbitrary
answer when k < ED(X,Y ) ≤ kc. Recent years have witnessed
significant interest in designing sublinear-time algorithms for
GAP EDIT DISTANCE.

In this work, we resolve the non-adaptive query complexity
of GAP EDIT DISTANCE for the entire range of parameters,
improving over a sequence of previous results. Specifically,
we design a non-adaptive algorithm with query complexity
Õ(n/kc−0.5), and we further prove that this bound is optimal
up to polylogarithmic factors.

Our algorithm also achieves optimal time complexity
Õ(n/kc−0.5) whenever c ≥ 1.5. For 1 < c < 1.5, the
running time of our algorithm is Õ(n/k2c−2). In the restricted
case of kc = Ω(n), this matches a known result [Batu, Ergün,
Kilian, Magen, Raskhodnikova, Rubinfeld, and Sami; STOC
2003], and in all other (nontrivial) cases, our running time
is strictly better than all previous algorithms, including the
adaptive ones. However, independent work of Bringmann, Cassis,
Fischer, and Nakos [STOC 2022] provides an adaptive algorithm
that bypasses the non-adaptive lower bound, but only for small
enough k and c.

Index Terms—edit distance, query complexity, non-adaptive

I. INTRODUCTION

The edit distance is a ubiquitous distance measure on

strings. It finds applications in various fields including com-

putational biology, pattern recognition, text processing, infor-

mation retrieval, and many more. The edit distance between

strings X and Y , denoted by ED(X,Y ), is defined as the

A full version of this paper is available at arXiv:2111.12706.†Work partially supported by NSF CCF grants 1652303 and 1909046, and
a HDR TRIPODS Phase II grant 2217058.‡Work partially supported by ONR Award N00014-18-1-2364, by the Israel
Science Foundation grant #1086/18, by a Weizmann-UK Making Connections
Grant, by a Minerva Foundation grant, and the Weizmann Data Science
Research Center.

minimum number of character insertions, deletions, and sub-

stitutions needed to convert X into Y . A simple textbook dy-

namic programming computes edit distance in quadratic time.

Moreover, under reasonable hardness assumptions, such as the

Strong Exponential-Time Hypothesis, no truly subquadratic-

time algorithm for this problem exists [1], [2], [9], [19].

When dealing with enormous amounts of data, such as DNA

strings, big data storage, etc., quadratic running time might be

prohibitive, leading a quest for faster algorithms that find an

approximate solution. A long line of research towards that

goal [5], [8], [10]–[12], [15], [20] recently culminated with

an almost-linear-time approximation algorithm by Andoni and

Nosatzki [7] that, for any desired ε > 0, runs in O(n1+ε) time

and achieves an approximation factor that depends only on ε,

that is, a constant-factor approximation for any fixed ε > 0.

The growing interest in modern computational paradigms,

like streaming and sketching (sublinear space), sampling

and property testing (sublinear time), and massively parallel

computation, sparked interest in sublinear-time algorithms. It

started with a seminal work of Batu, Ergün, Kilian, Magen,

Raskhodnikova, Rubinfeld, and Sami [11], and developed into

an exciting sequence of results on approximating ED in sublin-

ear time [8], [16], [17], [24], [29]. (These are sometimes called

estimation algorithms to emphasize that they approximate ED
without necessarily constructing a witness alignment.)

A sublinear-time algorithm for ED cannot be expected to

attain constant-factor approximation, since even in the case

where the edit distance is O(1), a linear fraction of the input

strings must be queried. Hence, the aim here is to solve the

promise problem (k, kc)-GAP EDIT DISTANCE, which asks

to return YES if ED(X,Y ) ≤ k, NO if ED(X,Y ) > kc,

and an arbitrary answer otherwise. The accuracy of the

aforementioned results depends on gap “size” c and the gap

“location” k; their performance is measured in terms of their

query and time complexity, and also qualitatively whether they

query the input strings adaptively (i.e., each query may depend
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on the results of earlier queries).

The first contribution [11] addressed the case kc = Ω(n).
Under this restriction, they obtained a sublinear-time algorithm

that runs in Õ(k2/n +
√
k) time.1 Moreover, they showed

a query-complexity lower bound of Ω(
√
k), rendering their

result optimal for c ≥ 1.5. Andoni and Onak [8] were the

first to overcome the limitation that kc = Ω(n). However,

their query complexity Ô(n2/k2c−1) reduces to Ô(k) when

kc = Ω(n), far above that of [11].2 Interestingly, both these

algorithms are non-adaptive.

In recent years, further progress has been achieved, mostly

by exploiting adaptive queries, particularly by Goldenberg,

Krauthgamer, and Saha [24], and subsequently by Kociumaka

and Saha [29], who improved over [8] when k is small. The

running time Õ(n/kc−1+k3) of [24] had an undesirable cubic

dependency on k, which was improved to quadratic in [29]

at the price of an extra Õ(k2.5−cn0.5) term appearing for

c < 2. Non-adaptive algorithms often tend to be simple, but

they are generally less powerful. So far, the best results in

the regime of small k came through carefully using adaptive

queries [24], [29]. Hence, it seemed plausible that adaptivity

would be crucial to improving beyond [8] for large k as well.

Technical Contributions: In light of prior work, the

following main questions remained open.

• Can we remove/reduce the polynomial dependency on k
from [24], [29] without degrading the dependency on n?

• Is adaptivity needed to achieve complexity Õ(n/kc−1)
for small k?

• Can we obtain tight query-complexity lower bounds?

In Section III, we present a simple non-adaptive algorithm

that removes the polynomial dependency on k entirely, thus

answering the first two questions. The algorithm solves the

(k, kc)-GAP EDIT DISTANCE problem with time complexity

Ô(n/kc−1), as follows.

Theorem I.1 (Simplified version of Corollary III.5). For every
constant c > 1, there is a non-adaptive randomized algorithm
that solves (k, kc)-GAP EDIT DISTANCE in time Ô(n/kc−1).

This result already improves upon all prior results [8],

[16], [24], [29], except for the earliest algorithm of [11] that

applies only for kc = Ω(n) (see below for a comparison

with independent work [17]). The algorithm abandons the

recent approach of [24], [29] of scanning the two input strings

and tracking their periodicity structure using adaptive queries.

Instead, our baseline is Andoni and Onak’s algorithm [8],

which samples a few blocks of predetermined length from each

string, and computes only a “local” alignment (between the ith
block of X and the ith block of Y ). In [8], the block length is

optimized according to the gap parameters k and c. Somewhat

surprisingly, just by sampling blocks of different lengths and

using all of them simultaneously (instead of choosing a single

block length), we achieve a significantly better result. The

details, including a technical overview, appear in Section III.

1The Õ(·) notation hides factors polylogarithmic in n.
2The Ô(·) notation hides factors subpolynomial in n.

Our main result still uses non-adaptive sampling and

achieves a significant improvement for the entire range of c,
and in particular generalizes or improves upon all previous

bounds. By building on the above simple algorithm, we first

improve the query complexity (in Section IV) and then also

the time complexity (in Section V), both in the polynomial

dependency on k and in the no(1)-factor.

Theorem I.2 (Simplified version3 of Theorem V.6). For every
constant c > 1, there is a non-adaptive randomized algorithm
that solves (k, kc)-GAP EDIT DISTANCE using Õ(n/kc−0.5)
queries and Õ(n/kmin(c−0.5,2c−2)) time.

Our final contribution is a new lower bound for non-

adaptive algorithms that applies for all values of k and c (see

Section VI). It extends a previous lower bound of [11], which

handles only the very special case kc = Ω(n).

Theorem I.3 (Simplified version of Theorem VI.2). For every
constant c > 1 and parameters n ≥ k ≥ 1, every non-adaptive
algorithm solving the (k, kc)-GAP EDIT DISTANCE problem
has expected query complexity Ω(n/kc−0.5).

Altogether, we obtain optimal non-adaptive query complex-

ity for all c > 1, and furthermore optimal time complexity for

a large regime (all c ≥ 1.5). In particular, we achieve optimal

query and time complexity for the quadratic gap edit distance

problem (c = 2), which was the focus of all recent work [16],

[24], [29]. When c < 1.5, we match the time bound of [11]

and further remove their restriction that kc = Ω(n).

