
Online Server Allocation in a Server Farm
via Benefit Task Systems

[Extended Abstract]

T.S. Jayram∗ Tracy Kimbrel† Robert Krauthgamer‡

Baruch Schieber† Maxim Sviridenko†

ABSTRACT
A web content hosting service provider needs to dynami-
cally allocate servers in a server farm to its customers’ web
sites. Ideally, the allocation to a site should always suffice
to handle its load. However, due to a limited number of
servers and the overhead incurred in changing the alloca-
tion of a server from one site to another, the system may
become overloaded. The problem faced by the web hosting
service provider is how to allocate the available servers in
the most profitable way. Adding to the complexity of this
problem is the fact that future loads of the sites are either
unknown or known only for the very near future.

In this paper we model this server allocation problem, and
consider both its offline and online versions. We give a poly-
nomial time algorithm for computing the optimal offline al-
location. In the online setting, we show almost optimal al-
gorithms (both deterministic and randomized) for any pos-
itive lookahead. The quality of the solution improves as the
lookahead increases. We also consider several special cases
of practical interest. Finally, we present some experimental
results using actual trace data that show that one of our
online algorithm performs very close to optimal.

Interestingly, the online server allocation problem can be
cast as a more general benefit task system that we define.
Our results extend to this task system, which captures also
the benefit maximization variants of the k-server problem
and the metrical task system problem. It follows that the
benefit maximization variants of these problems are more
tractable than their cost minimization variants.

∗IBM Almaden Research Center, 650 Harry Road, San Jose,
CA 95120. E-mail: jayram@almaden.ibm.com
†IBM T.J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598.
E-mail: {kimbrel,sbar,sviri}@watson.ibm.com
‡Department of Computer Science and Applied Mathemat-
ics, Weizmann Institute of Science, Rehovot 76100, Israel.
E-mail: robi@wisdom.weizmann.ac.il. Part of this work
was done while this author was visiting IBM T.J. Watson
Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’01,July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007 ...$5.00.

1. INTRODUCTION
Web content hosting is an important emerging market.

Data centers and web server “farms” are proliferating (see,
e.g., [19, 20]). The rationale for using such centers is that
service providers can benefit from economies of scale and
sharing of resources among multiple customers. This bene-
fit translates, in turn, to lower cost of maintenance for the
customers who purchase these hosting services. Web con-
tent hosting services are structured in many ways. One of
the most prevailing ways is outsourcing: the customers de-
liver their web site content to the web content hosting service
provider, and the service provider is responsible for serving
this content in response to HTTP requests. Most of the ser-
vice providers use “farms” of commodity servers to achieve
this goal.

One of the components in the payment for such a ser-
vice is “pay per served request”. Thus, one of the main
objectives of the service provider is to maximize the revenue
from served requests while keeping a tab on the amount of
resources used. Ideally, the allocation to a web site should
always suffice to serve its requests. However, due to a lim-
ited number of servers and the overhead incurred in chang-
ing the allocation of a server from one site to another, the
system may become overloaded, and requests may be left
unserved. We make the realistic assumption that requests
are not queued, and a request is lost if it is not served at
the time it is received. The problem faced by the web host-
ing service provider is how to utilize the available servers in
the most profitable way. Adding to the complexity of this
problem is the fact that future loads of the sites are either
unknown or known only for the very near future. In this
paper we model this problem, and consider both its offline
and online versions.

In our model time is divided into intervals of fixed length.
We assume that each site’s demand is uniformly spread
throughout each such interval. Server allocations remain
fixed for the duration of an interval. We assume that servers
are reallocated only at the beginning of an interval, and that
a reallocated server is unavailable for the length of the inter-
val during which it is reallocated. This represents the time
to “scrub” the old site (customer data) to which the server
was allocated, to reboot the server and to load the new site
to which the server has been allocated. The length of the
time interval is set to be equal to the nonnegligible amount
of time required for a server to prepare to serve a new cus-
tomer. In current technology, this time is in the order of 5
to 10 minutes. In the sequel, we normalize time so that the
length of a time interval is one unit.

Algorithm Lookahead Lower Bound Upper Bound
Deterministic L = 1 4− ε 4

general L 1 + 1
L

+ 1
L2+1

min
{

1 + 4
L−7

,
(
1 + 1

L

)
L
√
L+1

}
Randomized general L 1 + 1

L
− ε 1 + 1

L

Table 1: Results

Each server has a rate of requests it can serve in a time
interval. For simplicity, we assume that all rates are identi-
cal. Due to practical concerns (security constraints placed
by customers), we do not allow sharing of servers at the same
time. Customers share servers only in the sense of using the
same servers at different times, but do not use the same
servers at the same time. Thus, even in case of overload,
some of the servers may be underutilized if they are allo-
cated to sites with rates of requests lower than the servers’
rate. In the sequel, we normalize rates so that the servers’
rate is 1, and allow the demand of sites to be fractional.

