
BIOINFORMATICS Vol. 19 Suppl. 1 2003, pages i122–i129
DOI: 10.1093/bioinformatics/btg1016

Detecting protein sequence conservation via
metric embeddings

E. Halperin 1,∗, J. Buhler 2, R. Karp 1, R. Krauthgamer 1 and B.
Westover 2

1International Computer Science Institute and Computer Science Division, University
of California, Berkeley, CA 94720 and 2Department of Computer Science and
Engineering, Box 1045, Washington University, One Brookings Drive, St. Louis, MO
63130, USA

Received on January 6, 2003; accepted on February 20, 2003

ABSTRACT
Motivation: Comparing two protein databases is a
fundamental task in biosequence annotation. Given two
databases, one must find all pairs of proteins that align
with high score under a biologically meaningful substitu-
tion score matrix, such as a BLOSUM matrix (Henikoff
and Henikoff, 1992). Distance-based approaches to this
problem map each peptide in the database to a point in
a metric space, such that peptides aligning with higher
scores are mapped to closer points. Many techniques
exist to discover close pairs of points in a metric space effi-
ciently, but the challenge in applying this work to proteomic
comparison is to find a distance mapping that accurately
encodes all the distinctions among residue pairs made
by a proteomic score matrix. Buhler (2002) proposed one
such mapping but found that it led to a relatively inefficient
algorithm for protein-protein comparison.
Results: This work proposes a new distance mapping for
peptides under the BLOSUM matrices that permits more
efficient similarity search. We first propose a new distance
function on peptides derived from a given score matrix.
We then show how to map peptides to bit vectors such
that the distance between any two peptides is closely
approximated by the Hamming distance (i.e. number of
mismatches) between their corresponding bit vectors.
We combine these two results with the LSH-ALL-PAIRS-
SIM algorithm of Buhler (2002) to produce an improved
distance-based algorithm for proteomic comparison. An
initial implementation of the improved algorithm exhibits
sensitivity within 5% of that of the original LSH-ALL-PAIRS-
SIM, while running up to eight times faster.
Availability: The source of the code can be found at
http://www.eecs.berkeley.edu/∼eran/projects/embed.
Contact: eran@eecs.berkeley.edu
Keywords: protein comparison, database indexing, metric
embedding, Hamming space

∗To whom correspondence should be addressed.

INTRODUCTION
Large-scale proteomic sequence comparison is a computa-
tionally challenging task in genome annotation. The rapid
growth of biosequence databases demands fast filtering
and indexing strategies to winnow a few meaningful
similarities between proteins from millions or billions of
irrelevant residues of sequence. These search strategies
are typically informed by substitution score matrices from
the PAM (Dayhoff et al., 1978) and BLOSUM (Henikoff
and Henikoff, 1992) families, which describe evolutionary
models for scoring ungapped protein alignments.

Two principal types of strategy are used to accelerate
large proteomic comparisons: seed- and distance-based
methods. Seed-based methods are typified by BLASTP
(Altschul and Gish, 1996; Altschul et al., 1997), which
initially seeks short words in a protein database that score
highly when aligned to a given query sequence. Only
sequences with high-scoring seed matches are explored
further. Seed-based methods are highly sensitive provided
short seeds (3–4 residues) are used, and they can be
accelerated in practice by preindexing seed matches
or considering only non-overlapping matches (Ning
et al., 2001; Kent, 2002). However, using short seeds
incurs many spurious seed matches in the absence of
a meaningful alignment. In contrast, if we may treat
peptides as points in space, such that the distance between
peptides decreases as their alignment score increases,
then a variety of techniques from computational geometry
can organize a protein database so as to limit the number
of spurious hits to any query while maintaining high
sensitivity. Examples of this distance-based approach
include FLASH (Califano and Rigoutsos, 1993), SST
(Giladi et al., 2002), and LSH-ALL-PAIRS (Buhler, 2001),
which exploits the randomized indexing strategy of Indyk
and Motwani (1998).

A key problem in applying distance-based methods
to accelerate proteomic comparison is the difficulty of

i122 Bioinformatics 19(1) c© Oxford University Press 2003; all rights reserved.