Table I lists all the known algorithmic bounds, including

our, previous, and independent results. It is instructive to

compare them against Ω(n/kc−0.5), our (tight) lower bound

for non-adaptive algorithms (Theorem VI.2). Figure 1 plots

these bounds for a quadratic gap (c = 2). One can see that our

main result, Theorem V.6, improves over all previous results

for the entire range of k, although independent work [17]

provides a further improvement for small k by using adaptive

sampling and thus bypassing our lower bound.

Open Questions: Our results completely resolve the non-

adaptive query complexity of GAP EDIT DISTANCE.

The lower bound of [11] applies to adaptive queries as

well, and we match this lower bound using a non-adaptive

algorithm. Hence, adaptivity cannot help at the extreme regime

of kc = Ω(n). The question remains though whether adaptivity

is useful to improve the complexity further in the intermediate

regime, where the Ô(k4) term in the running time of [17]

makes that solution slower than ours.

Another open problem is to improve the time complexity

(ideally to match the query-complexity lower bound) for 1 <
c < 1.5 or to strengthen the lower bound for time complexity,

showing a separation between time and query complexity (as

in [3] for the max-cut problem, for example).

3It suffices to use Theorem V.6 with any constant h > 1
1−c

, and resort to

an exact algorithm if k = Õ(1). We remark that Theorem V.6 additionally has

some limited applicability to c = 1+o(1) and can solve (k, k ·2O(
√

logn))-
GAP EDIT DISTANCE using Ô(n/

√
k) queries.
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Time Complexity Non-Adaptive Restrictions Reference

Õ (
k0.5

)
= Õ (

n/kc−0.5
)

Yes kc = Ω(n), c ≥ 1.5 [11]

Õ (
k2/n

)
= Õ (

n/k2c−2
)

Yes kc = Ω(n), c < 1.5 [11]

Ô(n2/k2c−1) Yes [8]

Õ(n/kc−1 + k3) No [24]

Õ(n/kc−1.5 + k2.5−c) Yes c ≥ 1.5 [16]

Õ(n/kc−1 + k2 +
√
n · k2.5−c) No [29]

Ô(n/kc + n0.8 + k4) No [17]

Ô(n/kc−1) Yes Corollary III.5

Õ(n/kc−0.5) Yes c ≥ 1.5 Theorem V.6

Õ(n/k2c−2)a Yes c < 1.5 Theorem V.6

aQuery complexity is Õ(n/kc−0.5), lower than the time complexity.

TABLE I
SUBLINEAR-TIME ALGORITHMS FOR (k, kc)-GAP EDIT DISTANCE.

logn k

logn Time
1

1
4

1
2

3
4

2
3

4
5

Corollary III.5

Theorem
V.6

1
20 1

4
1
3

2
5

1
10

2
15

1
5

[11]

[8]

[16]

[2
4]

[2
9]

[17]

Corollary III.5: Ô(n/k)

Theorem V.6: Õ(n/k1.5)

[17]: Ô(n/k2 + n0.8 + k4)

[11]: Õ(
√
k) for k = Θ(

√
n)

[8]: Ô(n2/k3)

[16]: O(n/
√
k)

[24]: Õ(n/k + k3)

[29]: Õ(n/k + k2)

Fig. 1. The running times of algorithms for (k, k2)-GAP EDIT DISTANCE.

Related Work: Sublinear-time algorithms were studied for

several related string problems, including the Ulam metric [6],

[33], longest increasing subsequence (LIS) [32], [34], and

shift finding [4]. There are also sublinear-space streaming

algorithms for edit distance [13], [21]–[23], [26], [27], [35].

Several algorithms for edit distance leverage preprocessing

(of one or both strings independently) to perform further

computations in sublinear-time [5], [16], [18], [25].
Non-Adaptive Sampling: Our algorithms only require a

non-adaptive sampling. While these might bring inferior per-

formance (running time or query complexity) compared to

algorithms using adaptive sampling, as indeed obtained inde-

pendently of our work in [17] for small values of k, numerous

applications can gain from — or even require — non-adaptive

sampling. Consider for example a distributed setting where the

input XY is partitioned into p ≥ 2 substrings, held by distinct

players that communicate in the blackboard model (equivalent

to a broadcast channel). One particular case of interest is two

players, one holding X and the other holding Y . Every sam-

pling algorithm A has an obvious distributed implementation

whose communication complexity is precisely the query com-

plexity of A, but clearly a non-adaptive A requires only one

round of communication (assuming shared randomness). For

another example, consider t ≥ 3 input strings X(1), . . . , X(t)

and a goal of estimating the edit distance between every

pair of strings. When implementing a non-adaptive sampling

algorithm A, it suffices to sample each string X(i) only once,

and use the sample across all the t − 1 executions involving

the string X(i), thereby running O(t2) executions of A using

only O(t) sets of samples, reducing communication by factor

t compared to using adaptive sampling.

II. PRELIMINARIES

Fact II.1. Let X,Y ∈ Σn. For every i, j ∈ [0 . . n] with i ≤ j,
we have ED(X[i . . j), Y [i . . j)) ≤ ED(X,Y ).

Fact II.2. For all strings X1, X2, Y1, Y2 ∈ Σ∗, we have
ED(X1X2, Y1Y2) ≤ ED(X1, Y1) + ED(X2, Y2).

Problem II.3 ((β, α)-GAP EDIT DISTANCE). Given strings
X,Y ∈ Σn and integers α ≥ β ≥ 0, return YES if
ED(X,Y ) ≤ β, NO if ED(X,Y ) > α, and an arbitrary
answer otherwise.

Theorem II.4 (Landau and Vishkin [31]). There exists a
deterministic algorithm that solves any instance of the (β, α)-
GAP EDIT DISTANCE problem (with arbitrary α ≥ β ≥ 0) in
O(n+ β2) time.
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Fact II.5 (see e.g. [28], [30]). There exists a randomized
algorithm that solves any instance of the (0, α)-GAP EDIT

DISTANCE problem in O( n
1+α ) time with success probability

at least 2
3 .

Theorem II.6 (Andoni and Nosatzki [7]). There exist de-
creasing functions fAN, gAN : R+ → R≥1 and a randomized
algorithm A that, given X,Y ∈ Σn and ε ∈ R+, runs in
O(gAN(ε)n

1+ε) time and returns a value A(X,Y, ε) satisfying

P[ED(X,Y ) ≤ A(X,Y, ε) ≤ fAN(ε)ED(X,Y )] ≥ 2
3 .

Below, fAN and gAN denote the functions of Theorem II.6.

Corollary II.7. There exists a randomized algorithm that,
given ε, δ ∈ R+ and an instance of (β, α)-GAP EDIT DIS-

TANCE satisfying α ≥ �fAN(ε)β�, solves the instance in time
O(gAN(ε)n

1+ε log 1
δ ) with error probability at most δ.

Proof. Consider running the algorithm of Theorem II.6. If

ED(X,Y ) ≤ β, then the answer is at most fAN(ε)β < α + 1
with probability at least 2

3 . If ED(X,Y ) > α, then the answer

is at least α+1 with probability at least 2
3 . Hence, comparing

the answer against α + 1 solves the gap problem in time

O(gAN(ε)n
1+ε) with success probability at least 2

3 . The success

probability can be amplified to at least 1 − δ by running the

algorithm Θ(log 1
δ ) times with independent randomness and

returning the dominant answer.

III. SIMPLE ALGORITHM

The main result of this section is a randomized algorithm

for the (β, α)-GAP EDIT DISTANCE problem that, under mild

technical conditions, makes Ô(βα · n) non-adaptive queries to

the two input strings. The precise time bound depends on the

functions fAN and gAN from Theorem II.6 (see Corollary III.4

for the formal statement; here, we assumed fixed ε, δ > 0). Our

algorithm is essentially a reduction (presented in Section III-C)

to the same gap problem but with smaller gap parameters,

building upon an earlier reduction of Andoni and Onak [8].4

In a nutshell, these reductions partition the two input strings

into blocks and call an oracle that solves gap problems on a

few randomly chosen block pairs. The key difference from [8]

is that their reduction uses one block length, while ours

essentially uses all feasible block lengths.

We start below with an overview of both reductions (Sec-

tion III-A), followed by a quick proof of their reduction

(Section III-B), which makes it easier to read our reduction

(Section III-C) and also to compare the two. To obtain our final

result, we only need to implement the oracle, and we simply

plug in the state-of-the-art almost-linear-time algorithm of [7]

into our reduction (Section III-D).

