
Near-Optimal Dimension Reduction for Facility Location∗

Lingxiao Huang
†

The State Key Laboratory of Novel Software Technology,

New Cornerstone Science Laboratory

Nanjing University

Nanjing, China

huanglingxiao@nju.edu.cn

Shaofeng H.-C. Jiang
‡

Peking University

Beijing, China

shaofeng.jiang@pku.edu.cn

Robert Krauthgamer
§

Weizmann Institute of Science

Rehovot, Israel

robert.krauthgamer@weizmann.ac.il

Di Yue

Peking University

Beijing, China

di_yue@stu.pku.edu.cn

Abstract
Oblivious dimension reduction, à la the Johnson-Lindenstrauss (JL)

Lemma, is a fundamental approach for processing high-dimensional

data. We study this approach for Uniform Facility Location (UFL)

on a Euclidean input𝑋 ⊂ R𝑑 , where facilities can lie in the ambient

space (not restricted to 𝑋). Our main result is that target dimension

𝑚 = �̃� (𝜀−2ddim) suffices to (1 + 𝜀)-approximate the optimal value

of UFL on inputs whose doubling dimension is bounded by ddim. It

significantly improves over previous results, that could only achieve

𝑂 (1)-approximation [Narayanan, Silwal, Indyk, and Zamir, ICML

2021] or dimension𝑚 = 𝑂 (𝜀−2 log𝑛) for 𝑛 = |𝑋 |, which follows

from [Makarychev, Makarychev, and Razenshteyn, STOC 2019].

Our oblivious dimension reduction has immediate implications

to streaming and offline algorithms, by employing known algo-

rithms for low dimension. In dynamic geometric streams, it implies

a (1+ 𝜀)-approximation algorithm that uses𝑂 (𝜀−1 log𝑛)�̃� (ddim/𝜀2)
bits of space, which is the first streaming algorithm for UFL to

utilize the doubling dimension. In the offline setting, it implies a

(1 + 𝜀)-approximation algorithm, which we further refine to run in

time ((1/𝜀)�̃� (ddim)𝑑 + 2(1/𝜀)�̃� (ddim)) · �̃� (𝑛). Prior work has a sim-

ilar running time but requires some restriction on the facilities

[Cohen-Addad, Feldmann and Saulpic, JACM 2021].

Our main technical contribution is a fast procedure to decom-

pose an input 𝑋 into several 𝑘-median instances for small 𝑘 . This

decomposition is inspired by, but has several significant differences

∗
Full version of the paper is available at arXiv:2411.05432.

†
Research partially supported by New Cornerstone Science Foundation.

‡
Research partially supported by a national key R&D program of China No.

2021YFA1000900 and a startup fund from Peking University.

§
Work partially supported by the Israel Science Foundation grant #1336/23, by the

Israeli Council for Higher Education (CHE) via the Weizmann Data Science Research

Center, and by a research grant from the Estate of Harry Schutzman.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’25, Prague, Czechia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1510-5/25/06

https://doi.org/10.1145/3717823.3718214

from [Czumaj, Lammersen, Monemizadeh and Sohler, SODA 2013],

and is key to both our dimension reduction and our PTAS.

CCS Concepts
• Theory of computation→ Random projections and metric
embeddings.

Keywords
dimension reduction, facility location, approximation algorithms,

streaming and sketching

ACM Reference Format:
Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Di Yue.

2025. Near-Optimal Dimension Reduction for Facility Location. In Proceed-
ings of the 57th Annual ACM Symposium on Theory of Computing (STOC
’25), June 23–27, 2025, Prague, Czechia. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3717823.3718214

1 Introduction
A fundamental approach for dealing with high-dimensional data

is oblivious dimension reduction, in which the dataset 𝑋 ⊂ R𝑑 is

mapped to low dimension using a map chosen independently of the

data. A cornerstone of this approach is the Johnson-Lindenstrauss

(JL) Lemma [30], which states that for all 𝑛 ≥ 1 and 0 < 𝜀 < 1

there is a randomly chosen linear transformation 𝜋 : R𝑑 → R𝑚
for𝑚 = 𝑂 (𝜀−2 log𝑛), such that for every dataset 𝑋 ⊂ R𝑑 , |𝑋 | = 𝑛,

with high probability all the pairwise distances in 𝑋 are preserved

within (1 ± 𝜀)-factor, i.e.,
∀𝑥,𝑦 ∈ 𝑋, ∥𝜋 (𝑥) − 𝜋 (𝑦)∥2 ∈ (1 ± 𝜀)∥𝑥 − 𝑦∥2 . (1)

This bound on the target dimension 𝑚 = 𝑚(𝜀, 𝑛) is known to be

asymptotically tight [36]. In algorithmic applications, one typically

applies on the input 𝑋 ⊂ R𝑑 a map 𝜋 that is chosen independently

of 𝑋 , and then executes on 𝜋 (𝑋) ⊂ R𝑚 some known algorithm for

low dimension. This approach has generally proved to be extremely

useful.

However, in several fundamental algorithmic applications, target

dimension of the form 𝑚 = 𝑂 (log𝑛) is too high to be effective.

We can illustrate this by examples from 3 different computational

settings: In offline approximation algorithms, the traveling salesman

problem (TSP) in dimension𝑚 = 𝑂 (log𝑛) does not admit a PTAS

(i.e., for a sufficiently small but fixed 𝜀0 > 0, no polynomial-time

665

https://orcid.org/0000-0001-7512-142X
https://orcid.org/0000-0001-7972-827X
https://orcid.org/0009-0003-8154-3735
https://orcid.org/0009-0008-0515-5446
https://arxiv.org/abs/2411.05432
https://doi.org/10.1145/3717823.3718214
https://doi.org/10.1145/3717823.3718214

STOC ’25, June 23–27, 2025, Prague, Czechia Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Di Yue

algorithm can achieve (1 + 𝜀0)-approximation), assuming P ≠ NP

[44]. In streaming algorithms, approximating the value of Euclidean

minimum spanning tree (MST) in dimension𝑚 = 𝑂 (log𝑛) within
(1 + 𝜀0) factor (again, for some fixed 𝜀0 > 0) requires Ω(

√
𝑛) bits of

storage [11]. In fine-grained complexity, the diameter of a point set

in dimension𝑚 = 𝑂 (log𝑛) cannot be (1 + 𝜀0)-approximated (again,

for some fixed 𝜀0 > 0) in quadratic-time, under some complexity

assumption [45].

To break below this barrier of target dimension𝑚 = 𝑂 (log𝑛),
one often seeks better bounds for specific computational problems.

A prime example is that for 𝑘-median and 𝑘-means clustering,

the dimension can be reduced to 𝑚 = �̃� (𝜀−2 log𝑘) [37].1 This

highly nontrivial bound is significantly stronger than earlier/other

bounds [4, 6, 14], and offers a substantial improvement for small

𝑘 . It has become famous due to its many applications, from faster

algorithms through better approximation to coreset constructions,

and is useful also in many variants of the problem, like fair cluster-

ing. Other problems where dimension reduction is successful are

Max-Cut, where target dimension𝑚 = 1/𝜀𝑂 (1) suffices [12, 34] (and

has immediate implications to streaming algorithms), and projec-

tive clustering problems like 𝑘-subspace and 𝑘-flat approximation,

where target dimension that is polynomial in 𝑘 (but independent

of 𝑛) suffices [10, 14, 31]. However, the same method cannot get

below𝑚 = 𝑂 (log𝑛) for the 𝑘-center problem [29].

This research plan, which may be called “beyond JL”, has another

thread that seeks bounds that depend on the intrinsic dimensionality
of the dataset𝑋 (instead of𝑛), and specifically on a popular measure

called the doubling dimension, introduced in [25] based on earlier

work by [1, 13]. This notion, denoted ddim(𝑋), is defined as the

minimum 𝑡 ≥ 0 such that every ball in 𝑋 can be covered by at most

2
𝑡
balls of half the radius.

2
Observe that ddim(𝑋) is at most log𝑛

and can often be much smaller, as this notion generalizes Euclidean

dimension and can capture many useful cases, like points that lie in

a linear subspace or have a sparse vector representation, and even

non-Euclidean distances [23, 25].

This line of research aims to show that fundamental prob-

lems admit oblivious dimension reduction to dimension 𝑚 =

𝑚(𝜀, ddim(𝑋)), and ideally obtain tight bounds. A prime success

story is nearest-neighbor search (NNS), for which target dimension

𝑚 = ddim(𝑋)/𝜀𝑂 (1) indeed suffices [28]. However, for three im-

portant problems, current results fall short of the above aim: For 𝑘-

center, the known bound on𝑚 has also, i.e., in addition to ddim(𝑋),
an additive term term of 𝑂 (𝜀−2 log𝑘) [29], which seems inevitable.

For MST, the known bound on 𝑚 has also an additive term of

𝑂 (log log𝑛) [41], and this is still open. For uniform facility location

(UFL), the known result achieves only 𝑂 (1)-approximation [41],

and our main contribution is in fact to significantly improve this

approximation factor, from 𝑂 (1) to 1 + 𝜀.

Uniform Facility Location (UFL). In this problem, the input is

𝑋 ⊂ R𝑑 and an opening cost 𝔣 > 0, and the goal is to find a set of

1
Throughout, �̃� (𝑓) suppresses factors that are logarithmic in 𝑓 .
2
Formally, the centers of these balls must be in𝑋 (see Definition 2.1), but relaxing this

requirement to center points in the ambient Euclidean space would change ddim(𝑋)
by at most a constant factor.

facilities 𝐹 ⊂ R𝑑 , so as to minimize the objective

cost(𝑋, 𝐹) := 𝔣 · |𝐹 | +
∑︁
𝑥∈𝑋

dist(𝑥, 𝐹),

where dist(𝑥, 𝐹) := min𝑦∈𝐹 dist(𝑥,𝑦) and dist(𝑥,𝑦) := ∥𝑥 − 𝑦∥2.
This is actually a clustering problem very similar to 𝑘-median (by

viewing facilities as cluster centers), except that the number of

clusters 𝑘 = |𝐹 | is not prescribed in advance, which can make

the problem easier, as there is no hard constraint on 𝑘 , but also

harder, as bounds cannot depend on 𝑘 as a parameter. We emphasize

that our definition allows facilities to lie in the ambient space,

which is natural for a clustering problem (similarly to 𝑘-median).

Some literature restricts the facilities to a given set, usually the

input points, i.e., 𝐹 ⊂ 𝑋 , which can make the problem easier, e.g.,

the algorithm or analysis can enumerate the potential facilities.

In contrast, the known dimension reduction for 𝑘-median [37]

is widely applicable but also technically complicated, precisely

because it allows centers to lie in the ambient space.

Remark. A natural approach is to tackle many computational prob-

lems at once by refining the JL Lemma so that𝑚 would depend on

ddim(𝑋) instead of on 𝑛. Unfortunately, this is not possible using

linear maps [28, Remark 4.1], which is the method of choice em-

ployed in the original JL Lemma. An open question in the area of

metric embedding, posed by [25, 35] (see also [39, Question 41]),

asks whether every 𝑋 ⊂ R𝑑 embeds in Euclidean space with target

dimension and distortion that depend only on ddim(𝑋) (and not

on 𝑑 or 𝑛). Notice that here, the distortion bound is more relaxed

and the mapping need not be oblivious or even easy to compute,

which would be problematic for algorithmic applications. So far,

progress on this open question has been made only for a weaker

variant of snowflake embedding [3, 24, 40, 42].

1.1 Results
We study oblivious dimension reduction for inputs that reside in a

high-dimension Euclidean space but have a bounded doubling di-

mension (called in short doubling). Our main result, in Theorem 1.1,

achieves (1 + 𝜀)-approximation for UFL using target dimension

𝑚 = �̃� (𝜀−2ddim(𝑋)). It uses a map 𝜋 : R𝑑 → R𝑚 that is stan-

dard in proofs of the JL Lemma, and is defined by 𝜋 : 𝑥 ↦→ 1√
𝑚
𝐺𝑥

where𝐺 ∈ R𝑚×𝑑 is a random matrix with i.i.d. entries drawn from

Gaussian distribution 𝑁 (0, 1). We refer to it as a random linear
map, although some literature calls it random projection (because

it is similar, though not identical, to orthogonal projection onto a

random subspace with scaling). Throughout, we assume that the

opening cost is 𝔣 = 1, which holds without loss of generality by

rescaling the input 𝑋 ⊂ R𝑑 , and denote the optimal value of UFL

on input 𝑋 ⊂ R𝑑 by ufl(𝑋) := min{cost(𝑋, 𝐹) : 𝐹 ⊂ R𝑑 }. Let
ddim ≥ 1 be a known upper bound on the doubling dimension

of 𝑋 , and assume it is given with the input (or in some settings,

computed from it).