We assume that each customer’s demand is associated
with a benefit gained by the service provider in case a unit
demand is satisfied. Given the number of available servers,
the objective of the service provider is to find a time-varying
server allocation that maximizes the benefit gained by satis-
fying sites’ demand. We call this server allocation problem
the web server farm problem. In the offline version of this
problem, future demands of the sites are known. In the
fully online version, only the demand of the current interval
is known at the beginning of the interval. It makes sense to
assume that some amount of future demand is known to the
service provider, and we model it by lookahead. Lookahead
L means that the demand of the sites is known for the next
L time intervals (following the current interval). In reality,
lookahead will require that some forecasting mechanism be
used to predict future demands. Fortunately, web traffic ex-
hibits properties of predictability over the short term which
render this practical as demonstrated in [13, 18]. We mea-
sure the performance of an online allocation algorithm using
its competitive ratio; that is, the maximum over all instances
of the ratio of the benefit gained by the optimal offline allo-
cation to the benefit gained by the online allocation on the
same instance. Since we are dealing with a maximization
problem, this ratio is always greater than 1, and the goal is
to make it as small as possible.

Interestingly, our model can be cast as a more general
benefit task system. In this task system we are given a set
of states for each time t and a benefit function. The system
can be in a single state at each time, and the benefit gained
between times t and t+1 is a function of the system states at
times t and t+1. The goal is to find a time-varying sequence
of states that maximizes the total benefit gained; that is,
at each time t we need to determine to which state should
the system move (and this will be the state of the system at
time t+1), and we gain the benefit that is determined by the
benefit function. Similar to the web server farm problem, in
the offline version, the benefit function is known in advance.
In the fully online version, only the possible benefits of the
current step are known at the time a move is determined,
and in case of lookahead L, the benefits of the next L steps
(in addition to the current) are known. Note that number
of states in a benefit task system might be super-polynomial
if the states are not given explicitly.

It can be shown that benefit task systems capture also
benefit maximization variants of well studied problems, such
as the k-server problem [16, 9] and metrical task systems [10,
9] (see Section 2). Thus, our results hold for these variants
as well, and show that the benefit variants of these problems
may be more tractable than their cost minimization variants.

Our results
We observe that the offline version of the web server farm
problem can be solved in polynomial time. In the online
setting, we first note that the competitive ratio in the fully
online version is unbounded; we then consider the case of
a positive lookahead for both deterministic algorithms and
randomized ones. We obtain tight bounds on the competi-
tive ratio for the randomized case and almost tight bounds
for the deterministic case. In the deterministic case we also
consider the special case L = 1. The specific results are
summarized in Table 1. Our bounds on the competitive
ratio extend to the benefit task system problem, assuming
that an optimal sequence of moves for the period of the
lookahead (i.e. for the next L + 1 time steps) is efficiently
computable. Therefore, our upper bounds (i.e. algorithms)
are presented in the more general framework of the benefit
task system problem, and the lower bounds are given for the
more restricted web server farm problem.

In addition, we consider two special cases of the web server
farm problem with lookahead 1. One is the basic case of one
server and two sites. For the competitive ratio in this case we
obtain a lower bound of 3

√
3/2 ≈ 2.598 and an upper bound

of 1 + φ ≈ 2.618, where φ = 1+
√

5
2

is the golden ratio. The
second case is that of k servers and arbitrary number of sites,
for which we give an algorithm that achieves a competitive
ratio 2 if k is even and 2 + 2/(2k − 1) if k is odd.

Several of our algorithms use the natural approach of “dis-
counting the future”. Specifically, when the algorithm faces
the choice between a guaranteed benefit immediately and
a potential benefit in the future, the decision is made by
comparing the guaranteed benefit value with a discounted
value of the potential future benefit. This discount factor is
exponential in the number of time units that it would take
the potential benefit to be materialized. The reason for dis-
counting future benefits is straightforward. By the time a
benefit will be materialized, things might change and the al-
gorithm might decide to make another choice for a potential
(even larger) benefit.

Another approach used by our algorithms in the case of
lookahead is an “intermittent reset”. Some number of future
steps are determined and then a single time step is “wasted”
to reallocate the servers in preparation for another sequence
of future steps. The time step for reallocation is chosen so
that the amount of benefit unrealized due to the reallocation
is guaranteed to be small with respect to the benefit that is
gained.

We use actual web traffic data of commercial sites and
randomly generated data to evaluate our algorithms. Our
experiments show that the discount algorithm performs bet-
ter, with less lookahead, than the intermittent reset algo-
rithm, and is within 0.2% of optimal on all the commercial
trace instances, even with lookahead one.

Related work
Our web server farm problem can be viewed as a scheduling
problem. The requests are represented by unit length jobs,
and the k servers are machines. Each job has a deadline
which is exactly one time unit after its release, and a value.
The goal is to maximize the throughput; that is, to maximize
the value of the scheduled jobs. An additional factor is setup:
it takes one time unit to set up a machine to handle a job
for one web site if it handled a job in the previous time unit
for a different site.

Several papers have considered the problem of throughput
maximization in scheduling jobs on parallel machines with
release times and deadlines, both in the offline and online
settings [5, 3, 7, 8, 14]. In the standard notation, this type of
problem is denoted by P |ri|

∑
wi(1−Ui). The type of setup

considered here is related to “batch setup” scheduling, for
which several offline problems have been studied (see [17] for
a survey). The online problems considered here also relate
to previous work on online call admission and bandwidth
allocation [12, 15, 4, 6]. Again, the issue of setups does not
appear in any of these papers.