A. Overview

To simplify this overview, we shall assume an algorithm

that approximates the edit distance within factor f = Ô(1) in

time Ô(n), and we shall refer to it as an oracle that solves

4The reduction in [8] is presented as an application of their almost-linear-
time approximation algorithm.

(β, α)-GAP EDIT DISTANCE in almost-linear time whenever

α ≥ fβ. Such algorithms were devised in [7], [8], and their

precise bounds are not important for this overview.

We first sketch the algorithm (reduction) of Andoni and

Onak [8]. It partitions the two input strings X,Y into m := n
b

blocks of length b that will be determined later, denoting

their respective ith blocks by Xi and Yi for i ∈ [0 . .m).
If the algorithm determines that ED(Xi, Yi) > β for some

i ∈ [0 . .m), then, by Fact II.1, also ED(X,Y ) > β, and the

algorithm is safe to return NO. The algorithm’s strategy is

just to search for such a “NO witness”; for this, it samples

several indices i, calls the oracle to solve (β, fβ)-GAP EDIT

DISTANCE on the corresponding pairs (Xi, Yi), and returns

NO if and only if at least one of the oracle calls returned NO.

This algorithm is clearly correct whenever ED(X,Y ) ≤ β,

so we only need to consider ED(X,Y ) > α. In that case,

by Fact II.2, ED(Xi, Yi) > α
m holds for an average i (a

crude intuition is that an average block “contains” many edit

operations). For this sketch, let us consider only the two

extreme scenarios. In one scenario, ED(Xi, Yi) has the same

value for all i; if α
m ≥ fβ, then, no matter which block our

algorithm samples, the oracle will return NO on it, and our

algorithm will also return NO. We will thus constrain our

choice of m to satisfy α
m ≥ fβ. In the other extreme scenario,

ED(Xi, Yi) has a large value for a few indices i and a small

value, say zero for simplicity, for all other indices. These large

values are bounded by ED(Xi, Yi) ≤ b; hence, the first group

must contain at least α
b indices i (again by Fact II.2). To

have a good chance of sampling at least one of these indices,

our algorithm should sample each i with probability (at least)

ρ = Ω( b
α ). To optimize algorithm’s query complexity, we set

the parameters to minimize the sampling rate ρ, i.e., minimize

b or, equivalently, maximize m. Due to the constraint from

above, the optimal choice is thus b = n
m = n·fβ

α . The query

complexity of this algorithm is O(ρn) = O( b
α ·n) = Ô(n

2·β
α2 ),

and the running time is almost-linear in the query complexity,

and thus bounded similarly.

The true limitation of this approach is that it uses a single

block length b. It is somewhat hidden because we compare

ED(Xi, Yi) only against the natural threshold β (and fβ,

but the factor f is almost negligible here), which leads to

an optimal choice of b. One idea is to use a different block

length b, or even multiple lengths. But should it be larger or

smaller? And what advantage can we gain from it?

What turns out to work well is a multi-level approach, which

partitions the input strings into blocks of different lengths (all

powers of 2) and samples blocks from all the levels at the same

rate ρ. The query complexity is O(ρn) for each level, and

there are only O(log n) levels, but we can now use sampling

rate ρ = Θ( fβα ), which is significantly lower than Θ(nfβα2 )
needed in [8]. To understand this improvement in the sampling

rate, recall the two extreme scenarios mentioned above. In the

first scenario, where edits are spread evenly among the length-

b blocks for b = Ω(n·fβα ), we already argued that querying

any length-b block suffices to detect a “NO witness”. In the
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second scenario, consider shorter blocks of length O(fβ), and

suppose that each ED(Xi, Yi) is either zero or exceeds fβ. The

number of indices i in the latter group must be at least α
O(fβ)

(again by Fact II.2), and they are all “NO witnesses”. To have

a good chance of sampling at least one of them, it suffices to

use rate ρ = Θ( fβα ).

Our proof considers all levels and, for each position j ∈
[1 . . n], identifies a “suitable” level based on the distribution of

errors in the proximity of j. This is achieved by decomposing

[1 . . n] into blocks of varying sizes, so that the block covering

position j reveals the level responsible for j. Perhaps surpris-

ingly, the analysis is thus adaptive even though the algorithm

only makes non-adaptive queries!

B. The Reduction of Andoni and Onak

We recall a sublinear-time algorithm of Andoni and Onak

[8, Section 4] that makes calls to an oracle solving the same

gap problem but with a smaller gap. They implement this

oracle using their main result, which is an almost-linear-time

approximation algorithm. We review their proof to illustrate

how our algorithm and analysis are different.

Theorem III.1. There exists a randomized reduction that,
given a parameter φ ∈ Z+ and an instance of (β, α)-GAP

EDIT DISTANCE satisfying 1
3α ≥ φ ≥ β ≥ 1, solves

the instance using O(nα ) non-adaptive calls to an oracle
for (β, φ)-GAP EDIT DISTANCE involving substrings of total
length O(φn

2

α2 ). The reduction takes O(nα ) time, does not
access the input strings, and errs with probability at most 1

e .

Proof. Let us partition the input strings X,Y into m := 	nb 

blocks of length b := 	 3φnα 
 (the last blocks might be shorter),

denoting the ith blocks by Xi and Yi for i ∈ [0 . .m). For

a sampling rate ρ := b2

φn , the algorithm performs 	mρ

iterations. In each iteration, the algorithm chooses i ∈ [0 . .m)
uniformly at random and makes an oracle call to solve an in-

stance (Xi, Yi) of (β, φ)-GAP EDIT DISTANCE. The algorithm

returns YES if and only if all oracle calls return YES.

The total length of substrings involved in the oracle calls is

O(ρm ·b) = O(ρn) = O( b
2

φ ) = O(φn
2

α2 ), whereas the running

time and number of oracle calls are O(ρm) = O( b
φ ) = O(nα ).

To prove the correctness of this reduction (assuming the

oracle makes no errors), let B := {i ∈ [0 . .m) : ED(Xi, Yi) >
φ} and observe that ED(X,Y ) ≤ |B|b + mφ. Hence, if

ED(X,Y ) > α, then

|B| > α−mφ
b ≥ αb−2nφ

b2 ≥ 3φn−2φn
b2 = 1

ρ .

The probability that the algorithm returns YES is then at most

(1− |B|m )�ρm� ≤ exp(− |B|m ·	ρm
) ≤ exp(−ρ|B|) ≤ exp(−1).

On the other hand, if ED(X,Y ) ≤ β, then Fact II.1 implies

that ED(Xi, Yi) ≤ β for all i ∈ [0 . .m). Consequently, all

oracle calls return YES, and so does the entire algorithm.

C. Our Reduction

Theorem III.2. There exists a randomized reduction that,
given a parameter φ ∈ Z+ and an instance of (β, α)-GAP

EDIT DISTANCE satisfying 1
10α ≥ φ ≥ β ≥ 1, solves

the instance using O(nα ) non-adaptive calls to an oracle
for (β, φ)-GAP EDIT DISTANCE involving substrings of total
length O(φn logn

α ). The reduction takes O(nα ) time, does not
access the input strings, and errs with probability at most 1

e .

The algorithm: For every level p ∈ [0 . . 	log n
], partition

X,Y into mp := 	 n
2p 
 blocks of length 2p (the last blocks

might be shorter), given by Xp,i = X[i·2p . .min(n, (i+1)2p))
and Yp,i = Y [i · 2p . .min(n, (i+ 1)2p)) for i ∈ [0 . .mp).

Let ρ := 10φ
α . For each level p ∈ [	log φ
 . . �log(ρn)�],

our algorithm performs 	ρmp
 iterations. In each iteration,

the algorithm chooses i ∈ [0 . .mp) uniformly at random and

calls an oracle to solve an instance (Xp,i, Yp,i) of the (β, φ)-
GAP EDIT DISTANCE problem. The algorithm returns YES if

and only if all oracle calls (across all levels) return YES.

Complexity Analysis: The total length of substrings involved

in the oracle calls is

O
⎛
⎝�log(ρn)�∑

p=�log φ�
2p · 	ρmp


⎞
⎠ = O(ρn log n) = O(φn logn

α ).

The running time and the number of oracle calls are

O
⎛
⎝�log(ρn)�∑

p=�log φ�
	ρmp


⎞
⎠ = O

⎛
⎝�log(ρn)�∑

p=�log φ�

ρn
2p

⎞
⎠

= O(ρnφ ) = O (
n
α

)
.