Theorem 1.1. Let 0 < 𝜀, 𝛿 < 1, let ddim, 𝑑 ≥ 1, and consider a
random linearmap 𝜋 with suitable target dimension𝑚 = 𝑂 (𝜀−2ddim·
log(𝛿−1𝜀−1ddim)). Then for every finite 𝑋 ⊂ R𝑑 with doubling
dimension at most ddim,

Pr[ufl(𝜋 (𝑋)) ∈ (1 ± 𝜀) ufl(𝑋)] ≥ 1 − 𝛿. (2)

666

Near-Optimal Dimension Reduction for Facility Location STOC ’25, June 23–27, 2025, Prague, Czechia

There are two previous bounds on dimension-reduction for

UFL. For (1 + 𝜀)-approximation, it was known that dimension

𝑚 = �̃� (𝜀−2 log𝑛) suffices, however when 𝑋 is doubling our bound

is far better. That previous bound follows from dimension reduc-

tion for 𝑘-median [37], applied with 𝑘 = 𝑛, but not from the JL

Lemma, because facilities in the ambient space R𝑑 can evade (1).

Another previous result [41] is for𝑂 (1)-approximation, and shows

that dimension𝑚 = 𝑂 (ddim(𝑋)) suffices and is moreover optimal,

namely, the map 𝜋 requires𝑚 = Ω(ddim(𝑋)).3 We stress here that

𝑂 (1)-approximation for UFL is significantly different from (1 + 𝜀)-
approximation. In the former, the facilities can be assumed to lie in

the dataset 𝑋 at the cost of factor 2 in the approximation, whereas

in the latter, we know of no effective way to discretize the potential

facilities in the ambient space R𝑑 , which is truly high-dimensional

and does not satisfy the ddim(𝑋) bound. In a sense, Theorem 1.1

handles a regime that falls between low and high dimension. In

fact, the existing tools to tackle this difficulty are quite limited, as

in many problems, such as MST, the ambient space is completely

irrelevant. Perhaps the closest problem is NNS [28], where query

points may come from the ambient space, although the impact of

a single query point in NNS is much less global and complicated

than facilities in UFL.

It is worthwhile to juxtapose our result with other computational

problems. For 𝑘-median, dimension reduction is known to require

𝑚 = Ω(log𝑘), even for𝑂 (1)-approximation of doubling inputs [41],

hence we see a sharp contrast with UFL. For MST, which can be

viewed as a clustering problem, the known dimension reduction

for doubling inputs has an 𝑂 (log log𝑛)-term in the target dimen-

sion [41], hence our result for UFL may hopefully inspire future

improvements.

Our oblivious dimension reduction has immediate implications

to offline and streaming algorithms, by simply employing known

algorithms for low (Euclidean) dimension. In the offline setting,

UFL (and even 𝑘-median) in R𝑑 is known to admit a PTAS, i.e.,

(1 + 𝜀)-approximation for every fixed 𝜀 > 0, that runs in time

2
(1/𝜀)𝑂 (𝑑) · 𝑛(log𝑛)𝑑+6 [32]. Thus, Theorem 1.1 immediately im-

plies (1 + 𝜀)-approximation of the optimal value of UFL, on in-

put 𝑋 ⊂ R𝑑 when facilities can lie in the ambient space, in time

2
(1/𝜀)�̃� (ddim(𝑋)/𝜀2) ·𝑑𝑛(log𝑛)�̃� (ddim(𝑋)/𝜀2) . (We further improve this

bound in Theorem 1.3.) We remark that for UFL in doubling metrics

(but not necessarily Euclidean), another known algorithm runs in

roughly the same time [16], but it restricts the facilities to lie in the

dataset 𝑋 .

In the setting of dynamic geometric streams, the input is a stream

of insertions and deletions of points from the grid [Δ]𝑑 , and 𝑋 is

the point set at the end of the stream. One usually assumes that

its size is 𝑛 ≤ poly(Δ), and then bounds can be written in terms

of 𝑑 and Δ (but not 𝑛). The known algorithm for this setting uses

space𝑂 (𝜀−1 logΔ)𝑂 (𝑑) and outputs a (1 + 𝜀)-approximation to the

value ufl(𝑋) [20].4 This exponential dependence of 𝑑 is essential,

because in high dimension (which can be reduced to 𝑑 = 𝑂 (log𝑛)
3
Strictly speaking, UFL is defined in [41] with facilities restricted to the input 𝑋 ,

but their𝑂 (1)-approximation applies also in our setting, because one can move the

facilities to lie in 𝑋 at the cost of factor 2. Our (1 + 𝜀)-approximation can be adapted

also to their setting, see Remark 4.3.

4
The results in [20] are stated only for 𝑑 = 2, but their analysis seems to extend to

every dimension 𝑑 .

because of the JL Lemma), every streaming algorithm that reports

an𝑂 (1)-approximation to ufl(𝑋) requires Ω(
√
𝑛) bits of space [19].

Nevertheless, when the doubling dimension of 𝑋 is low, combining

Theorem 1.1 with the algorithm of [20], immediately implies a

streaming algorithm that uses significantly less space. As stated

below, it essentially decreases the exponent from 𝑑 to ddim(𝑋)/𝜀2,
which can break below the poly(𝑛) barrier mentioned above [19],

e.g., when ddim(𝑋) = 𝑂 (1) and 𝑛 = poly(Δ) the space usage is

only polylog(𝑛).

Corollary 1.2. There is a streaming algorithm that, given as input
0 < 𝜀 < 1, a set 𝑋 ⊆ [Δ]𝑑 presented as a stream of point insertions
and deletions, and an upper bound ddim, the algorithm uses space
�̃�
(
𝑑 · polylog(Δ) + (𝜀−1 logΔ)�̃� (ddim/𝜀2)

)
and outputs with high

probability a (1 + 𝜀)-approximation to ufl(𝑋).5

PTAS for UFL on Doubling Subsets. Theorem 1.1 only asserts that

the optimal value is preserved. While it is natural to expect that

a solution for UFL on 𝜋 (𝑋) ⊂ R𝑑 will yield a solution also for

𝑋 ⊂ R𝑚 , formalizing such a connection is tricky, because 𝜋 is not

invertible and there is no natural way to map facilities in R𝑚 back

to R𝑑 .
Nonetheless, we use our dimension reduction in conjunction

with a new decomposition procedure that we devise, which parti-

tions a UFL instance 𝑋 ⊂ R𝑑 and effectively reduces it to several

𝑘-median instances in R𝑚 , where𝑚 is the target dimension from

Theorem 1.1 and 𝑘 ≈ 2
𝑂 (𝑚)

. This is useful because 𝑘-median can be

solved efficiently in this parameter regime, for instance, one can use

a known PTAS that runs in time 2
(𝑘/𝜀)𝑂 (1)𝑑𝑛 [33], or alternatively

in time 2
𝜀−𝑂 (𝑑)𝑛 log𝑑+6 𝑛 [32]. We thus obtain in Theorem 1.3 the

first PTAS for UFL on doubling subsets of R𝑑 where facilities can

lie in the ambient space — previous techniques could only handle

facilities that are restricted to the dataset 𝑋 , and we know of no

effective way to enumerate the potential facilities in R𝑑 . The entire
algorithm is very efficient and runs in near-linear time; it does not

even need the input to provide an upper bound ddim, as offline

algorithms can 𝑂 (1)-approximate ddim(𝑋) quickly.

Theorem 1.3. There is a randomized algorithm that, given as in-
put 0 < 𝜀 < 1 and an 𝑛-point set 𝑋 ⊂ R𝑑 , computes a (1 + 𝜀)-
approximation for UFL in time (2𝑚′𝑑 + 22𝑚

′
) · �̃� (𝑛) for

𝑚′ = 𝑂
(
ddim(𝑋) · log(ddim(𝑋)/𝜀)

)
.

Our new decomposition procedure actually works for all dou-

bling metrics (even non-Euclidean). In that setting, it reduces a

UFL instance 𝑋 to several 𝑘-median instances in the same metric

space (without dimension reduction), for 𝑘 ≈ 2
𝑂 (ddim log(ddim/𝜀))

.

These instances can be solved using known algorithms (based on

coresets for 𝑘-median) to obtain a PTAS for UFL that runs in time

2
2
𝑂 (ddim·log(ddim/𝜀)) · �̃� (𝑛), when facilities are restricted to the dataset

𝑋 , and provided oracle access to distances in 𝑋 . Compared with

5
The first term in the space usage is for implementing 𝜋 , which naively requires

𝑑 logΔ · ddim/𝜀2 bits, using a pseudorandom generator [27], which is now a standard

argument. It may be improved further if each stream update is a single coordinate

instead of an entire point.

667

STOC ’25, June 23–27, 2025, Prague, Czechia Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Di Yue

recent work [16] for a similar setting of all doubling metrics,
6
our re-

sult improves the dependence on ddim(𝑋) in the double-exponent

from quadratic to near-linear, with comparable dependence on other

parameters, e.g., near-linear in 𝑛. This expands the recent line of

research for pursing fast PTAS for UFL in doubling metrics [16, 21].

1.2 Technical Contributions and Highlights
Our main technical contribution is a new metric decomposition,

which partitions a UFL instance that is doubling (not necessarily

Euclidean), into multiple instances, each of low value. It has the

distinctive feature that facilities can lie in a general ambient space,

while previous decompositions require that also the ambient space

is doubling. Roughly speaking, our decomposition is a partition

Λ of the dataset 𝑋 into so-called clusters, such that for a suitable

parameter 𝜅 = (ddim/𝜀)Θ(ddim) ,
(a) every cluster 𝐶 ∈ Λ satisfies ufl(𝐶) = Θ(𝜅); and
(b)

∑
𝐶∈Λ ufl(𝐶) ∈ (1 ± 𝜀) · ufl(𝑋).

This decomposition is key to both our dimension-reduction re-

sult (Theorem 1.1) and our PTAS (Theorem 1.3). Let us highlight

the power of this decomposition. Property (b) guarantees (1 + 𝜀)-
approximation, which is crucial for surpassing the previous di-

mension reduction [41], which achieves only 𝑂 (1)-distortion, es-
sentially because it is based on a well-known estimate for ufl(𝑋),
from [38], that provides only 𝑂 (1)-approximation. Property (a)

bounds the optimal value of clusters both from below and from

above, which is extremely important. Moreover, achieving 𝜅 that is

independent of 𝑛, and specifically 𝜅 = (ddim/𝜀)Θ(ddim) , is a major

strength, because 𝜅 determines the target dimension bound, which

is actually 𝑂 (log𝜅). For comparison, the metric decomposition

proposed in [20] achieves 𝜅 = polylog(𝑛), which is much weaker,

e.g., it would yield dimension reduction with target dimension

𝑂 (log log𝑛), and a QPTAS instead of our PTAS.

Our new decomposition uses a bottom-up construction, instead

of the previous top-down approach of [20]. Its major advantages

is that achieves also a lower bound on ufl(𝐶), as stated in Prop-

erty (a), and not only an upper bound that the top-down approach

guarantees. This, in turn, is key for achieving 𝜅 that is independent

of 𝑛, because the analysis can charge to the cost of every instance

locally. This bottom-up approach is conceptually similar to sparsity

decomposition, a technique that was crucial to obtain a PTAS for

TSP in doubling metrics [2, 7–9]. That technique employs a bottom-

up approach as a preprocessing step to break the dataset into sparse

parts that are solved separately, however the UFL problem and the

details of our decomposition are completely different.

The terms top-down and bottom-up refer to algorithms that use

a hierarchical decomposition of 𝑋 , which is often randomized. We

use Talwar’s decomposition [43] for a doubling dataset 𝑋 , which

is analogous to a randomly-shifted quadtree in Euclidean space.

Informally, a key feature of this randomized decomposition, denoted

byH , is that nearby points are “likely” to be in the same cluster of

H (technically, one considers here a suitably chosen level of H).

For UFL, a crucial aspect is whether each data point 𝑥 ∈ 𝑋 is in

the same cluster as its nearest facility in a fixed optimal solution

𝐹 ∗, and this creates several challenges. First, an optimal solution

6
The setting in [16] is slightly more general, where the facilities are restricted to a

given subset of 𝑋 , rather than all of 𝑋 .

𝐹 ∗ is not known to the algorithm (which is not a concern if 𝐹 ∗ is
needed only in the analysis), and a common workaround is to use

instead an 𝑂 (1)-approximate solution 𝐹 ′, however it is imperative

that the 𝑂 (1)-factor will affect only the additional cost 𝜀 · ufl(𝑋).
Second, facilities that lie in the ambient space are not even part

of H , and while conceptually we resolve it similarly to the first

challenge, by replacing 𝐹 ∗ with proxy near-optimal facilities 𝐹 ′′ ⊆
𝑋 , technically it creates complications in our decomposition and its

analysis. Third, even if we restrict the facilities to lie in the dataset

𝑋 , the guarantees ofH are probabilistic, meaning that some points

𝑥 ∈ 𝑋 (most likely a small fraction) are not in the same cluster with

their “optimal” facility, which precludes us from considering that

cluster as a separate instance.