The benefit task system can also be viewed as a profit
maximization version of the request-answer game of [9]. To
the best of our knowledge this is the first attempt to con-
sider a task system for profit maximization rather than cost
minimization problems. Awerbuch et al. [2] considered a
similar problem in which a decision maker that has no way
to accurately predict future performance of several options
has to choose one option that will have the best future per-
formance. This problem has an unbounded deterministic
competitive ratio, and the authors propose a randomized
algorithm. Lookahead is not considered in [2].

Organization.In the next section we give more accurate
definitions of our models and show their relations to the
k-server model and metrical task systems. In Section 3 we
describe an offline algorithm for the server farm problem. In
Section 4 we devise two deterministic online algorithms for
the benefit task system, based on discounting the future and
on an intermittent reset, and we give upper bounds on their
competitive ratio. In Section 5 we prove lower bounds on the
competitive ratio of any deterministic online algorithm for
the more restricted web server farm problem. In Section 6
we consider some special cases of the online deterministic
web server farm problem. In Section 7 we give tight bounds
for the randomized case. We conclude in Section 8 with
some experimental results based on traces of commercial
retail sites.

2. THE PROBLEMS
The web server farm problem: Suppose that we are

given s web sites that are to be served by k web servers. (For
simplicity, we assume that all servers are identical.) Time
is divided into units (a.k.a. steps). It is assumed that the
demand of a web site is uniform in each time unit. Each

server has a “service rate” which is the number of requests
to a web site each server can serve in a time unit. Without
loss of generality, we normalize the demands by the service
rate so that a server can serve unit demand per time unit
and demands of a site may be fractional. A web server can
be allocated to no more than one site at each time unit and
it takes a time unit to change the allocation of a server.

A problem instance consists of the number of servers k,
the number of sites s, a nonnegative benefit matrix {bi,t}
denoting the benefit gained by serving a request of site i ∈
[1..s] for time step t ∈ [1..τ], and a nonnegative demand
matrix {di,t} denoting the number of requests at site i for
time step t. The goal is to find for each site i ∈ [1..s], a
time-varying allocation {ai,t} of servers, so as to maximize
the total benefit, as follows. The allocation must satisfy that
for each t,

∑s
i=1 ai,t ≤ k. Only a′i,t = min{ai,t−1, ai,t} of the

servers allocated to site i for time step t are “productive”,
i.e., actually serve requests. We get that the total benefit
of an allocation {ai,t} is

∑τ
t=1

∑s
i=1 bi,t · min{di,t, a′i,t} =∑τ

t=1

∑s
i=1 bi,t ·min{di,t, ai,t, ai,t−1}. The initial allocation

is fixed to be, say, ai,0 = 0 for all i.
In the offline version of this problem we are given the

complete demand matrix {di,t} and we need to compute
the complete allocation {ai,t}. In the fully online version
we need to compute the allocation {ai,t} at time t given
the demands so far, i.e., {di,t′} for all i and t′ ≤ t. It is
not difficult to show that any fully online algorithm may
perform arbitrarily badly with respect to the offline optimal
solution. This is true because of the one time unit lag in
a server’s availability. Thus we consider online algorithms
with lookahead. In the online version with lookahead L,
at each time t we are additionally given the demands and
benefits for times t+1, . . . , t+L, i.e., the entries di,t′ and bi,t′
for i ∈ [1..s] and t′ ∈ [t+1..t+L], and we need to compute
the allocation at time t, i.e., ai,t for i ∈ [1..s].

The benefit task system problem: The web server
farm problem is a special case of the generalized task sys-
tem benefit problem. In this problem we are given (i) a set
of possible states Ut, for each time t ∈ [0..τ], and (ii) a non-
negative benefit function B whose domain is

⋃
t(Ut×Ut+1),

that denotes, for each time t, the benefit that is accrued (at
time t+ 1) by the transition from a state in Ut to a state in
Ut+1. The goal is to choose a state st for each time t so as
to maximize the total benefit

∑τ−1
t=0 B(st, st+1). The initial

state is fixed by letting that U0 = {s0}.
In the offline version of the problem all the state sets and

the benefit function are known in advance. In the online
version with lookahead L, the state st ∈ Ut should be com-
puted based on knowing only Ut′ for t′ ≤ t + L, and the
restriction of the function B to pairs of these sets of states.

Observe that the web server farm problem can be cast in
this setting by identifying each possible allocation of servers
to sites at time t with a state Si,t, and defining the benefit
function B(Si,t, Sj,t+1) to be the benefit gained by (serving
some number of requests while) changing the allocation at
time t from the one represented by Si,t to the allocation at
time t+1 represented by Sj,t+1. (In a sense, the set of states
for all times are the same.) The number of states is exponen-
tial in the number of servers k, so the states and the benefit
function are implicit and follow from the more succinct rep-
resentation of the web server farm problem. For example,
the values B(Si,t, Sj,t+1) are not listed explicitly, and any
single value can be efficiently computed when necessary.