Detecting protein conservation via embeddings

combining these methods with biologically meaningful
score matrices. PAM and BLOSUM matrices do not
easily map to distance functions that guarantee that
higher-scoring pairs of peptides will be closer together†.
Most distance-based tools for biosequence comparison
therefore elect not to use score matrices at all. SST
measures only the Hamming distance, or number of
mismatches, between sequences, which is not suitable
for protein, while FLASH compares amino acids using a
reduced class alphabet that captures only a few of their key
biochemical properties.

Recent work by Buhler (2002) incorporated score
matrices directly into distance-based search. That work
mapped peptides to vectors so that the Hamming distance
between two vectors was a simple affine function of
the (ungapped) alignment score of their corresponding
peptides. This Hamming-space embedding of peptides
formed the basis of LSH-ALL-PAIRS-SIM, a similarity
search algorithm with provably high expected sensitivity.
However, the distance mapping used in Buhler (2002)
induced only a small absolute separation of the distances
between high-scoring versus low-scoring pairs of pep-
tides, making it computationally expensive in practice to
distinguish the two reliably. We therefore focus on the
following still-open question: Is there a distance function
on peptides that provably captures the information in
biologically meaningful score matrices, yet permits effi-
cient application of distance-based methods to accelerate
similarity search?

We present an improved distance-based method for pro-
teomic similarity search that utilizes nearly all the infor-
mation in a substitution score matrix M . We first propose
a mapping, motivated by work of Linial et al. (1997), from
M to a distance function D on peptides of fixed length �.
We then use semidefinite programming followed by ran-
dom hyperplane splitting to embed D into Hamming space
with small distortion. As in Buhler (2002), peptides are
mapped to vectors whose pairwise Hamming distances re-
flect their pairwise alignment scores under M . The new
distance and embedding can replace those used previously
in the LSH-ALL-PAIRS-SIM algorithm with only minor ad-
justments. The resulting search algorithm can perform all-
pairs comparison of two large protein databases with sen-
sitivity comparable to that reported in Buhler (2002) in as
little as one-eighth the time.

The rest of the paper is organized as follows. In the next
section, we introduce a distance function D for similarity
matrices and observe that it is a metric (or nearly so) in
practice. We then describe our embedding strategy, which
consists of two phases. We first map the set of amino
acids to vectors vi on the unit sphere, such that the angle

† This guarantee was formalized in Buhler (2002) by the notion of score
simulation.

between each pair of vectors is approximately propor-
tional to the distance between the corresponding residues.
We compute the vectors vi efficiently by semidefinite
programming. We then use random hyperplane split-
ting to embed the vectors vi into Hamming space, so
that peptides at small distance under D are placed at
small Hamming distance. The next section reviews the
LSH-ALL-PAIRS-SIM algorithm for comparing proteomic
databases and discusses the modifications needed to
accommodate the new distance function D. Finally,
we give empirical results on the modified algorithm’s
performance, then conclude by pointing out directions for
future work.

ALGORITHMS
A distance mapping for similarity matrices
We first describe a mapping from an amino acid similarity
matrix M to a distance function D. Let ρi = Mii be the
score obtained by comparing residue i to itself. We define
the distance Di j on pairs of residues i, j as follows:

Di j = ρi + ρ j − 2Mi j .

Linial et al. (1997) applied a mapping similar to Di j to
pairs of peptides. We address this more general case by
extending the definitions of both M and D to pairs of
peptides of common length �. Define the self-score ρ(s)
of a peptide s to be the score

∑�
q=1 ρs[q],s[q] obtained by

aligning s to itself without gaps. We define D on pairs of
�-mers to be

D(s, t) =
�∑

q=1

Ds[q],t[q]

= ρ(s) + ρ(t) − 2
�∑

q=1

Ms[q],t[q]

= ρ(s) + ρ(t) − 2M(s, t).

The function D is symmetric if M is symmetric, satisfies
Dii = 0, and is non-negative provided Mii ≥ Mi j
for residues i �= j . The latter property is typically true
of substitution score matrices, which consider identical
residue pairs more likely to arise by conservation than by
chance.

Our intent in the next section is to embed the distance D
into a Hamming space with minimal distortion, i.e. to find
a mapping φ from residues to {0, 1}T (for some dimension
T) such that, for all pairs i, j of residues, the Hamming
distance between φ(i) and φ(j) is approximately equal to
Di j . An isometric embedding (one with no distortion) is
possible only if D is a metric, i.e. if it satisfies the triangle
inequality Di j + D jk ≥ Dik . Using the definition of D,
we can rewrite this inequality in terms of M as

M j j + Mik ≥ Mi j + M jk .

i123

E.Halperin et al.