An approach proposed in [16] is to eliminate these so-called

badly-cut pairs by simply moving each such data point 𝑥 to its

“optimal” facility, effectively creating a modified dataset 𝑋 ′ with
ufl(𝑋 ′) ∈ (1 ± 𝜀) ufl(𝑋). This is effective if the subsequent steps
are applied to 𝑋 ′ with no regard to 𝑋 , e.g., running a dynamic-

programming algorithm on𝑋 ′. However, for our purpose of decom-

posing 𝑋 into low-value clusters (and in turn for our dimension-

reduction result), we still need the probabilistic guarantees ofH ,

which apply to 𝑋 , but not to 𝑋 ′ that is derived from that same

randomness.

We thus take a different approach of modifying the hierarchical
decompositionH instead of the data set𝑋 . This step eliminates most,

but not all, badly-cut pairs, and we crucially handle the remaining

pairs using the probabilistic guarantees ofH . We finally construct

the partition Λ by employing a bottom-up approach on the (mod-

ified) hierarchical decomposition. In principle, each cluster of Λ
arises from a cluster in the hierarchical decomposition, however

these two clusters are not equal and have a more involved corre-

spondence because of the modifications toH and the bottom-up

approach.

We remark that our decomposition is designed for UFL, how-

ever many technical steps are general and may find usage in other

problems.

1.3 Proof Overview
As mentioned in Section 1.2, our main technical contribution is a

new decomposition for UFL instances, that produces a partition Λ
of the dataset 𝑋 with Properties (a) and (b) from Section 1.2. We

provide a technical overview of its construction and proof in Sec-

tion 1.3.1, and then use this decomposition to prove our dimension-

reduction result in Section 1.3.2. Before proceeding, we briefly de-

scribe how this decomposition immediately implies a PTAS for

UFL.

An Immediate PTAS. With the new decomposition at hand, we

can immediately obtain a very efficient PTAS for UFL on a dou-

bling subset 𝑋 ⊂ R𝑑 (the setting of Theorem 1.3): Compute the

decomposition Λ, and then for each cluster 𝐶 ∈ Λ, compute a

(1 + 𝜀)-approximate solution for ufl(𝐶). To implement the last step,

observe that by Property (a), an optimal solution for𝐶 opens at most

ufl(𝐶) ≤ 𝑂 (𝜅) facilities (recall 𝔣 = 1), and thus 𝐶 can be solved by

an algorithm for 𝑘-median with 𝑘 = 𝑂 (𝜅) (trying also smaller val-

ues of 𝑘). It suffices to solve 𝑘-median within (1+𝜀)-approximation,

which can be done in time 𝑘𝑂 (𝑘/𝜀
3) · �̃� (𝑛) via known approaches

668

Near-Optimal Dimension Reduction for Facility Location STOC ’25, June 23–27, 2025, Prague, Czechia

based on coresets. By Property (b), the union of these solutions for

all𝐶 ∈ Λ is a solution for𝑋 that achieves (1+𝑂 (𝜀))-approximation.

This PTAS almost matches that of Theorem 1.3, without even using

dimension reduction; more precisely, its running time is roughly

2
2
𝑂 (ddim log(ddim/𝜀)) · �̃� (𝑛𝑑), whereas Theorem 1.3 decouples 𝑑 from

the doubly-exponential term, which is significant when 𝑑 is large,

by using our dimension reduction. We refer to the full version [26,

Section 5] for implementation details.

1.3.1 New Decomposition Procedure. Our new decomposition for

UFL is inspired by an earlier one of [20], although our version is

more involved and obtains fundamentally stronger bounds. Let us

first recall their approach for an input 𝑋 ⊂ R2. Their procedure
applies a randomly-shifted quadtree to partition 𝑋 ⊂ R2, and then

scans the quadtree nodes, which correspond to squares in R2, in
a top-down manner: When a square 𝐶 is examined, the procedure

tests if ufl(𝐶 ∩ 𝑋) ≤ 𝜅 for a suitable threshold 𝜅. If the test passes,

𝐶 ∩ 𝑋 is declared as a cluster in the partition Λ; otherwise, the
procedure is executed recursively on the 4 sub-squares of 𝐶 . This

procedure attains ufl(𝑋) ≈ ∑
𝐶∈Λ ufl(𝐶) by a clever charging ar-

gument to the parent squares of low-value clusters, but it requires

setting 𝜅 = polylog(𝑛) (or higher), because the parent squares may

be nested and each point inside might be charged 𝑂 (log𝑛) times,

which originates from the number of levels in the quadtree.

Our decomposition procedure first constructs a randomized hier-

archical decompositionH of 𝑋 , by applying a standard algorithmic

tool, due to Talwar [43], that is analogous to a randomly-shifted

quadtree but works for all doubling metrics. This hierarchical de-

compositionH has, for every distance scale 2
𝑖
, a partition of the

dataset 𝑋 into clusters of diameter at most 2
𝑖
, where the partition

for each scale 2
𝑖−1

refines that for 2
𝑖
. Moreover, when this H is

viewed as a tree, every cluster has at most 2
𝑂 (ddim)

child clus-

ters. The key guarantee of this hierarchical decomposition is the

cutting-probability bound

∀𝑥,𝑦 ∈ 𝑋, Pr[𝑥,𝑦 are in different clusters of scale 2
𝑖]

≤ 𝑂 (ddim) · dist(𝑥,𝑦)/2𝑖 . (3)

Our decomposition procedure constructs the partition Λ by scan-

ningH in a bottom-up manner, in order to ensure both the upper

bound and lower bound in Property (a). (As explained later, we

actually use a modified version ofH , denoted T .) This is in con-

trast to the top-down approach of [20], which only guarantees an

upper bound on ufl(𝐶). More precisely, our procedure scans H
bottom-up, starting from the leaf clusters, and processing each clus-

ter only after its child clusters: When a cluster 𝐶 is examined, and

𝑃 denotes the current dataset (initialized to 𝑋), the procedure tests

if ufl(𝐶 ∩ 𝑃) ≥ 𝜅 for a threshold 𝜅 = (ddim/𝜀)Θ(ddim) . If the test
passes,𝐶 ∩ 𝑃 is added as a cluster in Λ, the points of𝐶 are removed

from our current dataset 𝑃 , and the procedure proceeds to the next

cluster inH .

Property (a). The bottom-up construction clearly attains a lower

bound ufl(𝐶) ≥ 𝜅 for all 𝐶 ∈ Λ (except for the very last cluster,

which we can handle separately). To get an upper bound, observe

that a cluster 𝐶 added to Λ is the union of several child clusters

that do not pass the test, i.e., each child 𝐶′ has ufl(𝐶′ ∩ 𝑃) < 𝜅.

The number of children is at most 2
𝑂 (ddim)

, and the union of their

optimal solutions is clearly a feasible solution for𝐶 , hence ufl(𝐶) ≤
2
𝑂 (ddim) · 𝜅. This establishes Property (a), up to relaxing the ratio

between the upper and lower bounds to be 2
𝑂 (ddim)

; the formal

treatment appears in Lemma 3.1.

Unfortunately, this bottom-up approach has ramifications that

complicate the entire analysis. In particular, a cluster𝐶 that is added

to Λ is no longer a cluster in the hierarchy H , because some of

its descendants inH might have been removed earlier. This mis-

alignment withH makes it difficult to use the cutting-probability

bound (3), which applies to the clustering inH but not that in Λ.
We thus introduce the notion of “holes” (Definition 3.12), which

captures the parts of 𝐶 ∈ Λ that were removed (when comparing

to this 𝐶 inH). For sake of simplicity, we ignore for now the holes

and pretend we are directly analyzingH , and we also ignore the

complications arising from the ambient space by assuming that

facilities lie inside the dataset 𝑋 . We will return to discuss these

issues later in the section.

Property (b). This property is borrowed from [20], but our proof

is completely different, because of the different construction. The

high-level idea is to take a set of facilities 𝐹 ∗ ⊆ 𝑋 that is optimal for

𝑋 , i.e., it realizes ufl(𝑋), and transform it into a modified set 𝐹 ′ by
adding facilities inside each cluster 𝐶 ∈ Λ. This 𝐹 ′ aligns with our

partitionΛ, because data points in each cluster𝐶 are “served locally”

by facilities in 𝐹 ′ ∩𝐶 . We will need to show that, in expectation,

cost(𝑋, 𝐹 ′) ≤ (1 + 𝜀) cost(𝑋, 𝐹 ∗) = (1 + 𝜀) ufl(𝑋). To simplify this

overview, we present the construction of 𝐹 ′ in a more intuitive but

less accurate way: Start with 𝐹 ′ = 𝐹 ∗, then examine each 𝐶 ∈ Λ
and add to 𝐹 ′ a set 𝑁𝐶 ⊆ 𝐶 of extra facilities.

To define this set 𝑁𝐶 we need the notion of a net, which is a

standard method to discretize a metric space, and is particularly

powerful in doubling metrics. Formally, a 𝜌-net of a point set 𝑆 is a

subset 𝑁 ⊂ 𝑆 , such that the distance between every two points in 𝑁

is at least 𝜌 , and every point in 𝑆 has at least one point of 𝑁 within

distance 𝜌 . Let𝑁𝐶 be an (𝜀′ ·diam(𝐶))-net of𝐶 , for 𝜀′ := 𝜀/ddim; we

remark that an (𝜀 ·diam(𝐶))-net may seem sufficient here, however

the finer net is needed to compensate for the𝑂 (ddim) factor in the

cutting-probability bound (3). A standard bound on the size of a

net implies that |𝑁𝐶 | ≤ 𝑂 (1/𝜀′)ddim = 𝑂 (ddim/𝜀)ddim.

Increase in Cost. We bound the cost increase cost(𝑋, 𝐹 ′) −
cost(𝑋, 𝐹 ∗) by splitting it into two parts, the opening cost and the

connection cost. The increases in opening cost of a cluster 𝐶 is at

most |𝑁𝐶 | ≤ 𝜀𝜅 ≤ 𝜀 ufl(𝐶) by our choice of 𝜅 and Property (a), and

in total over all clusters, it is at most

∑
𝐶∈Λ |𝑁𝐶 | ≤ 𝜀

∑
𝐶∈Λ ufl(𝐶),

which can be charged to the left-hand side of Property (b), that we

shall eventually bound. For the connection cost of each𝐶 ∈ Λ, recall
that we only use facilities in𝐶 ∩𝐹 ′, even though the nearest facility

to 𝑥 ∈ 𝐶 might be outside 𝐶 , and thus the increase in connection

cost for𝐶 is at most Δ𝐶 :=
∑
𝑥∈𝐶 dist(𝑥, 𝐹 ′∩𝐶) −∑𝑥∈𝐶 dist(𝑥, 𝐹 ∗) .

Now consider 𝑥 ∈ 𝐶 and let 𝐹 ∗ (𝑥) be its nearest point in 𝐹 ∗.
Observe that if 𝐹 ∗ (𝑥) ∈ 𝐶 then dist(𝑥, 𝐹 ′ ∩ 𝐶) ≤ dist(𝑥, 𝐹 ∗), i.e.,
there is no increase, and therefore the nontrivial case is when 𝐹 ∗ (𝑥)
is outside 𝐶 . A simple idea is to serve 𝑥 by its nearest neighbor in

𝑁𝐶 , which has connection cost dist(𝑥, 𝑁𝐶) ≤ 𝜀′ ·diam(𝐶). However,
this bound might be much larger than dist(𝑥, 𝐹 ∗), and we shall to

669

STOC ’25, June 23–27, 2025, Prague, Czechia Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Di Yue

eliminate this situation by ensuring a separation property:

∀𝑥 ∈ 𝐶, 𝐹 ∗ (𝑥) ∉ 𝐶 =⇒ dist(𝑥, 𝐹 ∗ (𝑥)) ≥ 𝜀′ · diam(𝐶). (4)

Indeed, this inequality implies that dist(𝑥, 𝑁𝐶) ≤ dist(𝑥, 𝐹 ∗), hence
serving 𝐶 by facilities in 𝐹 ′ ∩𝐶 (instead of 𝐹 ∗) does not increase
the connection cost.