Correctness: The core of the analysis is the following

lemma, which proves that an instance with large edit distance

must contain, across all the levels, many blocks of “high cost”.

In the lemma, these blocks are denoted by Bp for level p, as

illustrated in Figure 2.

Lemma III.3. Consider a threshold τ ∈ Z+. For each level
p ∈ [0 . . 	log n
], let

Bp := {i ∈ [0 . .mp) : ED(Xp,i, Yp,i) > τ}.

If ED(X,Y ) > τ , then
∑�logn�

p=�log τ� |Bp| > 1
2τ ED(X,Y ).

Proof. We prove by induction on p that

∑
i∈Bp

ED(Xp,i, Yp,i) ≤ 2τ ·
p∑

q=�log τ�
|Bq|.

The base case of p < 	log τ
 holds trivially because then

ED(Xp,i, Yp,i) ≤ τ for all i ∈ [1 . .mp), and thus Bp = ∅.
For the inductive step, consider p ≥ 	log τ
. Observe that

each i ∈ [0 . .mp) satisfies Xp,i = Xp−1,2i · Xp−1,2i+1 (if

Xp−1,2np+1 is undefined, we set it to be empty) and, similarly,
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Fig. 2. The multi-level partitioning of [0 . . n) into blocks of length 2p at
each level p. Inside each rectangle we write the edit distance between the
corresponding pair of blocks in X and in Y . A red color represents that
the block is in Bp (high cost), and the two shades of green represent the

remaining blocks. The dark green blocks color represents blocks in B̂p \Bp

(green blocks with a red ‘parent’); the crux of Lemma III.3 is that the entire
range can be decomposed into few such blocks.

Yp,i = Yp−1,2i · Yp−1,2i+1. Consequently, we define B̂p−1 =⋃
i∈Bp

{2i, 2i+ 1}, with |B̂p−1| = 2|Bp|, and derive

∑
i∈Bp

ED(Xp,i, Yp,i)
Fact II.2≤

∑
j∈B̂p−1

ED(Xp−1,j , Yp−1,j)

≤
∑

j∈B̂p−1\Bp−1

ED(Xp−1,j , Yp−1,j)+
∑

j∈Bp−1

ED(Xp−1,j , Yp−1,j)

induction≤ τ · |B̂p−1 \Bp−1|+ 2τ ·
p−1∑

q=�log τ�
|Bq|

≤ τ · |B̂p−1|+ 2τ ·
p−1∑

q=�log τ�
|Bq| = 2τ ·

p∑
q=�log τ�

|Bq|.

This completes the inductive proof.

The lemma follows by applying the inequality proved above

and observing that ED(X,Y ) > τ implies B�logn� = {0}:

ED(X,Y ) = ED(X�logn�,0, Y�logn�,0) ≤ 2τ

�logn�∑
p=�log τ�

|Bp|.

Let us proceed with the correctness analysis of our algo-

rithm. First, suppose that ED(X,Y ) > α. Using Lemma III.3

with τ := φ and the fact α ≥ 10φ > τ , we then obtain

�logn�∑
p=�log φ�

|Bp| ≥ ED(X,Y )
2τ > α

2φ = 5
ρ .

Using a naive bound

�logn�∑
p=�log(ρn)�

|Bp| ≤
�logn�∑

p=�log(ρn)�
mp ≤

�logn�∑
p=�log(ρn)�

2n
2p ≤ 4

ρ ,

we conclude that
∑�log(ρn)�

p=�log φ� |Bp| ≥ 1
ρ . For each level p ∈

[	log φ
 . . �log(ρn)�], the probability that a single oracle (at

a fixed iteration) call returns YES is at most 1 − |Bp|
mp

≤

exp
(− |Bp|

mp

)
. Across all levels p ∈ [	log φ
 . . �log(ρn)�], the

probability that all calls return YES is at most

exp

(
−
�log(ρn)�∑
p=�log φ�

|Bp|
mp
·	ρmp


)
≤ exp

(
−
�log(ρn)�∑
p=�log φ�

ρ|Bp|
)

≤ exp(−1).
Thus, the algorithm returns YES with probability at most 1

e .

Now, suppose that ED(X,Y ) ≤ β. Then, Fact II.1 implies

ED(Xp,i, Yp,i) ≤ β for all p ∈ [0 . . 	log n
] and i ∈ [0 . .mp).
Consequently, each oracle call returns YES, so our algorithm

also returns YES. This completes the proof of Theorem III.2.

D. Corollaries (by Plugging Known Algorithms)

Corollary III.4. There exists a non-adaptive randomized
algorithm that, given parameters ε, δ ∈ R+ and an instance of
(β, α)-GAP EDIT DISTANCE satisfying α ≥ �fAN(ε)β�, solves
the instance in time O( 1+β

1+αfAN(ε)gAN(ε) · n1+ε log2 n · log 1
δ ),

using O( 1+β
1+αfAN(ε)·n log n·log 1

δ ) queries to the input strings,
and with error probability at most δ, where fAN and gAN are
the functions of Theorem II.6.

Proof. If β = 0, then we use the algorithm of Fact II.5, which

takes time O( n
1+α ). If �fAN(ε)β� ≤ α < 10fAN(ε)β, we use the

algorithm of Corollary II.7, which takes O(gAN(ε)n
1+ε) time

and O(n) queries. In the remaining case of 0 < 10fAN(ε)β ≤
α, we use the reduction of Theorem III.2 with φ = �fAN(ε)β�
and the oracle implemented using Corollary II.7. The oracle

is randomized, so we need to set its error probability to

Θ(αn ) so that all oracle calls are correct with large constant

probability. An oracle call involving a pair of strings of length

m takes time O(gAN(ε)m
1+ε log n) = O(gAN(ε)m · nε log n),

and the total length of all strings involved in the oracle calls

is O( βα · fAN(ε)n log n); therefore, the total running time is

O( βα · fAN(ε)gAN(ε) · n1+ε log2 n). This completes the algo-

rithm’s description for δ > 1
e . For general δ > 0, we amplify

the success probability by taking the majority answer among

O(log 1
δ ) independent repetitions of the entire algorithm.

Next, we observe that the running time can be expressed as

Ô( 1+β
1+α · n) as long as α

β = ω(1).

Corollary III.5. Let s : Z≥0 → Z≥0 be a function such
that limx→∞

s(x)
x =∞. There exists a randomized algorithm

that solves any instance of (β, α)-GAP EDIT DISTANCE with
α ≥ s(β) in time Ô( 1+β

1+α · n) correctly with high probability.

Proof. Observe that there exists a function ε : Z≥0 → R+

such that ε(n) = o(1), fAN(ε(n)) ≤ log n, gAN(ε(n)) ≤ log n,

and fAN(ε(n)) ≤ s(x)
x for all n ∈ Z≥0 and x > log n. If

α ≥ fAN(ε(n))β, we use Corollary III.4 with ε = ε(n), which

takes Õ( 1+β
1+αfAN(ε(n))gAN(ε(n))n

1+ε(n)) = Ô( 1+β
1+αn) time. If

α < fAN(ε(n))β and β ≤ log n, we use Theorem II.4, which

takes O(n+β2) = O(n) = O( 1+α
1+β · 1+β

1+α ·n) = O(fAN(ε(n)) ·
1+β
1+α · n) = Ô( 1+β

1+α · n) time. In the remaining case of α <
fAN(ε(n))β and β > log n, we have α < fAN(ε(n))β ≤ s(β),
which contradicts our assumption α ≥ s(β).
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IV. IMPROVED QUERY COMPLEXITY

In this section, we improve the query complexity of the

algorithm described in Section III, solving the (β, α)-GAP

EDIT DISTANCE with query complexity Õ
(

n
√
β

α

)
provided

that α β.