Benefit maximization variants of well known problems can
also be cast in this setting of a benefit task system. Consider
the benefit version of the k-server problem. This version of
the k-server is similar to the classical k-server problem [16]
with one difference. Instead of minimizing the cost of satis-
fying all requests, we define for each time t and any possible
pair of server configurations, one at time t − 1 and one at
time t, a net benefit gained by satisfying the request starting
from the configuration at time t− 1 and ending at the con-
figuration at time t. (Note that the configuration at time
t must include at least one server at the point of the re-
quest.) This benefit has to be nonnegative and is composed
of a fixed positive component that is reduced by the cost to
move from the configuration at time t − 1 to the configu-
ration at time t. The goal in this case is to maximize the
total benefit. It is not difficult to see that this problem can
also be modeled by the benefit task system defined above
and thus all our results apply to the benefit version of the
k-server problem.

Similarly, consider the benefit version of a metrical task
system. This version is similar to the classical metrical task
system [10], with the difference that each task is associated
with a vector of benefits, one for each state, such that the net
benefit after subtracting the transition cost is nonnegative.
This model as well can be cast as a benefit task system and
our results apply.

3. OFFLINE ALGORITHM FOR THE WEB
SERVER FARM PROBLEM

In this section we show that the offline web server farm
problem can be solved in polynomial-time. Note that an
algorithm that solves this offline problem is also a compo-
nent in the deterministic online algorithms of Section 4, as
these online algorithms rely on an ability to find an optimal
sequence of allocations in the limited future given by the
lookahead (i.e., the next L+ 1 time units).

We reduce the web server farm problem to the well-known
minimum-cost network flow problem, which can be solved in
polynomial time; see for example [1, 11]. We remark that
when sk is polynomial in the input size, the web server farm
problem can be solved in polynomial time also using dy-
namic programming. However, in general k might be expo-
nential in the input size.

Theorem 1. The offline web server farm problem can be
reduced in polynomial time to a minimum-cost network flow
problem. Hence, it can be solved in polynomial time.

Proof. Recall that the input for the minimum cost net-
work flow problem is a directed network, two special vertices
called the source vertex and the sink vertex, an amount of
flow to be injected into the source vertex, and a nonnegative
capacity and a cost for each edge. The goal is to find from
all the flows from s to t that respect the edge capacities and
are of size k, one that has a minimal cost, where the cost of
a flow is the sum, over all edges, of the product of the flow
on this edge and its cost.

In fact, we describe below a reduction from the web server
farm problem to the analogous maximum-cost network flow
problem. The latter problem is essentially the same as the
minimum-cost network flow problem (and thus can be solved
in polynomial time), since the edge costs are not restricted

in sign, i.e., are allowed to be negative. We remark that in
our network, all the paths from s to t are of equal length,
and therefore another way to guarantee that all costs are
nonnegative is to increase the costs of all the edges by the
same sufficiently large number.

The outline of the reduction is as follows. Given an in-
stance of the web server farm problem, we construct a (di-
rected) network with s “rails”, one per site. Each rail is a
chain of edges, each representing one time step. (Actually,
we will split these edges into three parallel edges, for reasons
which will become clear shortly.) Flow along a rail repre-
sents the allocation of servers to the corresponding site. In
addition, we construct a set of “free pool” nodes, one per
time step, through which flow will pass when servers are
reallocated from one site to another.

Let {di,t} with i ∈ [1..s] and t ∈ [1..τ] be the demand
matrix. We construct nodes ni,t for i ∈ [1..s] and t ∈ [1..τ],
along with nodes ft for t ∈ [1..τ]. For each site s and each
time step t, we construct three edges from ni,t−1 to ni,t.
The first has capacity bdi,tc and cost bi,t. The second has
capacity one and cost bi,t ·(di,t−bdi,tc). The last has infinite
capacity and cost 0. Flow along the first edge represents the
benefit of allocating servers to site i during time step t, up
to the integer part of di,t. Flow along the second represents
the remaining benefit, bi,t times the fractional part of di,t, to
be collected by one more server (that will be only partially
productive). Flow along the third represents the fact that
extra servers can remain allocated to i, but do not collect
any benefit. Clearly the first edge will saturate before flow is
present on the second, and similarly the second will saturate
before flow is present on the third.

We also construct edges of infinite capacity and cost 0
from ni,t−1 to ft and from ft to ni,t, for each t ∈ [1..τ] and
i ∈ [1..s]. These represent the movement of servers from one
site to another. (We use an intermediate node ft to keep the
number of edges linear.)

Finally, we construct a source into which we inject flow
k, with infinite capacity zero cost edges to each ni,1, and a
sink with infinite capacity zero cost edges from each ni,τ .

It is not hard to see that an integral flow of cost C in
this network corresponds to an allocation {ai,t} with bene-
fit equal to C, and vice versa. It is well known that since
all the edge capacities are integral, there is minimum-cost
(or maximum-cost) flow in the network that is integral, and
that, furthermore, such a flow can be efficiently found. This
implies an efficient algorithm that finds an optimal alloca-
tion {ai,t}. Note that the size of the network (number of
nodes and edges) is linear in the size of the demand ma-
trix {di,t}, and thus the offline web server farm problem can
be solved within roughly the the same time as the best al-
gorithm for minimum-cost network flow on a network with
O(s · τ) nodes and edges.