We checked a number of score matrices in the BLOSUM
family to determine whether the above inequality holds for
all i, j, k. We found that the inequality either holds (e.g.
for BLOSUM-62) or is violated for only a small number
of residue triples, and then only because M j j + Mik =
Mi j + M jk − 1. These violations may arise from the
rounding used to make the BLOSUM matrices integer-
valued. Our embedding construction should be robust
to small violations of the triangle inequality, so these
violations do not in practice pose a barrier to finding a
low-distortion embedding of D.

A low-distortion Hamming-space embedding
We next describe how to map amino acids to vectors in
a Hamming space {0, 1}T so as to nearly preserve the
distances induced by D. In contrast to (Buhler, 2002),
we do not require that the embedding be isometric, i.e.
that two vectors lie at exactly the same distance as
their corresponding residues under D. Instead, we try
only to preserve the original distances to within a small
multiplicative error. Such a small distortion of D should
have only a minor effect on the sensitivity of a search
algorithm using the embedding.

Bourgain (1986) showed that any finite metric on
m points can be embedded into l1 (and hence into a
Hamming space) with distortion O(log m). Linial et al.
(1995) devised a randomized algorithm that efficiently
computes a variant of Bourgain’s embedding. In practice,
these embeddings frequently achieve their worst-case
distortion bounds, or at least �(

√
log m) distortion, even

for simple metrics such as a path, a complete binary tree,
or a hypercube.

We have developed efficient embedding strategies based
on semidefinite programming (Goemans and Williamson,
1995) that achieve low distortion in practice, with partic-
ular attention to avoiding the worst-case behavior of other
methods. This section describes a heuristic strategy that
works well with BLOSUM matrices.

The scaled hypercube embedding problem. Let (�, D)

be a finite metric, with � a set of m elements and
D their distance function. A (scaled) (T, γ)-hypercube
embedding of (�, D) is a mapping φ : � → {0, 1}T such
that, for some real scaling factor σ > 0 and all i, j ∈ �,
we have σ ≤ dH (φ(i),φ(j))

Di j
≤ γ · σ ; throughout, dH (v, w)

is the Hamming distance between vectors v and w (i.e. the
number of positions in which v and w differ). We allow the
scaling factor σ since it does not affect the ‘complexity’
of using the metric in many applications, including our
intended one. In the scaled hypercube embedding problem,
the input is a metric (�, D) and we wish to find a (T, γ)-
hypercube embedding with both T and γ as small as
possible. More precisely, if one of T or γ is given, we
wish to minimize the other quantity.

A semidefinite programming heuristic. Our plan of action
is as follows. First, we will construct a set of unit vectors
vi ∈ R

δ (for some dimension δ) corresponding to the
elements i ∈ �, such that the angles αi j between
vectors vi and v j are as nearly as possible proportional
to the distances Di j . Then, we will use the technique of
random hyperplane splitting to construct a low-distortion
Hamming-space embedding from the vi ’s.

We initially seek to ensure that the angles αi j roughly
reflect the distances Di j . In other words, for a distortion γ

as small as possible and an arbitrary scaling factor σ0, we
ask that σ0 Di j ≤ αi j ≤ γ · σ0 Di j for all i, j ∈ �. Letting
some inter-residue distances Di j grow and others shrink
may result in distortions canceling out when we sum the
distorted distances over several residue pairs, as we do
in a peptide-to-peptide comparison. Hence, we modify
our low-distortion criterion to permit two-sided error as
follows:

(1 − γ)σ0 Di j ≤ αi j ≤ (1 + γ)σ0 Di j .

Noting that vi · v j = cos(αi j) and that the cosine is
monotone decreasing with its argument, we formulate our
search for suitable vectors as the following optimization
problem in R

δ:

Min γ

s.t. vi · v j ≤ cos
(
(1 − γ)σ0 Di j

) ∀i, j ∈ �

vi · v j ≥ cos
(
(1 + γ)σ0 Di j

) ∀i, j ∈ �

vi · vi = 1 ∀i ∈ �

The above optimization problem is not in a tractable form.
However, if we fix the scaling factor σ0, then the quantities
cos(σ0 Di j) are constants. Moreover, for sufficiently small
σ0, we can use the Taylor series expansion cos(h) ≈
1 − 1