Eliminating “Badly Cut” Pairs. We ensure this separation prop-

erty (4) using the concept of “badly-cut” pairs from [16]. Let 𝑥 ∈ 𝑋 ,

and call a pair (𝑥, 𝐹 ∗ (𝑥)) badly cut if it is cut in the hierarchical

decompositionH at some distance scale 2
𝑖 > dist(𝑥, 𝐹 ∗ (𝑥))/𝜀′. Ob-

serve that if a pair is not badly cut, then every cluster 𝐶 inH that

contains 𝑥 but not 𝐹 ∗ (𝑥) must have diam(𝐶) ≤ dist(𝑥, 𝐹 ∗ (𝑥))/𝜀′.
Thus, eliminating all badly-cut pairs ensures the separation prop-

erty (4).

The badly-cuts pairs are eliminated in [16] by simply moving 𝑥 to

𝐹 ∗ (𝑥) whenever (𝑥, 𝐹 ∗ (𝑥)) is badly cut. By the cutting-probability

bound (3), this happens with probability at most 𝑂 (𝜀′ · ddim) =
𝑂 (𝜀), hence these movements modify 𝑋 into 𝑋 ′ that satisfies
EH [ufl(𝑋 ′)] ∈ (1±𝑂 (𝜀)) ·ufl(𝑋), which we can afford. The overall

strategy here is to first define 𝑋 ′ from𝑋 , and then add to 𝐹 ∗ (which
is now the optimal facilities for 𝑋 ′) more facilities to obtain 𝐹 ′.

This approach of moving points is effective as a local fix, as

it does not change ufl(𝑋) by too much, however it is not useful

for globally decomposing 𝑋 into clusters that satify Properties (a)

and (b). We take an alternative approach of modifyingH (as out-

lined in Algorithm 2) into a new hierarchical decomposition T , in
which no pair (𝑥, 𝐹 ∗ (𝑥)) is badly cut. We then construct the final

partition Λ from this T , rather than fromH (in Algorithm 3). Over-

all, we establish a refined version of the separation property (4), as

detailed in Lemma 3.14.

Handling Holes. Recall that our bottom-up decomposition might

create “holes” (Definition 3.12), because a cluster 𝐶 that is added to

Λmight have some of its points removed earlier, and we let Holes𝐶

be the set of clusters in Λ that contain these earlier-deleted points.

We can handle holes and still obtain Property (b) using essentially

the same arguments as before. When we consider 𝑥 ∈ 𝐶 for some

𝐶 ∈ Λ and 𝐹 ∗ (𝑥) ∉ 𝐶 , we use the net 𝑁𝐶 of 𝐶 (same as before)

only when 𝐹 ∗ (𝑥) does not belong to any cluster in Holes𝐶 , and we

use 𝑁
𝐶
when 𝐹 ∗ (𝑥) ∈ 𝐶 for some 𝐶 ∈ Holes𝐶 . We need to add the

nets 𝑁
𝐶
to our opening cost, but this extra cost can be charged to

ufl(𝐶), and each 𝐶 is charged only once by the observation that

Holes𝐶 ∩ Holes𝐶′ = ∅ for distinct 𝐶,𝐶′ ∈ Λ.

Facilities in the Ambient Space. When facilities can lie in the

ambient space, which need not be doubling, we face the major

obstacle that the tools we developed, like the cutting-probability

bound (3) and the separation property (4) need not apply to the

optimal set of facilities 𝐹 ∗ ⊂ R𝑑 . Another, more technical, obstacle

is that the net 𝑁𝐶 (and similarly 𝑁
𝐶
for 𝐶 ∈ Holes𝐶) might cover

the doubling subset 𝐶 but not 𝐹 ∗ (𝑥).
Our plan is to pick for each 𝐹 ∗ (𝑥) a proxy in the dataset𝑋 (which

is doubling), adapt our previous arguments to work for that proxy,

and use this to argue about 𝐹 ∗. Specifically, the proxy of a facility

𝐹 ∗ (𝑥) is its closest point in 𝑋 that is served (in the optimal solution

𝐹 ∗) by the same facility, formalized by a mapping 𝑔 : 𝐹 ∗ → 𝑋 ,

where 𝑔(𝐹 ∗ (𝑥)) = argmin𝑦∈𝑋 {dist(𝑦, 𝐹 ∗ (𝑥)) : 𝐹 ∗ (𝑦) = 𝐹 ∗ (𝑥)}. To

use these proxies, wemodify the step that eliminates badly-cut pairs

to handle pairs (𝑥, 𝑔(𝐹 ∗ (𝑥))) for 𝑥 ∈ 𝑋 , and obtain the separation

property for these pairs. We then show that this translates also to a

separation property for (𝑥, 𝐹 ∗ (𝑥)).
However, we cannot apply the previous argument about cost

increase, because it used that 𝐹 ∗ (𝑥) is “covered” by some net 𝑁𝐶 (or

𝑁
𝐶
for 𝐶 ∈ Holes𝐶). We need new steps in the analysis, and a par-

ticularly nontrivial case is when𝑔(𝐹 ∗ (𝑥)) ∈ 𝐶 for some𝐶 ∈ Holes𝐶 .
Now, if the proxy 𝑔(𝐹 ∗ (𝑥)) is close enough to 𝐹 ∗ (𝑥), then we can

pretend that 𝐹 ∗ (𝑥) = 𝑔(𝐹 ∗ (𝑥)) and the analysis goes through. And

if they are far apart (compared with dist(𝑥, 𝑔(𝐹 ∗ (𝑥)))), then we

crucially make use of the optimality of 𝐹 ∗, and show that 𝐹 ∗ (𝑥)
must be near 𝐶 , namely, within distance 𝑂 (diam(𝐶)). These facts
imply that 𝑥 is close to 𝐶 , hence 𝑥 can be covered by the net 𝑁

𝐶
.

This net is fine enough and thus contains a point within distance

𝜀 · dist(𝑥, 𝐹 ∗ (𝑥)) from 𝑥 (here we use the separation property be-

tween (𝑥, 𝐹 ∗ (𝑥))), and we can use that net point to serve 𝑥 instead

of 𝐹 ∗ (𝑥), with no additional connection cost. We remark that these

steps generally work for any ambient space beyond Euclidean R𝑑 .

1.3.2 Dimension Reduction. Our proof of dimension reduction for

UFL, i.e., that with high probability ufl(𝜋 (𝑋)) ∈ (1 ± 𝜀) ufl(𝑋),
heavily relies on our decomposition to provide a structurally simple

characterization of the optimal value, namely, ufl(𝑋) ∈ (1 ± 𝜀) ·∑
𝐶∈Λ ufl(𝐶). At a high level, our proof shows that the right-hand

side is “preserved” under a random linear map 𝜋 .

We need to prove both an upper bound and a lower bound on

ufl(𝜋 (𝑋)). The upper bound is easy, as observed in recent work [29,

37, 41], because we may consider one optimal solution 𝐹 ∗ for𝑋 and

analyze its image under 𝜋 , i.e., the cost of the solution 𝜋 (𝐹 ∗) for
𝜋 (𝑋). Since we only need 𝜋 to preserve this one specific solution,

target dimension𝑚 = 𝑂 (poly(𝜀−1)) suffices.

The lower bound is more interesting and is where we use our

decomposition of 𝑋 , which implies ufl(𝑋) ≥ (1 − 𝜀) ·∑𝐶∈Λ ufl(𝐶).
We would like to show this inequality is “preserved” under 𝜋 , i.e.,

“carries over” to the target space, and what we actually show, as

explained further below, is that

ufl(𝜋 (𝑋)) ≥
∑︁
𝐶∈Λ

ufl(𝜋 (𝐶)) − 𝜀 · ufl(𝑋). (5)

Notice that the additive error here 𝜀 · ufl(𝑋) might not be directly

comparable to ufl(𝜋 (𝑋)). Nevertheless, this bound (5) turns out to

suffice, because we only need to show in addition that∑︁
𝐶∈Λ

ufl(𝜋 (𝐶)) ≥ (1 − 𝜀)
∑︁
𝐶∈Λ

ufl(𝐶). (6)

Putting together (5), (6) and Property (b) will then conclude the

desired lower bound.

The proof of (6) relies on [37], as follows. Let med𝑘 (𝑆) denote
the optimal value of 𝑘-median on 𝑆 ⊂ R𝑑 ; then we know from [37]

that target dimension �̃� (𝜀−2 log𝑘) suffices for dimension reduction

for 𝑘-median, meaning that for every 𝑆 ⊂ R𝑑 , with high probability

med𝑘 (𝜋 (𝑆)) ∈ (1±𝜀)med𝑘 (𝑆). We apply this in our case by letting

𝑆 be a cluster𝐶 ∈ Λ, andwe know from Property (a) that the number

of facilities needed for𝐶 is at most𝑂 (𝜅) = (ddim/𝜀)𝑂 (ddim) , hence
target dimension �̃� (𝜀−2ddim) suffices for it. The only gap is that

we need to apply [37] multiple times for our summation over all

670

Near-Optimal Dimension Reduction for Facility Location STOC ’25, June 23–27, 2025, Prague, Czechia

𝐶 ∈ Λ. We handle this in a series of lemmas (Lemmas 4.1 and 4.2)

that are based on [37], and bound the additive error for each 𝐶 ∈ Λ
by ufl(𝐶) − ufl(𝜋 (𝐶)) ≤ 𝑒−𝜀

2𝑚 · poly(𝜅) ≤ 𝜀𝜅. We then use the

fact that |Λ|, the number of terms in the summation, is roughly

ufl(𝑋)/𝜅 (Lemma 3.2), and thus the total additive error is at most

𝜀 · ufl(𝑋), which we can afford.

Finally, we briefly discuss the proof of (5), which overall is sim-

ilar to that of Property (b) and its formal treatment appears in

Lemma 3.3. We let 𝐹 ∗𝜋 be an optimal set of facilities for 𝜋 (𝑋), and
we modify it into 𝐹 ′𝜋 that is “consistent” with Λ, i.e., in every cluster

𝐶 ∈ Λ, all points 𝑥 ∈ 𝜋 (𝐶) are served by facilities in 𝐹 ′𝜋 ∩ 𝜋 (𝐶).
Implementing this plan encounters new difficulties, and we focus

here on one immediate issue – that we have to analyze 𝜋 (𝑋), which
is random. To address this, we condition on the event E𝐶 , for𝐶 ∈ Λ,
that the distances between points in 𝑁𝐶 (which is a net on 𝐶) and

all other data points (a doubling point set) are preserved simultane-

ously. For this event to hold with high probability, it suffices that

𝑚 = �̃� (𝜀−2ddim), similarly to a lemma from [28] about preserv-

ing the nearest-neighbor distance from a query point to a doubling

point set. This is the sole use of the randomness of 𝜋 in this analysis.

1.4 Related Work
Oblivious dimension reduction can be useful in various models

of computation, and one may wonder about algorithms that run

in different models and approximate UFL on high-dimensional

Euclidean inputs, i.e., inputs as in our results but without the dou-

bling condition. For offline approximation in polynomial time, the

state-of-the-art is (2.406 + 𝜀)-approximation for UFL, which fol-

lows from the same ratio for 𝑘-median [15]. Aiming for fast ap-

proximation algorithms, one can achieve 𝑂 (1/𝜀)-approximation in

time �̃� (𝑛1+𝜀) [22], via a reduction to nearest neighbor search. This

reduction-style result was recently improved to be fully-dynamic,

with a similar tradeoff between approximation ratio and time [5]. In

dynamic geometric streams, known algorithms achieve𝑂 (𝑑/log𝑑)-
approximation using poly(𝑑 log𝑛) space, or𝑂 (1/𝜀)-approximation

using space 𝑛𝑂 (𝜀) poly(𝑑), both using a technique of geometric

hashing [17]. This geometric-hashing technique was recently used

in the setting of massively parallel computing (MPC), to design

fully-scalable MPC algorithms that achieve 𝑂 (1/𝜀)-approximation

in 𝑂 (1) rounds using 𝑛1+𝜀 poly(𝑑) total space [18].

2 Preliminaries
Let (X, dist) be a metric space. The ball centered at 𝑥 ∈ X with ra-

dius 𝑟 > 0 is defined as 𝐵(𝑥, 𝑟) := {𝑦 ∈ X : dist(𝑥,𝑦) ≤ 𝑟 }. The
𝑟 -neighborhood of a point set 𝑋 ⊆ X is defined as 𝐵(𝑋, 𝑟) :=⋃

𝑥∈𝑋 𝐵(𝑥, 𝑟). The diameter of a point set 𝑋 ⊆ X is defined as

diam(𝑋) := max𝑥,𝑦 dist(𝑥,𝑦), and its aspect ratio (or spread), de-
noted Δ(𝑋), is the ratio between the diameter and the minimum

inter-point distance in 𝑋 . For a point set 𝑋 ⊆ X and a point 𝑢 ∈ X,
let𝑋 (𝑢) denote the point of𝑋 that is nearest to𝑢. Denote by ufl𝑆 (𝑋)
the optimal UFL value for input𝑋 ⊆ X when facilities are restricted

to the set 𝑆 ⊆ X, and let ufl(𝑋) := ufl
X (𝑋) for short.