4. DETERMINISTIC ONLINE ALGORITHMS
FOR BENEFIT TASK SYSTEMS

In this section we describe two deterministic algorithms
for benefit task systems with lookahead L. The first al-
gorithm is a future discounting algorithm that achieves a
competitive ratio of (1 + 1/L) L

√
L+ 1. Asymptotically in

L this ratio is 1 + Θ(logL)/L. The second algorithm is an
intermittent reset algorithm that achieves a competitive ra-
tio of 1 + 4/(L− 7), which is better than the first algorithm

when L is sufficiently large. Each algorithm requires that
one can efficiently find a sequence of moves that is optimal
(in a certain sense) for the period of the lookahead (i.e. for
the next L + 1 time steps). In the particular case of the
web server farm problem, we can achieve this requirement
by using the offline algorithm of Section 3.

4.1 The future discounting algorithm
We present a deterministic algorithm that achieves com-

petitive ratio (1 + 1/L) L
√
L+ 1 for the benefit task system

problem. The algorithm is based on discounting future ben-
efits in an exponential way, as follows. Consider a sequence
of L+1 moves that collects the benefits b0, b1, . . . , bL (in this
order) in the next L+1 time steps. We define the anticipated
benefit of this sequence to be b0 + b1/α+ . . .+ bL/α

L (for a
parameter α > 1 that we later choose to be α = L

√
L+ 1).

The discounting algorithm greedily follows at each time
step the largest anticipated benefit possible at that time.
Namely, at every time step the algorithm finds a sequence
of L + 1 moves (for the next L + 1 time steps) whose an-
ticipated benefit is maximal, and performs the first move in
this sequence. We stress that a new sequence is calculated
at every time step, and that the sequence found in the cur-
rent time step does not have to agree with the one found in
the previous time step.

Note that this discounting algorithm requires efficient com-
putation of a sequence of L + 1 moves with the maximum
anticipated benefit. The following lemma provides this re-
quirement when the number of states at every time t is poly-
nomial in the input size, e.g. when the states of the benefit
task system are given explicitly. In the web server farm prob-
lem, the number of (implicit) states is super-polynomial, but
we can use the offline algorithm of Section 3, with straight-
forward modifications for handling the initial state and the
discount.

Lemma 2. Suppose that the number of states possible for
any one time is at most M . Then a sequence of L+1 moves
with the largest anticipated benefit can be computed in time
that is polynomial in M (and L).

Proof. Use dynamic programming that goes iteratively
over the time steps and accumulates discounted benefits. As
the additional benefit of the next time step depends only on
the current state, it suffices to have for each time step t a
table of size M , and compute the table for time step t + 1
from that of time step t.

Theorem 3. The competitive ratio of the above discount-
ing algorithm is at most (1 + 1/L) L

√
L+ 1.

Proof. Consider among the sequences of L + 1 moves
that are available for the online algorithm at time t, the se-
quence with the largest anticipated benefit, and let b0, b1, . . . , bL
be the benefits collected by this sequence. Define ONt = b0
and ON∗Lt+1 = b1/α + . . . + bL/α

L, and then ONt + ON∗Lt+1

is the largest anticipated benefit over all sequences of L+ 1
moves that are available to the online algorithm at time
t. The online algorithm performs the first move in this se-
quence, and thus the benefit it collects at time t is ONt.

Fixing an offline algorithm arbitrarily, let OFFt denote
the benefit that this offline algorithm collects at time t, and
let OFFLt be a shorthand for OFFt+1/α+. . .+OFFt+L/α

L.

One sequence of moves that the online algorithm considers
at time t is to first join the offline algorithm, (i.e., move
to the same state as the offline algorithm at time t), and
then follow the offline algorithm for the next L steps. The
anticipated benefit of this sequence is at least OFFLt . Since
the online algorithm follows at time t the sequence of moves
with the largest anticipated benefit, we get that

ONt +ON∗Lt+1 ≥ OFFLt+1 (1)

Another sequence of moves that is considered by the on-
line algorithm at time t is to follow the sequence that had
the largest anticipated benefit at the previous time step t−1
(without the first step of that sequence, which was per-
formed at time t − 1, and with an arbitrary move added
at the end of the sequence.) The contribution of these ben-
efits to the anticipated benefit at time t is larger by a factor
of α than their contribution at time t− 1, and so the antic-
ipated benefit of this sequence of moves is at least αON∗Lt .
Since the online algorithm follows at time t the sequence of
moves with the largest anticipated benefit, we get that

ONt +ON∗Lt+1 ≥ αON∗Lt (2)

Adding (1 − 1
α

) times inequality (1) and 1
α

times inequal-

ity (2), we get that1

ONt +ON∗Lt+1 ≥ ON∗Lt + (1− 1

α
)OFFLt+1 . (3)

Adding up inequality (3) over all time steps t we get that
(it is straightforward that we can assume, without loss of
generality, that all the benefits in the first and last L + 1
time steps are zero regardless of the state):∑

t

ONt ≥ (1− 1

α
)
∑
t

OFFLt+1

= (1− 1

α
)

(
1

α
+ . . .+

1

αL

)∑
t

OFFt .