2 h2 and the approximation (for small γ) (1 + γ)2 ≈
1 + 2γ to obtain cos((1 + γ) · σ0 Di j) ≈ 1 − 1

2 (1 +
2γ)(σ0 Di j)

2. Using these approximations, we obtain the
following semidefinite‡ program:

Min γ

s.t. vi · v j ≤ 1 − (1−2γ)(σ0 Di j)
2

2 ∀i, j ∈ �

vi · v j ≥ 1 − (1+2γ)(σ0 Di j)
2

2 ∀i, j ∈ �

vi · vi = 1 ∀i ∈ �

Semidefinite programs can be solved in polynomial time
to within any desired precision (Alizadeh, 1995). We solve
this program repeatedly for vectors of gradually increasing
dimension δ, with σ0 = 1/δ, until we find a feasible
solution whose worst-case distortion γ is at most a target

‡ Technically, the program is not semidefinite because it contains a product
of the variables σ0 and γ . However, we can perform a binary search over
γ , solving an SDP each time, to find the smallest value that gives a feasible
solution.

i124

Detecting protein conservation via embeddings

value (say, 5%), or until increasing the dimension does
not decrease the distortion. Once σ0 is fixed, we can also
optimize the average distortion by replacing γ in the
constraints for pairs i, j with a variable γi j and optimizing
the objective function

∑
i, j γi j .

Conversion to Hamming space. To convert our real-valued
unit vectors to a Hamming-space embedding, we use the
technique of random hyperplane splitting. We repeatedly
cut the unit sphere with a random hyperplane passing
through the origin, then separate the vectors vi into two
sets V + and V − containing those vectors above and below
the hyperplane, respectively. We perform T random splits,
for a T to be determined. Our Hamming embedding is
defined by the results of these splits as follows. For each
element i ∈ �, we define a Hamming-space vector φ(i) ∈
{0, 1}T . If the qth hyperplane places vi ∈ V +, we set
φ(i)[q] = 1; otherwise, φ(i)[q] = 0.

Observe that a random hyperplane separates the vectors
vi and v j with probability

αi j
π

. Since there are T random
splits,

E[dH (φ(i), φ(j))] = T

π
αi j .

By construction, the αi j are proportional to the distances
Di j up to small distortion, so the expected Hamming
distances between φ(i) and φ(j) have the same property.
If we can produce a set of Hamming-space vectors φ(i)
whose actual distances are guaranteed to be close to
their expectations, then the vectors φ(i) represent a low-
distortion scaled Hamming embedding of D.

Finally, we determine the dimension T of the embed-
ding φ, i.e. the number of random hyperplanes to use,
so as to ensure that the vectors φ(i) have distances close
to their expectations. Each hyperplane splits the vectors
vi and v j independently with probability proportional to

αi j ≥ σ0 Di j . By Chernoff bounds, if we use �(
log m
σ0 Di j

) hy-
perplanes, then with high probability, the Hamming dis-
tance between φ(i) and φ(j) is close to its expectation.
We can therefore produce a low-distortion Hamming em-
bedding whose dimension is of the order log m

σ0·mini, j Di j
. The

final scaling factor for this embedding is σ = T · σ0.

Limitations and empirical results. The above embedding
construction is a heuristic, largely because we cannot
guarantee that the distortion of φ is close to the minimum
possible for the chosen dimension T . We have devised
an alternative algorithm that does make such guarantees,
using a different semidefinite program that is provably a
relaxation of the scaled hypercube embedding problem.
Using that algorithm, we can show that

LEMMA 1. Given a finite metric that is embeddable in
{0, 1}δ with distortion γ , it is possible to find efficiently

Table 1. Low-distortion embeddings of common score matrices

Matrix SDP Dim Total Dim Max Dist Mean Dist

BLOSUM-40 200 100000 10.0% 3.2%
BLOSUM-62 40 25000 6.6% 2.4%
BLOSUM-80 200 100000 3.9% 1.9%

PAM-40 200 100000 16.1% 8.7%
PAM-120 200 100000 30.1% 12.3%
PAM-250 200 100000 42.6% 13.1%

Dimension and distortion of embeddings computed for the distance
equivalents of some common score matrices. SDP Dim: dimension
δ = 1/σ0 used in semidefinite programming; Total Dim: total dimension T
of final Hamming-space embedding.; Max Dist: largest percentage
distortion of any distance in the matrix; Mean Dist: mean percentage
distortion over all distances.

an embedding in {0, 1}T , where T = O(
√

δ log m), with
distortion O(γ

√
δ).