Definition 2.1 (Doubling dimension [25]). The doubling dimension
of a metric space (X, dist) is the smallest 𝑡 ≥ 0 such that every

metric ball can be covered by at most 2
𝑡
balls of half the radius. The

doubling dimension of a point set 𝑋 ⊆ X is the doubling dimension

of the metric space (𝑋, dist), and is denoted ddim(𝑋).

Definition 2.2 (Packing, covering and nets). Consider a metric

space (X, dist) and let 𝜌 > 0. A point set 𝑆 ⊆ X is a 𝜌-packing if

for all 𝑥,𝑦 ∈ 𝑆 , dist(𝑥,𝑦) ≥ 𝜌 . The set 𝑆 is a 𝜌-covering for 𝑋 if for

every 𝑥 ∈ 𝑋 , there is 𝑦 ∈ 𝑆 such that dist(𝑥,𝑦) ≤ 𝜌 . The set 𝑆 is a

𝜌-net for 𝑋 if it is both a 𝜌-packing and a 𝜌-covering for 𝑋 .

Proposition 2.3 (Packing property [25]). If 𝑆 is 𝜌-packing then
|𝑆 | ≤ (2 diam(𝑆)/𝜌)ddim(𝑆) .

We summarize below the properties of the random linear map 𝜋

are used in this paper. Recall that 𝜋 : 𝑥 ↦→ 1√
𝑚
𝐺𝑥 where𝐺 ∈ R𝑚×𝑑

is a random Gaussian matrix. In some previous work, such as [37],

only properties (7) and (9) below were needed, and they may hold

for other maps 𝜋 . We need also (8), which seems to be more specific

to Gaussian.

Proposition 2.4 (Properties of random linear maps). Let 𝜋 : R𝑑 →
R𝑚 be a random linear map. Then for every unit vector 𝑥 ∈ R𝑑 and
every 𝑡 > 0,

Pr[∥𝜋 (𝑥)∥ ∉ 1 ± 𝑡] ≤ 𝑒−𝑡
2𝑚/8 . (7)

Pr[∥𝜋 (𝑥)∥ ≤ 1/𝑡] ≤
(
3

𝑡

)𝑚
. (8)

E [max {0, ∥𝜋 (𝑥)∥ − (1 + 𝑡)}] ≤ 1

𝑚𝑡
𝑒−𝑡

2𝑚/2 . (9)

3 A New Decomposition for UFL
This section introduces our new decomposition for UFL instances,

which technically is a random partition Λ of the dataset 𝑋 , and

effectively reduces the UFL instance into separate low-value UFL

instances, each formed by a different part 𝐶 ∈ Λ. Throughout this
section, we assume that (X, dist) is an underlying metric space

and 𝑋 ⊆ X is a dataset of doubling dimension at most ddim. A

feasible UFL solution is a set of facilities, which can be any (finite)

subset of X. We present the construction of the partition Λ in

Section 3.1, which includes a summary of its main properties in

Lemmas 3.1 to 3.3. The proofs of these lemmas can be found in the

full version [26, Sections 3.2 - 3.4]. The partition Λ is parameterized

by 𝜅 ≥ 1 (in addition to 0 < 𝜀 < 1).

Lemma 3.1 (Bounded local UFL values). For every 𝜅 ≥ 1, the
random partition Λ = Λ(𝜅) always satisfies that 𝜅 ≤ ufl(𝐶) ≤
2
10ddim𝜅 for all 𝐶 ∈ Λ.

In our applications, we set 𝜅 := (ddim/𝜀)Θ(ddim) . This ensures
that ufl(𝐶) is small enough for dimension reduction analysis, and in

particular an optimal solution ufl(𝐶) uses at most 2
10ddim𝜅 facilities,

hence finding ufl(𝐶) reduces to a 𝑘-median problem with 𝑘 ≤
2
𝑂 (ddim)𝜅. This is useful in several ways. For instance, a target

dimension𝑚 = �̃� (ddim/𝜀2) suffices to preserve ufl(𝜋 (𝐶)) ∈ (1 ±
𝜀) ufl(𝐶), via a black-box application of [37], which shows that

target dimension �̃� (𝜀−2 log𝑘) suffice for 𝑘-median. Similarly, as we

mentioned, there are also efficient (1+𝜀)-approximation algorithms

for 𝑘-median with such small 𝑘 , which implies a PTAS for ufl(𝐶).

Lemma3.2 (Bounding |Λ|). There exist universal constants 𝑐1, 𝛼 > 0,
such that for every 𝜀 ∈ (0, 1) and 𝜅 > 2(ddim/𝜀)𝑐1 ·ddim, the partition

671

STOC ’25, June 23–27, 2025, Prague, Czechia Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Di Yue

Λ = Λ(𝜅) satisfies

E [|Λ|] ≤ 2𝛼 · ufl(𝑋)
𝜅 − 2(ddim/𝜀)𝑐1 ·ddim

, (10)

where the randomness is over the construction of Λ.

Lemma 3.2 essentially says that |Λ| ≤ 𝑂 (ufl(𝑋)/𝜅). This is partic-
ularly useful when comparing

∑
𝐶∈Λ ufl(𝐶) with ∑

𝐶∈Λ ufl(𝜋 (𝐶))
in the dimension-reduction analysis, where we bound the additive

error for each 𝐶 ∈ Λ by ufl(𝐶) − ufl(𝜋 (𝐶)) ≤ 𝜀𝜅. Lemma 3.2 then

implies that the total additive error is at most 𝑂 (𝜀) · ufl(𝑋), which
we can afford.

We note that the above two lemmas hold for every doubling

point set 𝑋 . The next lemma is specifically for 𝑋 ⊂ R𝑑 (i.e., for

the Euclidean metric space R𝑑), and it analyzes the performance of

dimension reduction on Λ. This technical lemma provides a lower

bound for ufl(𝜋 (𝑋)) in terms of the local costs ufl(𝜋 (𝐶)) for𝐶 ∈ Λ.
This is crucially useful in our dimension reduction analysis.

Lemma 3.3 (Lower bound for ufl(𝜋 (𝑋))). Let 𝜋 : R𝑑 → R𝑚 be a
random linear map, and let𝑋 ⊂ R𝑑 be finite with doubling dimension
at most ddim. There exist universal constants 𝑐1, 𝑐2, 𝑐3 > 0, such
that for every 𝜀, 𝛿 ∈ (0, 1), if 𝜅 > 𝑐2 (ddim/(𝛿𝜀))𝑐1 ·ddim and 𝑚 >

𝑐3 (log𝜅 + log(1/𝛿𝜀)), then

Pr

[
ufl(𝜋 (𝑋)) ≥

∑︁
𝐶∈Λ

ufl(𝜋 (𝐶)) − 𝜀 · ufl(𝑋)
]
≥ 1 − 𝛿,

where the randomness is over both 𝜋 and Λ = Λ(𝜅).

In fact, using similar techniques, we can prove a result analogous

to this lemma but for general metric (X, dist) and (finite) doubling

subset 𝑋 ⊆ X, where 𝜋 is fixed to the identity map.

Corollary 3.4 (Lower bound for ufl(𝑋)). Let (X, dist) be a metric
space and 𝑋 ⊆ X be a finite subset with doubling dimension at
most ddim. There exist universal constants 𝑐1, 𝑐2, such that for every
𝜀, 𝛿 ∈ (0, 1) and 𝜅 > 𝑐2 (ddim/(𝛿𝜀))𝑐1 ·ddim, the random partition
Λ := Λ(𝜅) satisfies

ufl(𝑋) ≥
∑︁
𝐶∈Λ

ufl(𝐶) − 𝜀 · ufl(𝑋), (11)

with probability at least 1 − 𝛿 .

3.1 The Construction of Λ
Our construction ofΛ has three steps. The first one is to compute for

𝑋 a randomized hierarchical decompositionH , using the algorithm

of Talwar [43]. We restate this computation ofH in Algorithm 1,

and review its main properties. The second step modifiesH into

another hierarchical decomposition T , to eliminate badly-cut pairs

(a notion introduced by [16]). As described in Algorithm 2, it works

by moving points between clusters separately at each level, and

thus each level remains a partition of 𝑋 , but the nesting across

levels might break. The third step constructs the random partition

Λ from T , using a bottom-up approach, as described in Algorithm 3.

We summarize in Lemma 3.14 several properties of Λ that follow

directly from the construction, including a separation and a consis-

tency property, and are essential for proving Lemmas 3.1 to 3.3.

Random Hierarchical Decomposition [43]. We use an algorithm of

Talwar [43] to construct a random hierarchical decompositionH ,

described in Algorithm 1. Let 𝛾 := min{dist(𝑥,𝑦) : 𝑥 ≠ 𝑦 ∈ 𝑋 }, let
Δ := diam(𝑋)/𝛾 be the aspect ratio of𝑋 , and denote ℓ := ⌈logΔ⌉. At
a high level, the algorithm (randomly) partitions𝑋 into clusters, and

then recursively partitions each cluster into children clusters, where

each recursive call decreases the diameter bound by a factor of 2.

This process creates a recursion tree, where tree nodes correspond

to clusters, and this is referred to as a hierarchical decomposition

H . The randomness comes from two sources: (1) the scaling factor

𝜌 , picked in Line 2, which affects the diameter of clusters in Line 6;

and (2) the permutation 𝜇, picked in Line 3, which determines

the order in which clusters are formed in Line 9. By construction,

H has ℓ + 2 levels. The root node, at the highest level of Hℓ+1,
corresponds to the trivial cluster 𝑋 , and each leaf at the lowest

levelH0 corresponds to a single point of 𝑋 . Each node 𝐶 ∈ H𝑖 is

the union of all its children atH𝑖−1; see Line 9. Moreover, clusters

at every levelH𝑖 form a partition of 𝑋 , and every cluster 𝐶 ∈ H𝑖

satisfies diam(𝐶) ≤ 2𝑟𝑖 ≤ 2
𝑖𝛾 . We denote the diameter-bound of

this cluster by diam(𝐶) := 2
𝑖𝛾 , and its level by level(𝐶) := 𝑖 .

Algorithm 1: Random Hierarchical Decomposi-

tion [43]

Input: finite point set 𝑋 ⊂ R𝑑 with minimum distance 𝛾

and aspect ratio Δ
1 construct nested nets 𝑋 = 𝑁0 ⊃ 𝑁1 ⊃ · · · ⊃ 𝑁ℓ , such that

each 𝑁𝑖 is a (2𝑖−3𝛾)-net of 𝑁𝑖−1, where ℓ = ⌈logΔ⌉
2 pick 𝜌 ∈ (1

2
, 1) uniformly at random

3 pick 𝜇 as a random permutation of 𝑋

4 Hℓ+1 ← {𝑋 }
5 for 𝑖 = ℓ, ℓ − 1 . . . , 0 do
6 H𝑖 ← ∅ and 𝑟𝑖 ← 𝜌 · 2𝑖−1𝛾
7 for cluster 𝐶 ∈ H𝑖+1 do
8 for each 𝑦 ∈ 𝑁𝑖 do
9 𝐶𝑦 ← 𝐶 ∩ 𝐵(𝑦, 𝑟𝑖) \

⋃
𝑧∈𝑁𝑖 :𝜇 (𝑧)<𝜇 (𝑦) 𝐵(𝑧, 𝑟𝑖)

/* new cluster, a child of 𝐶 */

10 H𝑖 ←H𝑖 ∪ {𝐶𝑦} // can skip if 𝐶𝑦 = ∅
11 returnH ← {H0,H1, . . . ,Hℓ+1}

We say that a pair 𝑥, 𝑥 ∈ 𝑋 is cut at level 𝑖 if there are two

distinct clusters 𝐶 ≠ 𝐶 ∈ H𝑖 with 𝑥 ∈ 𝐶 and 𝑥 ∈ 𝐶 . We state below

a well-known bound on the probability to be cut inH .

Proposition 3.5 (Cutting probability [43]). For every pair 𝑥, 𝑥 ∈ 𝑋
and level 𝑖 ,

Pr[(𝑥, 𝑥) is cut at level 𝑖] ≤ 𝑂

(
ddim · dist(𝑥, 𝑥)

2
𝑖𝛾

)
.

This bound has been used extensively in previous work, e.g., to

argue that nearby points are unlikely to be cut at a high level. We

also need the following notion of a badly-cut pair. A similar notion

was first introduced in [16], where it is defined with respect to a

metric ball, whereas we focus on a pair of points.