A. Overview

Recall that Theorem III.2 provides a randomized reduction

from the (β, α)-GAP EDIT DISTANCE problem to the (β, φ)-
GAP EDIT DISTANCE problem. We used ED(Xi,p, Yi,p) ≤
ED(X,Y ) to justify the correctness for YES instances: The

input can be safely rejected as soon as we discover that

ED(Xi,p, Yi,p) > β holds for some level p and index i ∈
[0 . .mp). If we were guaranteed that ED(Xi,p, Yi,p) ≤ ψ
holds with good probability (over random i ∈ [0 . .mp)) for

some ψ < β, then we could use an oracle for the (ψ, φ)-
GAP EDIT DISTANCE problem instead of the (β, φ)-GAP

EDIT DISTANCE problem, i.e., our reduction would produce

instances of the GAP EDIT DISTANCE problem with a larger

gap. Unfortunately, this is not the case in general. In particular,

if X consists of distinct characters and Y is obtained by

moving the last s ≤ 1
2n characters of X to the front,

then ED(Xi,p, Yi,p) = ED(X,Y ) = 2s holds for all levels

p ≥ log(2s) and indices i ∈ [0 . .mp). Nevertheless, in this

example, the optimal alignment between Xi,p and Yi,p is very

simple: up to the shift by s characters (which effectively

removes the last s characters of Xi,p and the first s characters

of Yi,p), the two blocks are perfectly aligned. In general, for a

fixed alignment A of X and Y , the induced alignment of Xi,p

and Yi,p performs the edits that A would make on Xi,p and

Yi,p, and the only effect of edits that A makes outside these

blocks is that some leading and trailing characters of Xi,p and

Yi,p need to be deleted (because A aligns them with characters

outside the considered blocks). Thus, in a YES-instance, for

a random i ∈ [0 . .mp), we always see up to β edits between

Xi,p and Yi,p, but in expectation only β
mp

of these edits cannot

be attributed to a shift between Xi,p and Yi,p. This motivates

the following notion.

Definition IV.1. For two strings X,Y ∈ Σ∗ and a threshold

β ∈ Z≥0, define the β-shifted edit distance EDβ(X,Y ) as

min

(
min(|X|,|Y |,β)⋃

Δ=0

{
ED(X[Δ . . |X|), Y [0 . . |Y | −Δ)),

ED(X[0 . . |X| −Δ), Y [Δ . . |Y |))}
)
.

Note that EDβ(X,Y ) ≤ ED(X,Y ) ≤ EDβ(X,Y ) + 2β holds

for every β ∈ Z≥0.

As argued above, the YES-instances of (β, α)-GAP EDIT

DISTANCE satisfy Ei[EDβ(Xp,i, Yp,i)] ≤ β
mp

. Given that we

sample blocks with rate ρ, we expect to see O(1) blocks with

EDβ(Xp,i, Yp,i) > ψ if we appropriately set ψ = Θ̃(ρβ).
Moreover, this statement is also true with high probability.

Furthermore, the argument in the proof of Theorem III.2 can

be strengthened to prove that, in a NO-instance, with high

probability, we see Ω(1) blocks with ED(Xp,i, Yp,i) > 3φ.

Thus, instead of using an oracle for the (β, φ)-GAP EDIT

DISTANCE problem, we can use an oracle for the β-SHIFTED

(ψ, 3φ)-GAP EDIT DISTANCE problem defined as follows.

Problem IV.2 (β-SHIFTED (γ, 3α)-GAP EDIT DISTANCE).
Given strings X,Y ∈ Σn and integer thresholds α ≥ β ≥
γ ≥ 0, return YES if EDβ(X,Y ) ≤ γ, NO if ED(X,Y ) > 3α,
and an arbitrary answer otherwise.

The idea to separate the shift from the “local” edits origi-

nates from [11], but they were only able to solve the (β, α)-
GAP EDIT DISTANCE problem for α = Ω(n). Combining their

insight into our reduction of Theorem III.2, we can handle a

much wider range of parameters.

Similarly to [11], our algorithm is recursive in nature, with

β decreased in each level (until it reaches 0). There is a

key difference, though: They reduce the SHIFTED GAP EDIT

DISTANCE problem to a more general problem, which be-

comes even more complicated in subsequent recursion levels.

Our new insight is that, surprisingly, the SHIFTED GAP EDIT

DISTANCE problem can be reduced back to (multiple instances

of) GAP EDIT DISTANCE. This yields an algorithm with a

much cleaner structure, and furthermore improves the query

complexity because all these instances operate on relatively

few different input strings, which can be easily exploited

due to the non-adaptive nature of our approach. In fact, this

query complexity is optimal (up to logO(1)(n) terms) for non-

adaptive algorithms, as indicated by our lower bound, which

generalizes the one in [11].

In this section, we present a solution that achieves this

optimal query complexity but does not significantly improve

the running time compared to Section III. The latter issue

is addressed in Section V, where we exploit dependencies

between the SHIFTED GAP EDIT DISTANCE instances pro-

duced throughout the recursive calls. Specifically, we provide

a more efficient implementation for the batched version of

the β-SHIFTED (0, 3α)-GAP EDIT DISTANCE problem arising

at the lowest level of our recursion. Moreover, we carefully

adjust the parameters at the three lowest levels of recursion

so that they produce batches with desirable properties. Up to

logarithmic factors, our time bound matches that of [11], but

the latter is valid only for α = Ω(n).

B. GAP EDIT DISTANCE to SHIFTED GAP EDIT DISTANCE

Below, we reduce the (β, α)-GAP EDIT DISTANCE problem

to the β-SHIFTED (ψ, 3φ)-GAP EDIT DISTANCE problem,

where φ ≥ β can be adjusted and ψ is set to Õ(βφα ). Our

immediate application in Section IV-D uses φ = β, but

subsequent speedups in Section V sometimes require φ β.

Lemma IV.3. There exists a randomized reduction that, given
a parameter φ ∈ Z+ and an instance of (β, α)-GAP EDIT

DISTANCE satisfying φ ≥ β ≥ ψ := �112βφ�logn�
α �, solves the

instance using O(nα ) non-adaptive calls to an oracle for β-
SHIFTED (ψ, 3φ)-GAP EDIT DISTANCE involving substrings
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of total length O(φn logn
α ). The reduction costs O(nα ) time,

does not access the input strings, and errs with probability at
most 1

e .

Proof. Let ρ = 84φ
α and τ = 3φ. For each level p ∈

[	log τ
 . . �log(ρn)�], our algorithm performs 	ρmp
 itera-

tions. In each iteration, the algorithm chooses i ∈ [0 . .mp)
uniformly at random and solves an instance (Xp,i, Yp,i) of the

β-SHIFTED (ψ, 3φ)-GAP EDIT DISTANCE problem. Finally,

the algorithm returns YES if the number b̂ of oracle calls with

NO answers satisfies b̂ ≤ 5; if b̂ ≥ 6, the algorithm returns

NO.

Let us first analyze the complexity of the algorithm. The

total length of all strings involved in the oracle calls is

O
⎛
⎝�log(ρn)�∑

p=�log τ�
2p · 	ρmp


⎞
⎠ = O(ρn log n) = O(φn logn

α ).

The running time and the number of oracle calls are

O
⎛
⎝�log(ρn)�∑

p=�log τ�
	ρmp


⎞
⎠ = O

⎛
⎝�log(ρn)�∑

p=�log τ�

ρn
2p

⎞
⎠

= O (
ρn
τ

)
= O (

n
α

)
.

Let us now proceed with the algorithm correctness. If

ED(X,Y ) > α, then we use Lemma III.3. Due to α ≥
112φ	log n
 > 3φ = τ , we have

∑�logn�
p=�log τ� |Bp| > α

2τ = 14
ρ .

At the same time,
∑�logn�

p=�log(ρn)� |Bp| ≤
∑∞

p=�logn�
2n
2p ≤ 4

ρ ,

so
∑�log(ρn)�

p=�log τ� |Bp| ≥ 10
ρ . For a fixed iteration at level

p ∈ [	log τ
 . . 	log n
], the probability that the oracle call

returns NO is at least
|Bp|
mp

. Across all iterations and all

levels p ∈ [	log τ
 . . �log(ρn)�], the expected number of NO

answers is therefore

E

[
b̂
]
≥
�log(ρn)�∑
p=�log τ�

|Bp|	ρmp

mp

≥ ρ ·
�log(ρn)�∑
p=�log τ�

|Bp| ≥ 10.

By the Chernoff bound, we thus have

P

[
b̂ ≤ 5

]
= P

[
b̂ ≤ (1− 1

2 ) · 10
]
≤ exp

(
− ( 1

2 )
2·10
2

)
= exp(− 5

4 ) < exp(−1).
Finally, consider the case of ED(X,Y ) ≤ β. For every level

p ∈ [0 . . 	log n
], we define a set Gp = {i ∈ [1 . .mp) :
EDβ(Xp,i, Yp,i) > ψ} corresponding to oracle calls that may

return NO.