We omit the alternate construction here because the
heuristic described above gives lower distortions in
practice.

We applied our embedding strategy to some commonly
used protein scoring matrices using SDPPack package
(Alizadeh et al., 2002) for MATLAB to solve the semidef-
inite programs. The sizes of the semidefinite programs are
fixed (roughly quadratic in the number of residues m), so
solving them is a relatively moderate computational task
in practice. The resulting embeddings are summarized in
Table 1.

The maximum distortion listed for each matrix in the
table applies only to the worst-case residue pair i, j . A
more accurate view of total distortion is given by the mean
distortion over all residue pairs, which is typically much
less than that of the single worst-case pair. For BLOSUM-
62 in particular, the mean distortion is quite low, only
2.4%.

We also investigated for BLOSUM-62 the effects of
varying the dimension δ = 1/σ0 used in constructing
score simulations. No improvement in distortion was
observed for δ > 40, while simulations based on semidef-
inite programs of lower dimension became increasingly
distorted (as high as 45% mean distortion for δ = 20).
Increasing the number of hyperplanes used to approxi-
mate the SDP solution in Hamming space had negligible
effect on these distortions. Hence, for BLOSUM-62, the
simulation described in Table 1 seems to represent the
lowest-distortion embedding obtainable with our method.

Application to similarity search
We now describe how we apply a low-distortion
Hamming-space embedding of the peptide distance mea-
sure D to create a similarity search algorithm. We use a

i125

E.Halperin et al.

modified version of the randomized LSH-ALL-PAIRS-SIM

algorithm presented in (Buhler, 2002) for finding similar
pairs of sequences under Hamming-embeddable metrics.

The LSH-ALL-PAIRS-SIM Algorithm. Let s be a peptide of
length �. Define the vector �(s) to be the concatenation
of the mappings of its residues under the embedding φ.
If φ has dimension T , then |�(s)| = �T . For a pair
of �-mers s and t , we have that, since D(s, t) is the
sum of the distances between corresponding residues, the
Hamming distance dH (�(s), �(t)) ≈ D(s, t). Hence, we
may detect close pairs of �-mers under D by finding pairs
of Hamming-space vectors that differ by few substitutions.
The vectors �(s) are large (tens of kilobits), so a search
algorithm should not store them explicitly for every �-mer
in the input.

LSH-ALL-PAIRS-SIM uses random projection (Indyk
and Motwani, 1998; Buhler, 2001) to search a large
collection of length-� strings for pairs that differ in at most
d positions. A projection π is a list of k indices between 1
and � to be read from a string. For example, {1, 4, 5} is a
projection with size k = 3 for � ≥ 5. Two vectors match
under π if they agree in each position read by π .

Random projection detects pairs of strings within a
specified distance threshold d as follows. First, choose
p projections π1 . . . πp of size k, for k and p to be
determined. For each �-mer s in the input, compute
π j (�(s)) for 1 ≤ j ≤ p. Finally, compute distances
D(s, t) between each pair of �-mers s, t whose vectors
match under at least one π j , and return all pairs at distance
≤ d.

Suppose the positions of the p projections π j are chosen
independently at random with replacement§. Given bit
vectors of length �T , the expected fraction ρfn of false
negatives, i.e. of vector pairs at Hamming distance at most
d that do not match under any π j , is at most

ρfn ≤
[

1 −
(

�T − d

�T

)k
]p

. (1)

If the embedding has a scaling factor σ different from
one, the dimension T in the above inequality should be
replaced by T ′ = T

σ
. For fixed �T and d, we may choose

many combinations of k and p so as to achieve a given
false negative rate ρfn (e.g. 5%). Decreasing k requires
fewer projections to ensure a low ρfn but also increases
the rate of false positive matches between vectors at
distance > d, which must be checked and discarded. As
described in Buhler (2001, 2002), LSH-ALL-PAIRS-SIM

chooses k and p that balance the empirically measured
costs of performing p projections and processing the false
positives arising from each.

§ In practice, choosing positions without replacement is more efficient but
slightly more complex to analyze.