672

Near-Optimal Dimension Reduction for Facility Location STOC ’25, June 23–27, 2025, Prague, Czechia

Definition 3.6 (Badly-cut pairs). Let 𝜀 ∈ (0, 1). A pair of points

𝑥, 𝑥 ∈ 𝑋 is called 𝜀-badly cut with respect to H if (𝑥, 𝑥) is cut at
any level 𝑖 ≥ log

ddim·dist(𝑥,𝑥)
𝜀2𝛾

.

Lemma 3.7 (Badly-cut probability). Let 𝜀 ∈ (0, 1). Then for every
pair 𝑥, 𝑥 ∈ 𝑋 ,

Pr[(𝑥, 𝑥) is 𝜀-badly cut] ≤ 𝑂 (𝜀2) .

Proof. Denote 𝑖0 = ⌈log ddim dist(𝑥,𝑥)
𝜀2𝛾

⌉. By Proposition 3.5,

Pr[(𝑥, 𝑥) is 𝜀-badly cut] ≤
∑︁
𝑖≥𝑖0

𝑂 (ddim) · 2−𝑖 dist(𝑥, 𝑥)/𝛾

≤ 𝑂 (ddim) · 2−𝑖0+1 dist(𝑥, 𝑥)/𝛾
≤ 𝑂 (𝜀2) . □

Fix an 𝛼-approximate solution 𝐹0 for the UFL problem on𝑋 with

𝛼 = 𝑂 (1), such that 𝐹0 ⊆ 𝑋 . (Such a solution always exists by

moving the facilities of an optimal solution to their nearest point

in the dataset 𝑋 .) Recall that 𝐹0 (𝑥) denotes the closest facility to 𝑥

in 𝐹0. Our proof examines not only that a pair (𝑥, 𝑥) is not badly
cut, but also that related pairs are not badly cut, as described next.

Definition 3.8 (Good pairs). Let 𝜀 ∈ (0, 1). A pair of points 𝑥, 𝑥 ∈ 𝑋
is called 𝜀-good with respect to (H , 𝐹0), if none of the three pairs
(𝑥, 𝑥), (𝑥, 𝐹0 (𝑥)) and (𝑥, 𝐹0 (𝑥)) is 𝜀-badly cut with respect to H .

When 𝜀,H , 𝐹0 are clear from the context, we may omit them and

simply say that (𝑥, 𝑥) is good.

The following lemma is an immediate corollary of Lemma 3.7

by the union bound.

Lemma 3.9 (Probability to be good). Let 𝜀 ∈ (0, 1). Every pair of
points 𝑥, 𝑥 ∈ 𝑋 (that does not depend onH) is 𝜀-good with probability
at least 1 −𝑂 (𝜀2).

Our plan is to construct a partition Λ of 𝑋 so that it has the

so-called separation and consistency properties. Informally, the

separation property means that for every 𝑥 ∈ 𝑋 , if 𝑥 and 𝐹0 (𝑥) be-
long to different clusters 𝐶 ≠ 𝐶 ∈ Λ, then dist(𝑥, 𝐹0 (𝑥)) is roughly
lower bounded by Ω(𝜀2/ddim) times the maximum of diam(𝐶) and
diam(𝐶). This property enables us to “represent” a global solution

𝐹0 with respect to some local centers around clusters in Λ. Consis-
tency means that every cluster in Λ originates from a cluster inH ,

and has diameter bound that is not much larger. This property al-

lows us to use a fine net with bounded size as a proxy for candidate

centers.

Procedure for Eliminating Badly-Cut Pairs. To achieve the separa-
tion property, we need to eliminate all badly-cut pairs. A simple way

to eliminate the badly-cut pairs, which was used in [16], is to build

a new dataset𝑋 ′ by moving every point 𝑥 ∈ 𝑋 for which (𝑥, 𝐹0 (𝑥))
is badly cut to the point 𝐹0 (𝑥). However, this 𝑋 ′ clearly depends on
the randomness ofH , and thus Proposition 3.5 does not apply to𝑋 ′

(which is actually needed in our subsequent analysis). Hence, we

introduce a more sophisticated procedure, in Algorithm 2, that di-

rectly modifies the clusters inH (instead of building a new dataset),

and our Λ is then built from the modified decomposition.

The modified decomposition T is constructed level by level.

Initially, T is a copy of H . Then separately for each level 0 ≤

Algorithm 2: Modify Decomposition to Eliminate

Badly-cut Pairs(𝑋,H , 𝐹0, 𝜀)
1 for 𝑖 = 0, . . . , ℓ + 1 do
2 for each 𝐶 ∈ H𝑖 , let 𝐶

T ← 𝐶

3 for 𝑥 ∈ 𝑋 do
4 find 𝐶,𝐶 ∈ H𝑖 such that 𝑥 ∈ 𝐶 and 𝐹0 (𝑥) ∈ 𝐶
5 if 𝐶 ≠ 𝐶 and 𝑖 ≥ log

ddim·dist(𝑥,𝐹0 (𝑥))
𝜀2𝛾

then

6 let 𝐶T ← 𝐶T \ {𝑥} and 𝐶T ← 𝐶T ∪ {𝑥}
7 T𝑖 ← {𝐶T : 𝐶 ∈ H𝑖 } // modified partition of 𝑋

8 return T ← {T0, . . . ,Tℓ+1}

𝑖 ≤ ℓ + 1, clusters at level 𝑖 exchange their points in the following

way: for every point 𝑥 ∈ 𝑋 , if (𝑥, 𝐹0 (𝑥)) is cut at level 𝑖 and 𝑖 ≥
log

ddim·dist(𝑥,𝐹0 (𝑥))
𝜀2𝛾

, then 𝑥 is moved from its current cluster to the

cluster containing 𝐹0 (𝑥) (Lines 3-6). Notice that 𝐹0 (𝑥) never moves

(because 𝐹0 (𝐹0 (𝑥)) = 𝐹0 (𝑥)) and thus the order of processing 𝑥 ∈ 𝑋
does not matter.

Relation between T and H . It is easy to see that every level

T𝑖 ∈ T still forms a partition of 𝑋 . We also let T inherit the tree

structure fromH , using the one-to-one correspondence between

their clusters (ignoring empty clusters), and we write𝐶H to denote

the cluster inH corresponding to a cluster 𝐶T in T . Observe that
now a node 𝐶T ∈ T𝑖 is not necessarily the union of its children at

T𝑖−1. Although the abovementioned one-to-one correspondence

exists between T andH , a significant difference is that an actual

cluster 𝐶T ∈ T𝑖 need not be the union of all its children in T𝑖−1.

Properties of T . We can reinterpret Definition 3.6 of badly-cut

pairs with respect to T (recall it was originally defined with respect

toH): A pair (𝑥, 𝑥) is 𝜀-badly cut with respect to T if there exists a

level 𝑖 ≥ log
ddim·dist(𝑥,𝐹0 (𝑥))

𝜀2𝛾
and different clusters 𝐶T ≠ 𝐶T ∈ T𝑖 ,

such that 𝑥 ∈ 𝐶T and 𝑥 ∈ 𝐶T . Observe that once 𝑥 is moved to the

cluster containing 𝐹0 (𝑥) at level 𝑖 , then it always stays in the same

cluster as 𝐹0 (𝑥) at higher levels 𝑗 ≥ 𝑖 . Hence, the next fact follows

immediately from the steps of Algorithm 2.

Fact 3.10. Every pair (𝑥, 𝐹0 (𝑥)) for 𝑥 ∈ 𝑋 is not badly cut with
respect to T .

The next lemma shows that T maintains consistency withH ,

i.e., the diameter of each cluster 𝐶T does not exceed that of 𝐶H by

much. Recall that diam(𝐶H) = 2
𝑖𝛾 for all 𝐶H ∈ H𝑖 , and that for a

point set 𝑌 and 𝑟 > 0, we denote 𝐵(𝑌, 𝑟) = ⋃
𝑥∈𝑌 𝐵(𝑥, 𝑟).

Lemma 3.11 (Consistency of T). Let 𝜀 ∈ (0, 1) and T =

T (𝑋,H , 𝐹0, 𝜀) be constructed by Algorithm 2. Then for every 𝑖 ∈
{0, 1, . . . , ℓ + 1} and cluster 𝐶T ∈ T𝑖 , it holds that 𝐶T ⊆ 𝐵(𝐶H, 𝜀2 ·
2
𝑖𝛾), and thus 𝐶T ⊆ 𝐵(𝐶H, 𝜀2 diam(𝐶H)).

Proof. For every point 𝑥 ∈ 𝐶T \ 𝐶H , 𝐹0 (𝑥) ∈ 𝐶H and

𝑖 ≥ log
ddim·dist(𝑥,𝐹0 (𝑥))

𝜀2𝛾
. Hence, dist(𝑥, 𝐹0 (𝑥)) ≤ 𝜀2 diam(𝐶H)

ddim
≤

𝜀2 diam(𝐶H). This completes the proof. □

Constructing the Partition Λ. We can now present Algorithm 3

the construction of Λ, which works in a bottom-up manner, as

673

STOC ’25, June 23–27, 2025, Prague, Czechia Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Di Yue

follows. Given a threshold 𝜅 > 0, we find the lowest-level cluster

𝐶 in T such that ufl(𝐶) ≥ 𝜅, and add it to the partition Λ (Lines 2

and 4). We then remove the points of 𝐶 from 𝑋 and from every

cluster in T (Line 5). We repeat this procedure until all points in 𝑋

are removed, or not suitable 𝐶 exists, in which case we simply add

the remaining points in 𝑋 as a separate part (Line 7). It is easy to

see that the output Λ forms a partition of 𝑋 .

We remark that the last cluster 𝐶 added to Λ might have

ufl(𝐶T) < 𝜅, which violates Lemma 3.1. This special cluster does

not affect the correctness of Lemmas 3.2 and 3.3 and thus for sim-

plicity, we assume that all clusters 𝐶 ∈ Λ satisfy ufl(𝐶) ≥ 𝜅. To

remove this assumption, we can also merge the last two clusters

added to Λ, as it would violate the upper bound on ufl(𝐶) by at

most factor 2.

Algorithm 3: Partition(𝑋,T , 𝜅)
1 while 𝑋 ≠ ∅ do
2 let 0 ≤ 𝑖 ≤ ℓ be the smallest integer such that there is

𝐶 ∈ T𝑖 with ufl(𝐶) ≥ 𝜅

3 if such 𝑖,𝐶 exist then
4 Λ← Λ ∪ {𝐶}
5 𝑋 ← 𝑋 \𝐶 , and update for every 𝑗 all clusters

𝐶 ∈ T𝑗 by 𝐶 ← 𝐶 \𝐶
6 else
7 Λ← Λ ∪ {𝑋 } // add last cluster

8 𝑋 ← ∅
9 return Λ

Relation between Λ and T . Recall that there is a one-to-one cor-
respondence between clusters in T andH . We can define a relation

also between clusters in Λ and in T (and hence inH), by tracking

the steps in Algorithm 3. Specifically, a cluster 𝐶 ∈ Λ is usually

added to Λ in Line 4, so there is a clearly defined correspondence

with this cluster 𝐶 in T . In the exceptional case of the last cluster,

added in Line 7), 𝐶 contains all remaining points so we can define

its corresponding cluster in T to be the root, which is the entire

dataset 𝑋 . For a part 𝐶 ∈ Λ, we write 𝐶T and 𝐶H to denote its

corresponding clusters in T andH .

Due to the bottom-up nature of the construction of Λ, clusters
𝐶 ∈ Λ may not be perfectly aligned with its corresponding cluster

𝐶T ∈ T . To see this, consider a cluster𝐶 ∈ Λ, and suppose another
cluster 𝐶 ∈ Λ was added to Λ before 𝐶 during the execution of

Algorithm 3. If 𝐶T is a descendant of 𝐶T , then we must remove 𝐶

from𝐶T when constructingΛ, whichmakes the cluster𝐶 a subset of

𝐶T \𝐶 (instead of a full cluster in T). Thus, we observe that𝐶 ⊆ 𝐶T

holds for every𝐶 ∈ Λ. Next, we define the following structure called
holes for clusters 𝐶 ∈ Λ to capture such misalignment between 𝐶

and 𝐶T .

Definition 3.12 (Holes). A cluster 𝐶 ∈ Λ is called a hole of 𝐶 ∈ Λ
if among all clusters in Λ, 𝐶 is the one whose corresponding 𝐶T is

the lowest-level ancestor of 𝐶T (in T). The set of holes of 𝐶 ∈ Λ is

defined as Holes𝐶 := {𝐶 ∈ Λ : 𝐶 is a hole of 𝐶}.

Lemma 3.13 (Total number of holes).
∑
𝐶∈Λ |Holes𝐶 | ≤ |Λ|.