Claim IV.4. We have
∑�logn�

p=1 |Gp| ≤ 2β�logn�
ψ+1 ≤ 3

2ρ .

Proof. For each level p ∈ [1 . . 	log n
], let us consider

a partition Y =
⊙

i∈[0. .mp)
Y ′p,i such that ED(X,Y ) =∑

i∈[0. .mp)
ED(Xp,i, Y

′
p,i). We claim that EDβ(Xp,i, Yp,i) ≤

2ED(Xp,i, Y
′
p,i). If |Y ′p,i| ≤ β, then EDβ(Xp,i, Yp,i) ≤

max(0, |Xp,i| − β) ≤ ED(Xp,i, Y
′
p,i) and the claim holds

trivially. Thus, we assume |Y ′p,i| > β and consider two cases.

Δ

Y

X Xp,1 Xp,2 Xp,3 Xp,4

Y ′p,1 Y ′p,2 Y ′p,3 Y ′p,4

Fig. 3. The partitions X =
⊙

i∈[0. .mp)
Xp,i and Y =

⊙
i∈[0. .mp)

Y ′p,i.

First, suppose that Y ′p,i starts at position i·2p+Δ for Δ ≥ 0.

We then have Δ ≤ ED(X[0 . . i · 2p), Y [0 . . i · 2p + Δ)) =∑i−1
j=0 ED(Xp,j , Y

′
p,j) ≤ ED(X,Y ) ≤ β and thus:

EDβ(Xp,i, Yp,i) ≤ ED(Xp,i[0 . . |Xp,i|−Δ), Yp,i[Δ . . |Yp,i|))
≤ ED(Xp,i[0 . . |Xp,i|−Δ), Y ′p,i[0 . . |Y ′p,i|−Δ))+

∣∣|Yp,i|−|Y ′p,i|
∣∣

≤ ED(Xp,i, Y
′
p,i) +

∣∣|Xp,i| − |Y ′p,i|
∣∣ ≤ 2ED(Xp,i, Yp,i).

Similarly, if Y ′p,i starts at position i · 2p−Δ for some Δ ≥ 0,

then Δ ≤∑i−1
j=0 ED(Xp,j , Y

′
p,j) ≤ ED(X,Y ) ≤ β and

EDβ(Xp,i, Yp,i) ≤ ED(Xp,i[Δ . . |Xp,i|), Yp,i[0 . . |Yp,i|−Δ))

≤ ED(Xp,i[Δ . . |Xp,i|), Y ′p,i[Δ . . |Y ′p,i|)) +
∣∣|Yp,i| − |Y ′p,i|

∣∣
≤ ED(Xp,i, Y

′
p,i) +

∣∣|Xp,i| − |Y ′p,i|
∣∣ ≤ 2ED(Xp,i, Y

′
p,i)

Thus,
∑�logn�

p=1

∑mp−1
i=0 EDβ(Xp,i, Yp,i) ≤ 2β	log n
 and at

most
2β�logn�

ψ+1 terms exceed ψ.

For a fixed iteration at level p ∈ [	log τ
 . . �log(ρn)�], the

probability that the oracle call returns NO is at most
|Gp|
mp

.

Across all iterations and levels p ∈ [	log τ
 . . �log(ρn)�], the

expected number of NO answers is therefore

E

[
b̂
]
≤
�log(ρn)�∑
p=�log τ�

|Gp|	ρmp

mp

≤ 2ρ

�log(ρn)�∑
p=�log τ�

|Gp| ≤ 3.

By the Chernoff bound, we thus have

P

[
b̂ ≥ 6

]
= P

[
b̂ ≥ (1 + 1) · 3

]
≤ exp(−12·3

2+1 ) =
1
e .

C. SHIFTED GAP EDIT DISTANCE to GAP EDIT DISTANCE

Lemma IV.5. There exists a deterministic reduction that,
given instance of β-SHIFTED (γ, 3α)-GAP EDIT DISTANCE

satisfying α ≥ 3γ, solves the instance using O(
1+β
1+γ

)
non-

adaptive calls to an oracle for (3γ, α)-GAP EDIT DISTANCE

involving O(√
1+β√
1+γ

)
distinct substrings. each of length at

most n. The reduction takes O( 1+β
1+γ ) time and does not access

the input strings.

Proof. Let ξ ∈ [γ . . β] be a parameter set later and n′ = n−β.

We use the oracle to solve several instances of the (3γ, α)-
GAP EDIT DISTANCE problem and return YES if and only

if at least one oracle call returned YES. These instances are

(X[x . . x + n′), Y [y . . y + n′)) for all x ∈ [0 . . β] such that

x ≡ 0 (mod 1 + ξ) or x ≡ β (mod 1 + ξ), all y ∈ [0 . . ξ]
such that y ≡ 0 (mod 1+γ), and all y ∈ [β−ξ . . β] such that

y ≡ β (mod 1 + γ). The number of oracle calls is at most

4
⌈
1+β
1+ξ

⌉⌈
1+ξ
1+γ

⌉ ≤ 16 · 1+β
1+γ , but the number of distinct strings
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involved in these calls is at most 2
⌈
1+β
1+ξ

⌉
+2

⌈
1+ξ
1+γ

⌉
, which is

O(√
1+β√
1+γ

)
if we set 1 + ξ = �√(1 + β)(1 + γ)�.

Suppose that EDβ(X,Y ) ≤ γ. First, consider the case when

EDβ(X,Y ) = ED(X[Δ . . n), Y [0 . . n − Δ)) for some Δ ∈
[0 . . β). Let us choose the smallest x ∈ [Δ . . β] with x ≡ β
(mod 1 + ξ) and the largest y ∈ [0 . . x − Δ] with y ≡ 0
(mod 1 + γ). Observe that

ED(X[x . . x+ n′), Y [y . . y + n′))
≤ 2γ + ED(X[x . . x+ n′), Y [x−Δ . . x−Δ+ n′))

≤ 2γ + ED(X[Δ . . n), Y [0 . . n−Δ)) ≤ 3γ.

Hence, the oracle call for (x, y) must return YES.

Similarly, let us consider the case when EDβ(X,Y ) =
ED(X[0 . . n − Δ), Y [Δ . . n)) for some Δ ∈ [0 . . β). Let us

choose the largest x ∈ [0 . . β −Δ] with x ≡ 0 (mod 1 + ξ)
and the smallest y ∈ [x + Δ . . β] with y ≡ β (mod 1 + γ).
Observe that

ED(X[x . . x+ n′), Y [y . . y + n′))
≤ 2γ + ED(X[x . . x+ n′), Y [x+Δ . . x+Δ+ n′))

≤ 2γ + ED(X[0 . . n−Δ), Y [Δ . . n)) ≤ 3γ

Hence, the oracle call for (x, y) must return YES.

Next, suppose that some oracle call for (x, y) returned YES.

This implies ED(X[x . . x+n′), Y [y . . y + n′)) ≤ α for some

x, y ∈ [0 . . β]. At the same time, we have

ED(X[0 . . x), Y [0 . . y))≤max(x, y)≤β, and

ED(X[x+ n′ . . n), Y [y + n′ . . n))≤max(β − x, β − y)≤β.

Hence, ED(X,Y ) ≤ α+ 2β ≤ 3α holds as claimed.

D. Baseline Implementation

Proposition IV.6. There exists a non-adaptive algorithm
that, given h ∈ Z≥0, δ ∈ R+, and an instance
of the (β, α)-GAP EDIT DISTANCE problem, satisfying
β < (336	log n
)−h

2 α
h

h+1 , solves the instance in O(
1+β
1+α ·

n log2h n·log 1
δ ·2O(h)

)
time, using O(√

1+β
1+α ·n log2h n·log 1

δ ·
2O(h)

)
queries, and with error probability at most δ.

Proposition IV.7. There exists a non-adaptive algorithm that,
given h ∈ Z≥0, δ ∈ R+, and an instance of the β-
SHIFTED (γ, 3α)-GAP EDIT DISTANCE problem satisfying
γ < 1

3 (336	log n
)
−h
2 α

h
h+1 , solves the instance in O(

1+β
1+α ·

n log2h n·log n
δ ·2O(h)

)
time, using O(√

1+β
1+α ·n log2h n·log n

δ ·
2O(h)

)
queries, and with error probability at most δ.