A key point ensuring the practicality of our approach is
that the vectors �(s) need never be represented explicitly
in memory. Instead, we sample only k bits (less than 100 in
practice) from each vector via the functions π j · �. These
functions can be computed implicitly on an �-mer given
only the vectors φ(i) for each residue i ∈ �.

Handling Composition Dependence in D. LSH-ALL-
PAIRS-SIM is defined for arbitrary Hamming-embeddable
distances. However, we must modify the algorithm to pre-
serve a formal relationship between its distance threshold
d and the biologist’s choice of score threshold θ for simi-
larity search. Recall that D(s, t) = ρ(s)+ρ(t)−2M(s, t),
where ρ(s) denotes the self-score of a peptide s. Ideally,
there would exist a 1:1 mapping from scores to distances
such that we could implement a search with score thresh-
old θ by specifying a single distance threshold δ(θ). For
our D, however, the distance between peptides depends
on both their score and their residue composition. In
particular, the mapping from scores to distances is 1:1
only among pairs s, t for which ρ(s) + ρ(t) is constant.

We address the composition dependence of D by
binning the input �-mers by self-score. Let C1 and C2
denote two sequence collections to be compared (e.g. the
proteomes of two organisms). We first divide the �-mers of
each collection into bins so that the �-mers in bin b have
constant self-score ρb. We then separately compare each
pair of bins b1 from C1 and b2 from C2 using LSH-ALL-
PAIRS with distance threshold d = ρb1 +ρb2 −2θ , where θ

is the desired score threshold. We compute the parameters
k and p independently for each pair of bins to preserve the
algorithm’s guarantee of high expected sensitivity, up to
the (small) distortion introduced by the embedding.

The computational overhead of binning can be sub-
stantial, rising quadratically with the number of possible
self-scores for peptides in the input. To limit the number
of bins, we group �-mers with similar but not identical
self-scores. A bin b covering a range of self-scores [ρl , ρh]
is treated as if all its �-mers had the highest self-score ρh .
Because higher self-scores translate into higher distance
thresholds d for a given score threshold θ , and higher
distance thresholds require more computation for a given
ρfn, LSH-ALL-PAIRS may overestimate the amount of
computation needed to detect matches involving some
�-mers in b. However, the target sensitivity ρfn is not
compromised. In practice, dividing the range of possible
self-scores for an �-mer equally into 5-10 bins, even with
the extra work caused by binning multiple self-scores, is
substantially less expensive than restricting each bin to a
single self-score value.

EXPERIMENTAL RESULTS
We implemented the algorithm of the previous section
in C++ to investigate the performance of our distance

i126

Detecting protein conservation via embeddings

Table 2. Comparison of old and new LSH-ALL-PAIRS-SIM algorithms

Method � θ �-mer Time Aligned
Matches (minutes) Pairs

(Buhler, 10 40 48586 147.5 6000
2002) 20 47 62301 587.2 7707

30 50 61580 1260.8 7961

This 10 40 46387 17.6 5876
work 20 47 59862 168.1 7699

30 50 58661 461.3 7959

Relative speed and sensitivity of LSH-ALL-PAIRS-SIM with our distance
measure and embedding versus the technique described in Buhler (2002).
Score thresholds were chosen for each � to achieve an expected spurious
match rate of < 104. Aligned pairs: number of pairs of proteins that were
aligned at least once with E-value ≤ 10−10 after gapped extension. Times
were measured on a 1 GHz Intel Pentium III machine.

function and embedding. Experiments on a real proteomic
comparison demonstrate that our new method runs signif-
icantly faster than the ‘old’ algorithm of (Buhler, 2002)
with comparable sensitivity.

We tested LSH-ALL-PAIRS-SIM with the old and new
distance measures and embeddings on a proteome-
to-proteome comparison of the bacteria E.coli and
V.cholerae. The total size of this comparison was roughly
1.35 million by 1.16 million amino acids. We used the
BLOSUM-62 scoring function, the default used by NCBI
BLASTP for protein comparison. For the old algorithm,
the embedding was as described in Buhler (2002) (dimen-
sion T = 17), while for the new algorithm, we used our
novel embedding (scaled dimension T ′ = 50). Further
experimental details are given in the Appendix.

We used ungapped similarities found by each algorithm
to initiate gapped extension using affine Smith-Waterman
with BLAST’s default gap penalties for BLOSUM-62.
The resulting set of gapped alignments may fairly be
compared to the output of BLASTP.