Proof. By definition, each 𝐶 ∈ Λ is a hole of at most one 𝐶 , i.e.,

Holes𝐶 ∩ Holes𝐶′ = ∅ for distinct 𝐶,𝐶′ ∈ Λ. Therefore, the total
size of all Holes𝐶 is upper bounded by the size of Λ. □

Finally, the following lemma summarizes the desired properties

of Λ, which are useful for dimension-reduction analysis.

Lemma 3.14. Consider a random partition Λ = Λ(𝑋,T , 𝜅).
(1) Separation: For every 𝜀-good pair (𝑥, 𝑥) with respect to (H , 𝐹0)

with 𝑥 ∈ 𝐶 , 𝑥 ∈ 𝐶 and 𝐶 ≠ 𝐶 ∈ Λ, the following holds.
(a) If 𝐶H and 𝐶H are not related (as descendant-ancestor) inH ,

then dist(𝑥, 𝑥) ≥ 𝜀2

ddim
·max{diam(𝐶H), diam(𝐶H)}.

(b) If 𝐶H is a descendant of 𝐶H inH , then there exists a cluster
𝐶 ∈ Holes𝐶 , such that dist(𝑥, 𝑥) ≥ 𝜀2

ddim
· diam(𝐶H).

(2) Consistency: For every cluster 𝐶 ∈ Λ, it holds that 𝐶 ⊆
𝐵(𝐶H, 𝜀2 diam(𝐶H)).

Let us explain the separation property of Lemma 3.14. Case

(1a) is more intuitive, because if 𝐶H and 𝐶H are not related in

H (related means that one is ancestor of the other), then 𝐶H ∩
𝐶H = ∅, which implies the distance lower bound. However, in case

(1b), 𝐶H is a subset of 𝐶H , meaning that dist(𝑥,𝐶H) = 0, which

corresponds to the misalignment in Λ discussed earlier. We thus

need to use Holes𝐶 to obtain the separation property, which is a

major structural complication for our bottom-up construction of Λ.
In particular, in our later arguments where we wish to find a net 𝑁𝐶

for 𝐶 ∈ Λ whose granularity depends on the separation guarantee

in Lemma 3.14, we not only need a net for𝐶 but also a series of nets

on clusters in Holes𝐶 . See the full version [26, Sections 3.3, 3.4] for

details.

Proof of Lemma 3.14. We first show the separation property.

By the definition of 𝜀-good pairs (Definition 3.8), neither of 𝑥 and 𝑥

is moved to another cluster during the execution of Algorithm 2.

Thus 𝑥 ∈ 𝐶H and 𝑥 ∈ 𝐶H .
If 𝐶H and 𝐶H are not related in H (related means

that one is ancestor of the other), then 𝑥 and 𝑥 are

cut at level max{level(𝐶H), level(𝐶H)} of H . Since

(𝑥, 𝑥) is not 𝜀-badly cut with respect to H , we have

max{level(𝐶H), level(𝐶H)} ≤ log
ddim·dist(𝑥,𝑥)

𝜀2𝛾
, or equivalently,

dist(𝑥, 𝑥) ≥ 𝜀2

ddim
max{diam(𝐶H), diam(𝐶H)}.

If𝐶H is a descendant of𝐶H inH , then there exists𝐶 ∈ Holes𝐶 ,
such that 𝐶H is a descendant of 𝐶H and an ancestor of 𝐶H , and
that (𝑥, 𝑥) is cut at level level(𝐶H) ofH . Since (𝑥, 𝑥) is not 𝜀-badly
cut with respect toH , we have level(𝐶H) ≤ log

ddim·dist(𝑥,𝑥)
𝜀2𝛾

, or

equivalently, dist(𝑥, 𝑥) ≥ 𝜀2

ddim
diam(𝐶H).

Finally, observe that𝐶 ⊆ 𝐶T , hence the consistency of Λ follows

immediately from the consistency of T (Lemma 3.11). □

4 Proof of Theorem 1.1: Dimension Reduction
for UFL

Theorem 1.1. Let 0 < 𝜀, 𝛿 < 1, let ddim, 𝑑 ≥ 1, and consider a
random linearmap 𝜋 with suitable target dimension𝑚 = 𝑂 (𝜀−2ddim·
log(𝛿−1𝜀−1ddim)). Then for every finite 𝑋 ⊂ R𝑑 with doubling

674

Near-Optimal Dimension Reduction for Facility Location STOC ’25, June 23–27, 2025, Prague, Czechia

dimension at most ddim,

Pr[ufl(𝜋 (𝑋)) ∈ (1 ± 𝜀) ufl(𝑋)] ≥ 1 − 𝛿. (2)

We start by stating two technical lemmas. First, we have the

following lemma that upper bounds the expansion of ufl(𝜋 (𝑋)).
This lemma is essential for the proof of Theorem 1.1, where we

apply it directly on 𝑋 to obtain an upper bound. The proof of

Lemma 4.1 can be found in the full version [26, Appendix B.1].

Lemma 4.1 (An upper bound of ufl(𝜋 (𝑋))). Let 𝑋 ⊂ R𝑑 be a finite
point set. Let 𝜋 : R𝑑 → R𝑚 be a random linear map. Then for every
𝑡 > 0,

E [max{0, ufl(𝜋 (𝑋)) − (1 + 𝑡) ufl(𝑋)}] ≤ 1

𝑚𝑡
𝑒−𝑡

2𝑚/2
ufl(𝑋) .

Furthermore,

Pr [ufl(𝜋 (𝑋)) ≥ (1 + 𝑡) ufl(𝑋)] ≤ 4

𝑡2𝑚
𝑒−𝑡

2𝑚/8 .

We also conclude the following lemma from [37] to con-

trol the contraction of each ufl(𝐶), which is useful for relating∑
𝐶∈Λ ufl(𝜋 (𝐶)) and∑𝐶∈Λ ufl(𝐶) in the proof of Theorem 1.1. The

proof of Lemma 4.2 can be found in the full version [26, Appendix

B.2].

Lemma 4.2. Let 𝐶 ⊂ R𝑑 be a finite point set with ufl(𝐶) ≤ 𝜏 . Let
𝜋 : R𝑑 → R𝑚 be a random linear map. Then there exists a universal
constant 𝑐 > 0, such that for every 𝜀 ∈ (0, 1), if𝑚 > 𝑐 · 𝜀−2 log(1/𝜀),
then

Pr

[
ufl(𝜋 (𝐶)) ≤ 1

1 + 𝜀 ufl(𝐶)
]
≤ 𝜏3 · 𝑒−Ω (𝜀

2𝑚) .

Recall that our typical choice of the parameter is

𝜏 = (ddim/𝜀)𝑂 (ddim) . Thus, a target dimension 𝑚 =

𝑂 (𝜀−2ddim log(ddim/𝜀)) suffices to bound the expected contrac-

tion on 𝐶 within 𝜀, which achieves the target dimension bound in

Theorem 1.1.

Proof of Theorem 1.1. Noting that 𝑚 = Ω(𝜀−2 log(1/(𝛿𝜀))),
the desired upper bound of ufl(𝜋 (𝑋)), i.e. Pr[ufl(𝜋 (𝑋)) ≤ (1 +
𝜀) ufl(𝑋)] ≥ 1 − 𝛿/2 follows immediately from Lemma 4.1.

Now we turn to the lower bound of ufl(𝜋 (𝑋)). Let parameter

𝜅 := 𝑐2 (ddim/(𝛿𝜀))𝑐1 ·ddim satisfy the condition in Lemma 3.3. Let

Λ := Λ(𝜅) be the random partition constructed in Section 3. By

Lemma 3.1, 𝜅 ≤ ufl(𝐶) ≤ 2
10ddim𝜅 holds for every 𝐶 ∈ Λ. Denote

𝜏 := 2
10ddim𝜅 to be an upper bound for every ufl(𝐶). We choose

𝑚 = 𝑐 ·𝜀−2 (log𝜏 + log(1/𝛿𝜀)) = 𝑂 (𝜀−2ddim(log ddim+ log(1/𝛿𝜀))),
where 𝑐 is a sufficiently large constant.

We start from relating each ufl(𝜋 (𝐶)) to ufl(𝐶). Conditioning on
the randomness ofH ,

E
𝜋

[
max {0, (1 − 𝜀/3) ufl(𝐶) − ufl(𝜋 (𝐶))} | H

]
≤ ufl(𝐶) · Pr

𝜋

[
ufl(𝜋 (𝐶)) ≤ (1 − 𝜀/3) ufl(𝐶) | H

]
≤ 𝜏 · Pr

𝜋

[
ufl(𝜋 (𝐶)) ≤ 1

1 + 𝜀/3 ufl(𝐶) | H
]

≤ 𝜏4 · 𝑒−Ω (𝜀
2𝑚) . (Lemma 4.2)

Summing over all 𝐶 ∈ Λ, we have

E
𝜋,H

[∑︁
𝐶∈Λ

max {0, (1 − 𝜀/3) ufl(𝐶) − ufl(𝜋 (𝐶))}
]

≤ 𝜏4 · 𝑒−Ω (𝜀
2𝑚) · E

H
[|Λ|]

≤ 𝜏4 · 𝑒−Ω (𝜀
2𝑚) · 2𝛼 ufl(𝑋)

𝜅 − 2(ddim/𝜀)𝑂 (ddim)
(Lemma 3.2)

≤ 𝛿𝜀2/6 · ufl(𝑋) .

By Markov’s inequality, with probability at least 1 − 𝛿/2,∑︁
𝐶∈Λ

ufl(𝜋 (𝐶)) ≥ (1 − 𝜀/3)
∑︁
𝐶∈Λ

ufl(𝐶) − 𝜀2/3 ufl(𝑋)

≥ (1 − 2𝜀/3) ufl(𝑋) . (12)

On the other hand, by Lemma 3.3, with probability at least 1−𝛿/2,

ufl(𝜋 (𝑋)) ≥
∑︁
𝐶∈Λ

ufl(𝜋 (𝐶)) − 𝜀/3 · ufl(𝑋). (13)

Combining (13) and (12), with probability at least 1 − 𝛿 ,

ufl(𝜋 (𝑋)) ≥ (1 − 𝜀) ufl(𝑋),

which completes the proof. □

Remark 4.3. Recall that ufl
𝑆 (𝑋) stands for the optimal UFL value

on 𝑋 subject to the constraint that the facilities must be taken from

𝑆 , defined in Section 2. Using a variant of Lemma 4.2, we can prove

the same target-dimension bound for the discrete setting, i.e.,

Pr

[
ufl

𝜋 (𝑋) (𝜋 (𝑋)) ∈ (1 ± 𝜀) ufl𝑋 (𝑋)
]
≥ 1 − 𝛿,

which directly improves over the 𝑂 (1)-approximate of [41].

References
[1] Patrice Assouad. 1983. Plongements lipschitziens dansR𝑛 . Bull. Soc. Math. France

111, 4 (1983), 429–448. doi:10.24033/bsmf.1997

[2] Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. 2016. The Traveling Sales-

man Problem: Low-Dimensionality Implies a Polynomial Time Approximation

Scheme. SIAM J. Comput. 45, 4 (2016), 1563–1581. doi:10.1137/130913328
[3] Yair Bartal, Ben Recht, and Leonard J. Schulman. 2011. Dimensionality reduction:

Beyond the Johnson-Lindenstrauss bound. In SODA. SIAM, 868–887. doi:10.1137/

1.9781611973082.68

[4] Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris

Schwiegelshohn. 2019. Oblivious dimension reduction for 𝑘-means: beyond

subspaces and the Johnson-Lindenstrauss lemma. In STOC. ACM, 1039–1050.

doi:10.1145/3313276.3316318

[5] Sayan Bhattacharya, Gramoz Goranci, Shaofeng H.-C. Jiang, Yi Qian, and Yubo

Zhang. 2024. Dynamic Facility Location in High Dimensional Euclidean Spaces.

In Forty-first International Conference on Machine Learning. https://openreview.

net/forum?id=rucbIsWoEV

[6] Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. 2010. Random Pro-

jections for 𝑘-means Clustering. In NIPS. Curran Associates, Inc., 298–306. https:

//proceedings.neurips.cc/paper/2010/hash/73278a4a86960eeb576a8fd4c9ec6997-

Abstract.html

[7] T.-H. Hubert Chan, Shuguang Hu, and Shaofeng H.-C. Jiang. 2018. A PTAS for

the Steiner Forest Problem in Doubling Metrics. SIAM J. Comput. 47, 4 (2018),
1705–1734. doi:10.1137/16M1107206

[8] T.-H. Hubert Chan, Haotian Jiang, and Shaofeng H.-C. Jiang. 2020. A Unified

PTAS for Prize Collecting TSP and Steiner Tree Problem in Doubling Metrics.