The last equality follows since every benefit that the offline
collects occurs in

∑
tOFF

L
t+1 with each of the discounts

1/α, . . . , 1/αL. We conclude that the competitive ratio of
the algorithm is (choosing α = L

√
L+ 1):∑

tOFFt∑
tONt

≤ 1
1
α
− 1

αL+1

=
αL+1

αL − 1
= (1 + 1/L) L

√
L+ 1 .

4.2 The intermittent reset algorithm
We present a deterministic intermittent reset online algo-

rithm that has competitive ratio 1 +O(1/L) for the benefit
task system problem. This algorithm is motivated by the
randomized algorithm presented in Section 7 that sacrifices
one out of every L+1 steps in order to gain the optimal ben-
efit between sacrificed steps. Here, we sacrifice one out of
every Θ(L) steps, but the choice of steps to sacrifice is done
carefully in a deterministic fashion and the overall benefit
that we gain is close to the expected benefit of the random-
ized algorithm.

The algorithm works in iterations of length at least L/2
and at most L. Let si denote the start time of iteration i.
Each iteration i consists of four steps, as follows.

1In a sense, this is a potential function analysis. See for
example [9].

Step 1: Consider all times t = si + L/2 + 1 . . . , si + L. For
each such time t, let xt denote the maximum benefit
of any transition from a state at time t to a state at
time t+ 1. Let T be the time t that minimizes xt, i.e.,
xT = min{xt : si + L/2 + 1 ≤ t ≤ si + L}.

Step 2: Compute the optimal sequence of transitions that
starts at any state at time si + 1 and ends at any
state at time T . This can be done either by dynamic
programming similar to Lemma 2 or by applying the
offline algorithm of Section 3. (In the first iteration
the initial state is given and thus we may compute the
optimal sequence of transitions from the initial state to
any state at time T . The next step has to be modified
accordingly.)

Step 3: Move from the current state at time si to the state
at time si + 1 that is the starting state of the opti-
mal sequence computed above, and continue with the
optimal sequence of moves to the state at time T .

Step 4: Set the starting point si+1 = T for the next itera-
tion.

Theorem 4. The competitive ratio of the above intermit-
tent reset algorithm is at most 1 + 4

L−7
.

Proof. We assume that L is a multiple of 4, and oth-
erwise round it downwards to the nearest multiple of 4 (at
the expense of increasing the competitive ratio as explained
later). We will call the starting times of the iterations
“gaps.” Denote the gaps by s1, s2, We divide the tran-
sitions taken by the algorithm into two components, the
moves taken in the gaps and the steps taken in the rest of
the times. Consider the path taken by the online algorithm.
It may not collect any benefit in the gaps, but since it com-
putes the optimal paths between gaps (allowing arbitrary
initial and terminal states adjacent to the gaps), clearly the
benefit of the optimal offline between gaps is no larger than
the benefit of the online algorithm between gaps.

Now we bound the benefit of the optimal offline algorithm
in the gaps. Consider iteration i starting at si and comput-
ing T = si+1. Consider the portion of the online path from
si + L/2 + 1 to si+1. Denote the length of this portion by
a, i.e., a = si+1 − (si + L/2 + 1). Consider the portion
of the path computed in the next iteration from si+1 + 1
to si + L + 1. Denote the length of this portion by b, i.e.,
b = si +L+ 1− (si+1 + 1). By our choice of L, L/2 is even
and a + b = L/2 − 1. Thus one of a and b is even and the
other is odd. Assume a is odd and b is even; the proof is
similar in the opposite case. (We note that ideally, we would
like both a and b to be even, but choosing a+ b to be even
may lead to a worse case when both are odd.)

We claim that the benefit achieved by the online algorithm
in these portions of the path is at least xT · (a + b − 1)/2.
This is true since in every time step in the range there is a
transition of benefit xT and thus the online algorithm can
achieve benefit at least xT on every other transition, even
if it collects no benefit on the other half of the transitions.
Since a is odd, it can collect at least xT ·(a−1)/2 in the first
portion, and since b is even, it can collect at least xT · b/2
in the second.

Putting these together along with a+b = L/2−1 we have
that the online benefit is at least

xT · (
a− 1

2
+
b

2
) = xT ·

L− 4

4
.

Since si + L + 1 is always less than si+1 + L/2 + 1, these
portions are disjoint among iterations. Summing over all
iterations we have ON · (4

L−4
) ≥

∑
i xTi , where ON de-

notes the total benefit collected by the online algorithm
and xTi denotes the maximum benefit possible in the ith
gap. Accounting for the portions outside the gaps we have
ON ≥ OFF −

∑
i xTi , where OFF denotes the benefit of

the optimal offline algorithm. Putting these together and
allowing for values of L that are not multiples of 4 yields
the desired bound of 1 + 4

L−7
.