Table 2 shows the relative sensitivities and running times
of LSH-ALL-PAIRS-SIM with the old and new embeddings.
We tested the algorithm with peptide lengths � of 10, 20,
and 30; for each length, we chose a score threshold θ

to produce no more than 104 expected spurious matches
between unrelated peptides in the entire comparison.
(Further performance characterization of the new method
for other spurious match rates is shown in Fig. 1). For
all values of �, the new embedding yielded an algorithm
whose sensitivity for raw �-mer matches is within 5%
of the old algorithm, while requiring substantially less
running time (one-eighth as much for � = 10). The
sensitivity for aligned pairs of high-scoring sequences
after gapped extension is even closer to that of the old
method: within roughly 2% for each � tested.

10
3

10
4

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

Running Time (s)

A
lig

ne
d

P
ai

rs

l=10
l=20
l=30

Fig. 1. Performance trade-offs achieved for the new LSH-ALL-
PAIRS-SIM variant in bacterial protein comparison. We tested � ∈
{10, 20, 30} and expected spurious match rates between 102 and
105. Aligned pairs is defined as in Table 2.

The improved running time of the new distance function
and embedding can be traced to its need for fewer projec-
tions, and hence fewer passes over the input sequences, to
achieve (roughly) the target sensitivity level ρfn ≤ 0.05.
This reduction implies that the new method can more ef-
ficiently distinguish between pairs of �-mers with high
score and pairs with low score. The distance mapping of
(Buhler, 2002) essentially had D(s, t) = �T − M(s, t),
which for large � and/or T compressed the possible dis-
tances between �-mers into a small range far from zero,
even when s = t . In contrast, our mapping always has
D(s, s) = 0 and utilizes a larger distance range, increas-
ing the separation in distance between high-scoring and
low-scoring �-mer pairs. Hence, these two types of pairs
are computationally easier to separate with high probabil-
ity.

Finally, we compared the performance of our distance-
based search algorithm to that of the seed-based NCBI
BLASTP. The new algorithm’s improved running time
significantly narrows the gap between LSH-ALL-PAIRS-
SIM’s speed and that of BLASTP, which found significant
alignments (E ≤ 10−10) between 9613 pairs of proteins
in about 10 minutes. Further speed improvements might
be achieved by carefully lowering the effective dimension
T ′ of the embedding at the cost of small extra distortion in
D. The ability to trade slightly higher distortion for speed
is a new feature of our approach not found in the exact
isometry of (Buhler, 2002).

i127

E.Halperin et al.

CONCLUSIONS AND FUTURE WORK
We have proposed a new mapping of the BLOSUM
protein similarity matrices into distance metrics that can
be efficiently embedded with little distortion in Hamming
space. These metrics, combined with the LSH-ALL-PAIRS-
SIM framework, yield a new distance-based algorithm to
detect similarities in protein databases. The new algorithm
improves substantially on its predecessor in efficiency,
particularly for small �, without sacrificing sensitivity.

Our framework for generating and using embeddings
from amino acid score matrices suggests a number of av-
enues for future study. Firstly, we can modify the embed-
ding strategy or the distance function D for improved per-
formance. For example, replacing D with Dn for n > 1
could increase the distance gap between low- and high-
scoring pairs of peptides, making these pairs easier to dis-
tinguish. Secondly, because our embedding construction
works (with increased distortion) on distances that violate
the triangle inequality, it also extends to the PAM matri-
ces, for which D incurs a larger number of such viola-
tions. Table 1 gives some sample embeddings for common
PAM matrices, but we must still carefully explore our al-
gorithm’s performance with these embeddings in practice.
Most importantly, we can seek more desirable points in
the trade-off between distortion of the original score ma-
trix M and speed/sensitivity of the resulting search algo-
rithm. FLASH, for example, represents an extreme of this
trade-off that accepts high distortion in exchange for fast
running times even for � = 100. Exploring the continuum
of distortion versus efficiency should lead to more prac-
tical search tools that incorporate the precise distinctions
of score matrices yet can blur them in a controlled way
to produce fast indexing and filtering schemes for protein
databases.

ACKNOWLEDGEMENTS
The first, third and fourth authors were supported in
part by NSF grants CCR-9820951 and CCR-0121555 and
DARPA cooperative agreement F30602-00-2-0601.