Proof of Propositions IV.6 and IV.7. As for (β, α)-GAP EDIT

DISTANCE, let us assume that δ > 1
e ; in general, we amplify

the success probability by repeating the algorithm O(log 1
δ )

times. If β = 0 (and, in particular, h = 0), we simply use

Fact II.5. Otherwise, we apply Lemma IV.3 with φ = β using

our β-SHIFTED (ψ, 3φ)-GAP EDIT DISTANCE algorithm (with

parameters h−1 and Θ( 1n )) as the oracle. This is valid because

ψ ≤ 112β2�logn�
α < 112β2�logn�

β
h+1
h ·(336�logn�)h+1

2

= 1
3 · (336	log n
)

1−h
2 · φh−1

h ≤ 1
3 · φ < β.

The running time is

O
(

φ logn
α · βφ · n log2h−2 n · log n · 2O(h−1)

)
= O

(
β
α · n log2h n · 2O(h)

)
,

whereas the query complexity is

O
(

φ logn
α ·

√
β
φ · n log2h−2 n · log n · 2O(h−1)

)
= O

(√
β
α · n log2h n · 2O(h)

)
.

As for the β-SHIFTED (γ, 3α)-GAP EDIT DISTANCE prob-

lem, we apply Lemma IV.5 using our (3γ, α)-GAP EDIT

DISTANCE algorithm (with parameters h and Θ( δn )) as the

oracle. This is valid since 3γ < (336	log n
)−h
2 α

h
h+1 ≤ α.

The running time is

O
(

1+β
1+γ · 1+3γ

1+α · n log2h n · log n
δ · 2O(h)

)
= O

(
1+β
1+α · n log2h n · log n

δ · 2O(h)
)
,

whereas the query complexity is

O
(√

1+β√
1+γ

·
√
1+3γ
1+α · n log2h n · log n

δ · 2O(h)
)

= O
(√

1+β
1+α · n log2h n · log n

δ · 2O(h)
)
.

V. FASTER IMPLEMENTATION

In this section, we improve the running time while pre-

serving the query complexity behind Proposition IV.6. The

main trick is to consider a batched version on the (β, α)-
GAP EDIT DISTANCE and β-SHIFTED (γ, 3α)-GAP EDIT

DISTANCE problems: Instances (X1, Y1), . . . , (Xq, Yq) form

a batch if X1 = · · · = Xq .

A. SHIFTED GAP EDIT DISTANCE for h = 0

Lemma V.1. There exists a non-adaptive algorithm that, given
a parameter δ ∈ R+, and a batch of q instances of β-
SHIFTED (0, 3α)-GAP EDIT DISTANCE, solves the instances

in O(√q(q+β)

1+α · n log n
δ

)
time with each answer correct with

probability at least 1− δ. Moreover, at most O(
1+β
1+α ·n log n

δ )
characters of the common string X are accessed.

Proof. We simulate the algorithm in the proof of Lemma IV.5,

setting 1+ξ =
⌈√

q+β√
q

⌉
. For each instance, this yields O(1+β)

oracle calls asking to solve the (0, α)-GAP EDIT DISTANCE

problem for (X ′, Y ′) with |X ′| = |Y ′| = n′ ≤ n. The set of

pairs (X ′, Y ′) involved in these calls can be expressed as X ×
Y , where |X | = O(

1+β
1+ξ

)
= O(

min
(
1+β,

√
q(q + β)

))
and
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|Y| = O(1 + ξ) = O(√
q+β√
q

)
. Moreover, since our algorithm

is non-adaptive, the set X is the same for all q instances.

Recall that the reduction of Lemma IV.5 returns YES if and

only if at least one of the oracle calls returns YES. To simulate

implementing the calls using the algorithm of Fact II.5, we

construct a random sample S ⊆ [0 . . n′) of size Θ
(n′ log n

δ

1+α

)
.

We build a set XS := {X ′[S] : X ′ ∈ X} and, for each Y ′ ∈ Y ,

we check whether Y ′[S] ∈ XS . If so, then we return YES. If

processing all Y ′ ∈ Y is completed without a YES answer,

then we return NO (for the given instance).

If ED(X ′, Y ′) > α holds for all (X ′, Y ′) ∈ X × Y , then,

by the union bound, the probability that Y ′[S] ∈ XS holds for

some Y ′ ∈ Y is at most δ. Thus, the algorithm returns YES

with probability at most δ. On the other hand, if X ′ = Y ′

holds for some (X ′, Y ′) ∈ X × Y , then X ′[S] = Y ′[S], and

we do return YES due to Y ′[S] ∈ XS .

If XS is implemented as a ternary trie [14], then its

construction cost is

O
(
|X |

(
log |X |+ n log n

δ

1+α

))
= O

(
|X | · n log n

δ

1+α

)
= O

(
min

(
1+β,

√
q(q+β)

)

1+α · n log n
δ

)
.

The time complexity of the second step is

O
(
|Y|

(
log |X |+ n log n

δ

1+α

))
= O

( √
q+β

(1+α)
√
q · n log n

δ

)

per instance and O(√q(q+β)

1+α · n log n
δ

)
in total.

B. GAP EDIT DISTANCE for h = 1

Lemma V.2. There exists a non-adaptive algorithm that, given
a parameter δ ∈ R+ and a batch of q instances of (β, α)-
GAP EDIT DISTANCE satisfying β2 ≤ α

336�logn� , solves the

instances in O(√q(q+β)

1+α · n log2 n · log 1
δ

)
time with each

answer correct with probability at least 1 − δ. Moreover, at
most O(

1+β
1+α ·n log2 n· log 1

δ ) characters of the common string
X are accessed.

Proof. Let us assume that δ > 1
e ; in general, we amplify the

success probability by repeating the algorithm O(log 1
δ ) times.

If β = 0, then we simply use Fact II.5. Otherwise, we apply

Lemma IV.3 with φ = β and the algorithm of Lemma V.1

(with parameter Θ( 1n )) as the oracle. This is valid because

ψ =
⌊
112β2�logn�

α

⌋
≤

⌊
112α�logn�
336α�logn�

⌋
=

⌊
1
3

⌋
= 0.

Since the algorithm of Lemma IV.3 is non-adaptive, the queries

remain batched. The total running time is

O
(

φ logn
α ·

√
q(q+β)

1+φ · n log n

)
= O

(√
q(q+β)

1+α · n log2 n

)
,

whereas the number of accessed characters of the common

string X does not exceed

O
(

φ logn
α · 1+β

1+φ · n log n
)
= O

(
1+β
1+α · n log2 n

)
.

C. SHIFTED GAP EDIT DISTANCE for h = 1

Lemma V.3. There exists a non-adaptive algorithm that, given
a parameter δ ∈ R+ and a batch of q instances of β-SHIFTED

(γ, 3α)-GAP EDIT DISTANCE satisfying γ2 ≤ α
3024�logn� ,

solves the instances in

O
((√

q(q+β)

1+α + q(1+β)
1+α ·

√
logn
1+α

)
n log2 n · log n

δ

)

time, using O(√q(q+β)

1+α · n log2 n · log n
δ

)
queries, and with

each answer correct with probability at least 1− δ. Moreover,
at most O(

1+β
1+α · n log2 n · log n

δ

)
characters of the common

string X are accessed.

Proof. If γ = 0, then we simply use Lemma V.1. Conse-

quently, we henceforth assume α ≥ β ≥ γ > 0.

In the remaining case, we proceed as in the proof of

Lemma IV.5 except that we artificially increase γ to

γ̄ := min
(
β,

⌊√
α

3024�logn�
⌋)

,

set ξ = max
(
γ̄,min

(
β,

⌊
γ̄
√
β√
q

⌋))
, and use the algorithm of

Lemma V.2 (with parameter Θ( δn )) as the oracle; this is valid

due to (3γ̄)2 ≤ α
336�logn� . The input instances are solved using

O(
β
ξ

)
batches of O( qξγ̄ ) oracle calls, and these batches only

differ in the strings X ′ (common to each batch). As calculated

in the full version, this yields the desired complexities.