5. LOWER BOUNDS FOR DETERMINIS-
TIC ONLINE ALGORITHMS

In this section we prove three lower bounds on the com-
petitive ratio of deterministic online algorithms for the web
server farm problem with one server. The first lower bound
is for general lookahead, the second is for lookahead 1 (and
arbitrary number of sites), and the third is for lookahead 1
and two sites.

5.1 A lower bound for general lookahead
We show a lower bound of 1+ 1

L
+ 1
L2+1

on the competitive
ratio of a deterministic online algorithm for the web server
farm problem with one server. The same lower bound then
follows for the benefit task system problem. Formally, we
have the following theorem.

Theorem 5. The competitive ratio of any deterministic
online algorithm for the web server farm problem with one
server (and hence for the benefit task system problem) is
larger than 1 + 1

L
+ 1

L2+1
.

Proof. Consider a deterministic online algorithm whose
input is a 3×(L+3) demand table {di,t}. Since the algorithm
has lookahead L, it is given at time t = 0 only the first L+1
columns, as illustrated below. Since the first column is all
zeros, we may assume without loss of generality that the
server is initially allocated to the first site. We denote the
sequence of locations of the server by triangles, and use a
parameter a that will be determined later.

{di,t} =

 .0 1 a . . . a ? ?
0 1 a . . . a ? ?
0 1 a . . . a ? ?

Since at time t = 0 all three rows look the same, we may
assume without loss of generality that the algorithm decides
to allocate the server at this time to the first site, and it
collects a benefit of 0. Next, at time t = 1 another column
is revealed to the algorithm, and the situation is as follows.

{di,t} =

 .0 .1 a . . . a 0 ?
0 1 a . . . a a ?
0 1 a . . . a a ?

At time t = 1 the algorithm can either allocate the server
to the first site again or to another site. Consider first the
case that the algorithm allocates the server to the first site
again, so the algorithm collects a benefit of 1. In this case
the last column is revealed (at time t = 2) to be all zeros,
and the situation is the following.

{di,t} =

 .0 .1 .a . . . a 0 0
0 1 a . . . a a 0
0 1 a . . . a a 0

The total benefit that the online can collect in this case is at
most 1 + (L− 1)a, while the offline could have collected the
whole second row, i.e., 1 + La. Therefore, the competitive
ratio of the algorithm would be at least

r′ =
1 + La

1 + (L− 1)a
= 1 +

a

1 + (L− 1)a
.

Consider now the case that the algorithm allocates the
server at time t = 2 to a site other than the first one, so it
collects a benefit of 0. Without loss of generality we may
assume that the server is allocated to the second site. At
time t = 2, the last column is revealed to the algorithm, and
the situation is the following.

{di,t} =

 .0 .1 a . . . a 0 0
0 1 .a . . . a a 0
0 1 a . . . a a a

The total benefit that the online can collect in this case is
at most La, while the offline could have collected the whole
third row, i.e., 1+(L+1)a. Therefore, the competitive ratio
of the algorithm would be at least

r′′ =
1 + (L+ 1)a

La
= 1 +

a+ 1

La
.

We conclude that the competitive ratio of any determin-
istic algorithm is at least min{r′, r′′}. Choosing a = (L +√
L2 + 4)/2, we get that a2 = 1 + La and hence

r′ = r′′ = 1 +
a+ 1

La
= 1 +

1

L
+

1

aL
.

Since a < L+ 1/L, we get that min{r′, r′′} > 1 + 1
L

+ 1
L2+1

,
as claimed.

This lower bound (slightly) improves over the 1+ 1
L

straight-
forward lower bound. As the latter bound is the competitive
ratio threshold for randomized algorithms (see Section 7),
this proves that for any fixed lookahead L, the thresholds of
deterministic and randomized algorithms are different.

5.2 Lower bounds for lookahead one
We prove two lower bound results for deterministic algo-

rithms for the web server farm problem with one server and
lookahead 1. The first result shows that no algorithm can
achieve a competitive ratio better than 4 for this problem.
This matches our algorithm from Section 4.1 that achieves a
competitive ratio 4. The second result shows that in the case
where the number of sites is two, no algorithm can achieve
a competitive ratio better than 3

√
3/2 ≈ 2.598. This is al-

most tight with our algorithm from Section 6.1 that achieves
a competitive ratio roughly 2.618. The proofs of the follow-
ing two theorems are omitted due to space constraints.

Theorem 6. Consider the web server farm problem with
one server and lookahead 1. For every c < 4, there exists an
s > 0 such that the competitive ratio of any deterministic
online algorithm for the problem with s sites is at least c.

Theorem 7. Consider the web server farm problem with
two sites, one server and lookahead 1. For every c < 3

√
3/2,

the competitive ratio of any deterministic online algorithm
for the problem is at least c.

6. SPECIAL CASES
In this section we consider two special cases of the web

server farm problem. The first is the case of one server and
two sites with lookahead one. The second is multiple servers
with lookahead one.

6.1 One server, two sites, and lookahead one
We devise a deterministic online algorithm for the web

server farm problem with one server, two sites and lookahead
L = 1. The algorithm has competitive ratio r = 1+φ where

φ = 1+
√

5
2
≈ 1.618 is the golden ratio. This ratio is nearly

the best possible in this case, as we present (in Section 5) a

lower bound of 3
√

3
2
≈ 2.598 on the competitive ratio of any

deterministic algorithm for this problem. We remark that
the competitive ratio that we obtain in this case is much
better than in the case of arbitrary number of sites, where
the best possible competitive ratio is 4.