REFERENCES
Alizadeh,F. (1995) Interior point methods in semidefinite program-

ming with applications to combinatorial optimization. SIAM J.
Optimization, 5, 13–51.

Alizadeh,F., Haeberly,J.-P.A, Nayakkankuppam,M.V., Over-
ton,M.L. and Schmieta,S. (2002) SDPack version 0.9 beta
for Matlab 5.0: semidefinite quadratic linearly constrained
programs, http://www.cs.nyu.edu/cs/faculty/overton/sdppack/
sdppack.html

Altschul,S.F. (1996) Local alignment statistics. Meth. Enzymol.,
266, 460–480.

Altschul,S.F., Madden,T.L., Schäffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-

BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25(17), 3389–3402.

Bourgain,J. (1986) The metrical interpretation of superreflexivity
in Banach spaces. Israeli J. Math., 56(2), 222–230.

Buhler,J. (2001) Efficient large-scale sequence comparison
by locality-sensitive hashing. Bioinformatics, 17, 419–428.

Buhler,J. (2002) Provably sensitive indexing strategies for biose-
quence similarity search. Proceedings of the 6th Annual Inter-
national Conference on Computational Molecular Biology (RE-
COMB02). pp. 69–76.

Califano,A. and Rigoutsos,I. (1993) FLASH: a fast look-up al-
gorithm for string homology. Proceedings of the 1st Interna-
tional Conference on Intelligent Systems for Molecular Biology
(ISMB93). pp. 56–64.

Dayhoff,M.O., Schwartz,R. and Orcutt,B.C. (1978) A model of
evolutionary change in proteins. Atlas of Protein Sequence and
Structure, 5, 345–352.

Giladi,E., Walker,M.G., Wang,J.Z. and Volkmuth,W. (2002) SST:
an algorithm for finding near-exact sequence matches in time
proportional to the logarithm of the database size. Bioinformat-
ics, 18, 873–877.

Goemans,M.X. and Williamson,D.P. (1995) Improved approxima-
tion algorithms for maximum cut and satisfiability problems us-
ing semidefinite programming. J. ACM, 42, 1115–1145.

Henikoff,S. and Henikoff,J. (1992) Amino acid substitution matri-
ces from protein blocks. Proc. Natl Acad. Sci. USA, 89, 10915–
10919.

Indyk,P. and Motwani,R. (1998) Approximate nearest neighbors:
towards removing the curse of dimensionality. Proceedings
of the 30th Annual ACM Symposium Theory of Computing
(STOC98).

Kent,W.J. (2002) BLAT: the BLAST-like alignment tool. Genome
Res., 12, 656–664.

Linial,M., Linial,N., Tishby,N. and Yona,G. (1997) Global self
organization of all known protein sequences reveals inherent
biological signatures. J. Mol. Biol., 268, 539–556.

Linial,N., London,E. and Rabinovich,Y. (1995) The geometry of
graphs and some of its algorithmic applications. Combinatorica,
15(2), 215–245.

Ning,Z., Cox,A.J. and Mullikin,J.C. (2001) SSAHA: a fast search
method for large DNA databases. Genome Res., 11, 1725–1729.

Wooton,J.C. and Federhen,S. (1993) Statistics of local complexity
in amino acid sequences and sequence databases. Comput.
Chem., 17, 149–163.

APPENDIX: BACTERIAL PROTEIN
COMPARISON
The E.coli (strain K12) and V.cholerae proteomes were
obtained from the NCBI Genbank FTP site. The two
proteomes totaled 8117 sequences containing 2.51 million
amino acids. Both proteomes were masked to remove
low-complexity regions using Wooten and Federhen’s Seg
program (Wooton and Federhen, 1993) with parameters
12/1.8/2.0, as recommended by its documentation for
database-database comparisons.

Analyses were run using LSH-ALL-PAIRS-SIM with
embeddings of distances based on the BLOSUM-62 score

i128

Detecting protein conservation via embeddings

matrix, with lengths � and score thresholds θ as given in
Table 2 and ρfn ≤ 5%. �-mer pairs found by the algorithm
were used to seed ungapped and gapped extension,
producing gapped alignments of variable length. We
used BLASTP’s default gap penalties (−11, −1) and its

estimates of the Karlin-Altschul parameters K and λ to
assign significance to each similarity. Alignments were
filtered for significance at E < 10−10.

NCBI’s BLASTP 2.2.3 was run on the same sequences
with its default parameters.

i129