ACM Trans. Algorithms 16, 2 (2020), 24:1–24:23. doi:10.1145/3378571
[9] T.-H. Hubert Chan and Shaofeng H.-C. Jiang. 2018. Reducing Curse of Dimen-

sionality: Improved PTAS for TSP (with Neighborhoods) in Doubling Metrics.

ACM Trans. Algorithms 14, 1 (2018), 9:1–9:18. doi:10.1145/3158232
[10] Moses Charikar and Erik Waingarten. 2025. The Johnson-Lindenstrauss

Lemma for Clustering and Subspace Approximation: From Coresets to Dimen-

sion Reduction. In SODA. SIAM, 3172–3209. doi:10.1137/1.9781611978322.102

arXiv:2205.00371

675

https://doi.org/10.24033/bsmf.1997
https://doi.org/10.1137/130913328
https://doi.org/10.1137/1.9781611973082.68
https://doi.org/10.1137/1.9781611973082.68
https://doi.org/10.1145/3313276.3316318
https://openreview.net/forum?id=rucbIsWoEV
https://openreview.net/forum?id=rucbIsWoEV
https://proceedings.neurips.cc/paper/2010/hash/73278a4a86960eeb576a8fd4c9ec6997-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/73278a4a86960eeb576a8fd4c9ec6997-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/73278a4a86960eeb576a8fd4c9ec6997-Abstract.html
https://doi.org/10.1137/16M1107206
https://doi.org/10.1145/3378571
https://doi.org/10.1145/3158232
https://doi.org/10.1137/1.9781611978322.102
https://arxiv.org/abs/2205.00371

STOC ’25, June 23–27, 2025, Prague, Czechia Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Di Yue

[11] Xi Chen, Vincent Cohen-Addad, Rajesh Jayaram, Amit Levi, and Erik Waingarten.

2023. Streaming Euclidean MST to a Constant Factor. In STOC. ACM, 156–169.

doi:10.1145/3564246.3585168

[12] Xiaoyu Chen, Shaofeng H.-C. Jiang, and Robert Krauthgamer. 2023. Streaming

Euclidean Max-Cut: Dimension vs Data Reduction. In STOC. ACM, 170–182.

doi:10.1145/3564246.3585170

[13] Kenneth L. Clarkson. 1999. Nearest Neighbor Queries in Metric Spaces. Discret.
Comput. Geom. 22, 1 (1999), 63–93. doi:10.1007/PL00009449

[14] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina

Persu. 2015. Dimensionality Reduction for 𝑘-Means Clustering and Low Rank

Approximation. In STOC. ACM, 163–172. doi:10.1145/2746539.2746569

[15] Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam

Narayanan. 2022. Improved approximations for Euclidean 𝑘-means and 𝑘-

median, via nested quasi-independent sets. In STOC. ACM, 1621–1628. doi:10.

1145/3519935.3520011

[16] Vincent Cohen-Addad, Andreas Emil Feldmann, and David Saulpic. 2021. Near-

linear Time Approximation Schemes for Clustering in Doubling Metrics. J. ACM
68, 6 (2021), 44:1–44:34. doi:10.1145/3477541

[17] Artur Czumaj, Arnold Filtser, Shaofeng H.-C. Jiang, Robert Krauthgamer, Pavel

Veselỳ, and Mingwei Yang. 2022. Streaming Facility Location in High Dimension

via Geometric Hashing. CoRR (2022). arXiv:2204.02095 The latest version has

additional results compared to the preliminary version in [19].

[18] Artur Czumaj, GuichenGao, ShaofengH.-C. Jiang, Robert Krauthgamer, and Pavel

Veselý. 2024. Fully-Scalable MPC Algorithms for Clustering in High Dimension.

In ICALP (LIPIcs, Vol. 297). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

50:1–50:20. doi:10.4230/LIPIcs.ICALP.2024.50

[19] Artur Czumaj, Shaofeng H.-C. Jiang, Robert Krauthgamer, Pavel Veselý, andMing-

wei Yang. 2022. Streaming Facility Location in High Dimension via Geometric

Hashing. In FOCS. IEEE, 450–461. doi:10.1109/FOCS54457.2022.00050
[20] Artur Czumaj, Christiane Lammersen, Morteza Monemizadeh, and Christian

Sohler. 2013. (1 + 𝜀)-approximation for facility location in data streams. In SODA.
SIAM, 1710–1728. doi:10.1137/1.9781611973105.123

[21] Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. 2019.

Local Search Yields a PTAS for 𝑘-Means in Doubling Metrics. SIAM J. Comput.
48, 2 (2019), 452–480. doi:10.1137/17M1127181

[22] Ashish Goel, Piotr Indyk, and Kasturi R. Varadarajan. 2001. Reductions among

high dimensional proximity problems. In SODA. ACM/SIAM, 769–778. http:

//dl.acm.org/citation.cfm?id=365411.365776

[23] Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. 2014. Efficient

Classification for Metric Data. IEEE Trans. Inf. Theory 60, 9 (2014), 5750–5759.

doi:10.1109/TIT.2014.2339840

[24] Lee-Ad Gottlieb and Robert Krauthgamer. 2015. A Nonlinear Approach to Dimen-

sion Reduction. Discret. Comput. Geom. 54, 2 (2015), 291–315. doi:10.1007/s00454-
015-9707-9

[25] Anupam Gupta, Robert Krauthgamer, and James R. Lee. 2003. Bounded Geome-

tries, Fractals, and Low-Distortion Embeddings. In FOCS. IEEE Computer Society,

534–543. doi:10.1109/SFCS.2003.1238226

[26] Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Di Yue.

2024. Near-Optimal Dimension Reduction for Facility Location. CoRR (2024).

arXiv:2411.05432

[27] Piotr Indyk. 2006. Stable distributions, pseudorandom generators, embeddings,

and data stream computation. J. ACM 53, 3 (2006), 307–323. doi:10.1145/1147954.

1147955

[28] Piotr Indyk and Assaf Naor. 2007. Nearest-neighbor-preserving embeddings.

ACM Trans. Algorithms 3, 3 (2007), 31. doi:10.1145/1273340.1273347

[29] Shaofeng H.-C. Jiang, Robert Krauthgamer, and Shay Sapir. 2024. Moderate

Dimension Reduction for 𝑘-Center Clustering. In SoCG (LIPIcs, Vol. 293). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 64:1–64:16. doi:10.4230/LIPIcs.SoCG.

2024.64

[30] William Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz maps

into a Hilbert space. Contemp. Math. 26 (01 1984), 189–206. doi:10.1090/conm/

026/737400

[31] Michael Kerber and Sharath Raghvendra. 2015. Approximation and Streaming

Algorithms for Projective Clustering via Random Projections. In CCCG. Queen’s
University, Ontario, Canada. http://research.cs.queensu.ca/cccg2015/CCCG15-

papers/16.pdf

[32] Stavros G. Kolliopoulos and Satish Rao. 2007. A Nearly Linear-Time Approxima-

tion Scheme for the Euclidean 𝑘-Median Problem. SIAM J. Comput. 37, 3 (2007),
757–782. doi:10.1137/S0097539702404055

[33] Amit Kumar, Yogish Sabharwal, and Sandeep Sen. 2010. Linear-time approxima-

tion schemes for clustering problems in any dimensions. J. ACM 57, 2 (2010).

doi:10.1145/1667053.1667054

[34] Christiane Lammersen, Anastasios Sidiropoulos, and Christian Sohler. 2009.

Streaming Embeddings with Slack. In WADS (Lecture Notes in Computer Sci-
ence, Vol. 5664). Springer, 483–494. doi:10.1007/978-3-642-03367-4_42

[35] Urs Lang and Conrad Plaut. 2001. Bilipschitz embeddings of metric spaces

into space forms. Geometriae Dedicata 87, 1-3 (2001), 285–307. doi:10.1023/A:

1012093209450

[36] Kasper Green Larsen and Jelani Nelson. 2017. Optimality of the Johnson-

Lindenstrauss Lemma. In FOCS. IEEE Computer Society, 633–638. doi:10.1109/

FOCS.2017.64

[37] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. 2019. Per-

formance of Johnson-Lindenstrauss transform for 𝑘-means and 𝑘-medians clus-

tering. In STOC. ACM, 1027–1038. doi:10.1145/3313276.3316350 arXiv:1811.03195

[38] Ramgopal R. Mettu and C. Greg Plaxton. 2003. The Online Median Problem.

SIAM J. Comput. 32, 3 (2003), 816–832. doi:10.1137/S0097539701383443
[39] Assaf Naor. 2018. Metric dimension reduction: A snapshot of the Ribe program. In

Proceedings of the International Congress of Mathematicians (ICM 2018). 759–837.
doi:10.1142/9789813272880_0029

[40] Assaf Naor and Ofer Neiman. 2012. Assouad’s theorem with dimension in-

dependent of the snowflaking. Rev. Mat. Iberoam. 28, 4 (2012), 1123–1142.

doi:10.4171/RMI/706

[41] Shyam Narayanan, Sandeep Silwal, Piotr Indyk, and Or Zamir. 2021. Randomized

Dimensionality Reduction for Facility Location and Single-Linkage Clustering.

In ICML (Proceedings of Machine Learning Research, Vol. 139). PMLR, 7948–7957.

https://proceedings.mlr.press/v139/narayanan21b.html

[42] Ofer Neiman. 2016. Low Dimensional Embeddings of Doubling Metrics. Theory
Comput. Syst. 58, 1 (2016), 133–152. doi:10.1007/S00224-014-9567-3

[43] Kunal Talwar. 2004. Bypassing the embedding: algorithms for low dimensional

metrics. In STOC. ACM, 281–290. doi:10.1145/1007352.1007399

[44] Luca Trevisan. 2000. When Hamming Meets Euclid: The Approximability of

Geometric TSP and Steiner Tree. SIAM J. Comput. 30, 2 (2000), 475–485. doi:10.
1137/S0097539799352735

[45] Ryan Williams. 2018. On the Difference Between Closest, Furthest, and Orthog-

onal Pairs: Nearly-Linear vs Barely-Subquadratic Complexity. In SODA. SIAM,

1207–1215. doi:10.1137/1.9781611975031.78

Received 2024-11-02; accepted 2025-02-01

676

https://doi.org/10.1145/3564246.3585168
https://doi.org/10.1145/3564246.3585170
https://doi.org/10.1007/PL00009449
https://doi.org/10.1145/2746539.2746569
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1145/3477541
https://arxiv.org/abs/2204.02095
https://doi.org/10.4230/LIPIcs.ICALP.2024.50
https://doi.org/10.1109/FOCS54457.2022.00050
https://doi.org/10.1137/1.9781611973105.123
https://doi.org/10.1137/17M1127181
http://dl.acm.org/citation.cfm?id=365411.365776
http://dl.acm.org/citation.cfm?id=365411.365776
https://doi.org/10.1109/TIT.2014.2339840
https://doi.org/10.1007/s00454-015-9707-9
https://doi.org/10.1007/s00454-015-9707-9
https://doi.org/10.1109/SFCS.2003.1238226
https://arxiv.org/abs/2411.05432
https://doi.org/10.1145/1147954.1147955
https://doi.org/10.1145/1147954.1147955
https://doi.org/10.1145/1273340.1273347
https://doi.org/10.4230/LIPIcs.SoCG.2024.64
https://doi.org/10.4230/LIPIcs.SoCG.2024.64
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1090/conm/026/737400
http://research.cs.queensu.ca/cccg2015/CCCG15-papers/16.pdf
http://research.cs.queensu.ca/cccg2015/CCCG15-papers/16.pdf
https://doi.org/10.1137/S0097539702404055
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1007/978-3-642-03367-4_42
https://doi.org/10.1023/A:1012093209450
https://doi.org/10.1023/A:1012093209450
https://doi.org/10.1109/FOCS.2017.64
https://doi.org/10.1109/FOCS.2017.64
https://doi.org/10.1145/3313276.3316350
https://arxiv.org/abs/1811.03195
https://doi.org/10.1137/S0097539701383443
https://doi.org/10.1142/9789813272880_0029
https://doi.org/10.4171/RMI/706
https://proceedings.mlr.press/v139/narayanan21b.html
https://doi.org/10.1007/S00224-014-9567-3
https://doi.org/10.1145/1007352.1007399
https://doi.org/10.1137/S0097539799352735
https://doi.org/10.1137/S0097539799352735
https://doi.org/10.1137/1.9781611975031.78

	Abstract
	1 Introduction
	1.1 Results
	1.2 Technical Contributions and Highlights
	1.3 Proof Overview
	1.4 Related Work

	2 Preliminaries
	3 A New Decomposition for UFL
	3.1 The Construction of

	4 Proof of Theorem 1.1: Dimension Reduction for UFL
	References