D. GAP EDIT DISTANCE for h = 2

Lemma V.4. There exists a non-adaptive algorithm that, given
a parameter δ ∈ R+ and a batch of q instances of β-SHIFTED

(γ, 3α)-GAP EDIT DISTANCE satisfying β ≤ α2/3

336�logn� , solves
the instances in

O
((√

q(q+β)

1+α + q(1+β)2

(1+α)2 · log2 n
)
· n log4 n · log 1

δ

)

time, using O(√q(q+β)

1+α · n log4 n · log 1
δ

)
queries, and with

each answer correct with probability at least 1− δ. Moreover,
at most O(

1+β
1+α · n log4 n · log 1

δ

)
characters of the common

string X are accessed.

Proof. Let us assume that δ > 1
e ; in general, we amplify the

success probability by repeating the algorithm O(log 1
δ ) times.

If β2 ≤ α
336�logn� , then we simply use Lemma V.2. Otherwise,

we apply Lemma IV.3 with φ =
⌊

α2

β2(336�logn�)3
⌋

and the

algorithm of Lemma V.3 (with parameter Θ( 1n )) as the oracle.

This is valid due to the following inequalities:

ψ ≤ 112βφ�logn�
α ≤ 112βα2�logn�

αβ2(336�logn�)3 = α
3β(336�logn�)2

< 336β2�logn�
3β(336�logn�)2 = β

1008�logn� < β,

ψ2 ≤ (112βφ�logn�)2
α2 ≤ φ·(112β�logn�)2·α2

α2·β2(336�logn�)3 = φ
3024�logn� ,

φ =
⌊

α2

β2(336�logn�)3
⌋
≥

⌊
(336β�logn�)3
(336β�logn�)3

⌋
= β.

Since the algorithm of Lemma IV.3 is non-adaptive, the queries

remain batched. As calculated in the full version, this yields

the desired complexities.
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E. SHIFTED GAP EDIT DISTANCE for h = 2

Lemma V.5. There exists a non-adaptive algorithm that, given
a parameter δ ∈ R+ and an instance of β-SHIFTED (γ, 3α)-
GAP EDIT DISTANCE satisfying γ ≤ α2/3

1008�logn� , solves the
instance in

O
((√

1+β
1+α + (1+β)(1+γ)

(1+α)2 · log2 n
)
· n log4 n · log n

δ

)
time, using O(√

1+β
1+α ·n log4 n · log n

δ

)
queries, and with error

probability at most δ.

Proof. If γ2 ≤ α
3024�logn� , then we simply use Lemma V.3.

Otherwise, we proceed as in the proof of Lemma IV.5 ex-

cept that we set ξ = min(β, �γ√β�) and use Lemma V.4

(with parameter Θ( δn )) as the oracle (this is valid due to

3γ ≤ α2/3

336�logn� ). The input instances are solved using O(
β
ξ

)
batches of O( ξγ̄ ) oracle calls, and these batches only differ in

the strings X ′ (common to each batch). As calculated in the

full version, this yields the desired complexities.

F. GAP EDIT DISTANCE and SHIFTED GAP EDIT DISTANCE

for h ≥ 3

Theorem V.6. There exists a non-adaptive algorithm that,
given h ∈ Z≥0, δ ∈ R+, and an instance of (β, α)-GAP

EDIT DISTANCE satisfying β < (336	log n
)−h
2 α

h
h+1 , solves

the instance in

O
((√

1+β
1+α + (1+β)2

(1+α)2 · logh n
)
· n log2h n · log 1

δ · 2O(h)
)

time, using O(√
1+β
1+α · n log2h n · log 1

δ · 2O(h)
)

queries, and
with error probability at most δ.

Theorem V.7. There exists a non-adaptive algorithm that,
given h ∈ Z≥2, δ ∈ R+, and an instance of β-
SHIFTED (γ, 3α)-GAP EDIT DISTANCE satisfying γ <
1
3 (336	log n
)

−h
2 α

h
h+1 , solves the instance in

O
((√

1+β
1+α + (1+β)(1+γ)

(1+α)2 · logh n
)
· n log2h n · log n

δ · 2O(h)
)

time, using O(√
1+β
1+α · n log2h n · log n

δ · 2O(h)
)

queries, and
with error probability at most δ.

Proof of Theorems V.6 and V.7. As for (β, α)-GAP EDIT

DISTANCE, let us assume that δ > 1
e ; in general, we amplify

the success probability by repeating the algorithm O(log 1
δ )

times. We use Fact II.5 and Lemmas V.2 and V.4 when

applicable. In particular, this covers β ≤ α2/3

336�logn� and h ≤ 2.

Otherwise, we apply Lemma IV.3 with φ = β using our

algorithm for β-SHIFTED (ψ, 3φ)-GAP EDIT DISTANCE (with

parameters h−1 and Θ( 1n )) as the oracle. As calculated in the

full version, this is valid and yields the desired complexities.

As for β-SHIFTED (γ, 3α)-GAP EDIT DISTANCE, we use

Lemmas V.1, V.3, and V.5 when applicable. In particular,

this covers γ ≤ α2/3

1008�logn� and h ≤ 2. Otherwise, we

apply Lemma IV.5 using our algorithm for (3γ, α)-GAP EDIT

DISTANCE (with parameters h and Θ( δn )) as the oracle. This

is valid because 3γ ≤ (336	log n
)−h
2 α

h
h+1 ≤ α, and, as cal-

culated in the full version, yields the desired complexities.

VI. MATCHING LOWER BOUND FOR NON-ADAPTIVE

QUERY COMPLEXITY

In this section we strengthen the following lower bound

of [11] for the (β, n
6 )-GAP EDIT DISTANCE problem.

Proposition VI.1 ([11]). For all integers n, α, β ∈ Z+ such
that n

6 = α ≥ β, every algorithm solving all instances of the
(β, α)-GAP EDIT DISTANCE problem has worst-case query
complexity Ω(

√
β) or error probability exceeding 1

3 .

Theorem VI.2. For all integers n, α, β ∈ Z+ such that n
6 ≥

α ≥ β, every non-adaptive algorithm solving all instances
the (β, α)-GAP EDIT DISTANCE problem has expected query
complexity Ω(n

√
β

α ) or error probability exceeding 1
3 .

Proof. Suppose that, for some fixed n, α, β ∈ Z+ with n
6 ≥

α ≥ β, there exists a non-adaptive algorithm A that uses q
queries in expectation and errs with probability at most 1

3 .

We shall derive an algorithm A′ for n = 6α that uses 486qα
n

queries in the worst case; if q = o(n
√
β

α ), this would contradict

Proposition VI.1.

Let us first define an algorithm A3 that runs A three times

and returns the dominant answer; it has error probability to
1+3·2
27 = 7

27 and expected query complexity to 3q. For each

i ∈ [0 . . � n
6α�), let qi be the expected number of queries that

A3 makes to X[6αi . . 6α(i+1)) and Y [6αi . . 6α(i+1)); since

A3 is non-adaptive, these values do not depend on X or Y . By

linearity of expectation, we have
∑

i qi ≤ 3q, so there exists

i ∈ [0 . . � n
6α�) such that qi ≤ 3q

� n
6α � ≤

36qα
n .

The algorithm A′, given strings X ′, Y ′ ∈ Σ6α, constructs

strings X = a6αi · X ′ · an−6α(i+1) and Y = a6αi · Y ′ ·
an−6α(i+1), where a ∈ Σ is an arbitrary character. Formally,

this means that an oracle providing random access to (X ′, Y ′)
is transformed into an oracle providing random access to

(X,Y ). Then, A′ runs A3(X,Y ), but it terminates the ex-

ecution (returning an arbitrary answer) on an attempt to make

more than 27
2 qi ≤ 486qα

n queries to (X ′, Y ′).
This cap of the number of queries trivially bounds the query

complexity of A′. As for the correctness, observe that Fact II.1

implies ED(X,Y ) = ED(X ′, Y ′). Moreover, there is a one-

to-one correspondence between the queries of A′(X ′, Y ′) and

the queries that A3(X,Y ) makes to X[6αi . . 6α(i + 1)) and

Y [6αi . . 6α(i + 1)). Hence, it suffices to analyze the error

probability of the capped version of A3. Without the query

limit, A3(X,Y ) would in expectation make qi queries to

(X ′, Y ′) and err with probability at most 7
27 . By Markov’s

inequality, the probability of making more than 27
2 qi queries

to (X ′, Y ′) does not exceed 2
27 . Thus, the execution of A3 is

terminated with probability at most 2
27 . Overall, this increases

the error probability from 7
27 to 7+2

27 = 1
3 .
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