The algorithm is based on discounting future benefits. It
is similar to the algorithm presented in Section 4.1 (special-
ized to the case L = 1), except that the discount factor is
taken to be φ. The analysis for this case adds some compli-
cation to that of the general case, in order to take advantage
of the limited number of sites. For example, a discount fac-
tor of 2 optimizes the analysis of Section 4.1, and then the
competitive ratio is shown to be at most 4. The actual com-
petitive ratio in this case is 3, which can be shown by an
analysis similar to the one that we give here.

The following theorem states the improved competitive
ratio for this case.

Theorem 8. The discounting algorithm with discount fac-

tor φ = 1+
√

5
2

achieves competitive ratio r = 1 + φ ≈ 2.618
for the web server farm problem with one server and two
sites.

Proof. We first describe the algorithm in more detail.
We associate with each possible allocation its anticipated
benefit, which combines the immediate benefit of this allo-
cation and its future benefit. To compensate for the uncer-
tainty of a future benefit (the algorithm might later decide
not to collect these benefits), we discount it (with respect to
an immediate benefit) by a factor of φ. In other words, an
action that causes the algorithm to collect a benefit b and
to have the potential to collect a benefit b′ in the future has
anticipated benefit of φ · b+ b′.

Suppose that the situation of the online algorithm at some
time t is as illustrated below. Assume, without loss of gen-
erality, that the allocation of the server in the previous time
unit is to the first site, as denoted by the triangle. Since the
lookahead is L = 1, the algorithm knows only the demands
at the current time t and at the next time t+ 1.

{di,t} =

[
. . . .x x′ ? ? . . .
. . . y y′ ? ? . . .

]
The algorithm decides on the allocation of the server at time
t as follows. If φ · x+ x′ ≥ y′ then the previous allocation is
kept, i.e., the online algorithm allocates the server at time t
to the first site. Otherwise, the algorithm changes the allo-
cation and the server is allocated to the second site. Observe
that this decision achieves the largest anticipated benefit for
the algorithm. If it decides to stay with the allocation as
before, it collects a benefit of x and will have the option

to collect at the next time t + 1 an additional benefit x′,
yielding an anticipated benefit φ · x + x′. If the algorithm
decides to change the allocation to the other site, then it
collects no immediate benefit (at this point there is no way
for the online algorithm to collect the benefit y), and in the
next time t+ 1 it will have the option to collect a benefit y′,
yielding an anticipated benefit φ · 0 + y′ = y′.

We will prove by induction on T that2

r
∑
t≤T

ONt + qT+1 ·ON∗T+1 ≥
∑
t≤T

OFFt +OFF ∗T+1 (4)

where ONt is the actual benefit collected at time t by the
online algorithm; ON∗t is the potential benefit that the on-
line algorithm will collect at time t if it allocates the server
to the same site as at time t − 1; OFFt and OFF ∗t are de-
fined similarly for an arbitrary offline algorithm; and qt = φ
if at time t − 1 the online and the offline algorithms have
allocate the server to the same site (i.e., if they have the
same “starting position” for time t), and qt = 1 otherwise.
(Note that ONt is either ON∗t in case the potential benefit
is gained or 0.)

Proving (4) would complete the proof, since we can as-
sume, without loss of generality, that all the demands in the
first and last L+ 1 time steps are zero, and thus obtain for
the last time step T that r

∑
tONt ≥

∑
tOFFt, as required.

The base case of the induction follows from padding the
demand matrix with zeros from both sides. For the inductive
step, i.e., that the induction hypothesis (4) for time T follows
from that of time T − 1, it suffices to show that

r ·ONT + qT+1 ·ON∗T+1 − qT ·ON∗T (5)

≥ OFFT + OFF ∗T+1 − OFF ∗T

We prove Equation (5) by verifying it over all cases. Denote
the benefits at times T, T+1 by x, x′, y, y′ as above. Assume
without loss of generality that at time T − 1 the server is
allocated to the first site. The total number of cases is eight,
since there are two possible decisions for the online, and four
possible decisions for the offline.

Consider first the cases in which the allocation of the of-
fline at times T and T + 1 are the same. Then at time T
the offline collects the benefit OFF ∗T , and hence OFFT =
OFF ∗T . In addition ON∗T = x, so inequality (5) simplifies to

r ·ONT + qT+1 ·ON∗T+1 − qT · x ≥ OFF ∗T+1.

1. qT = φ, qT+1 = φ. Then both offline and online collect
x. We need to show that

r · x+ φ · x′ − φ · x ≥ x′

i.e., that x+ (φ− 1)x′ ≥ 0, which clearly holds.
√

2. qT = 1, qT+1 = 1. Then offline collects y and online
collects x. We need to show that

r · x+ x′ − x ≥ y′

i.e., that φ ·x+x′ ≥ y′, which holds since online keeps
the previous allocation.

√

3. qT = φ, qT+1 = 1. Then offline collects x and online
does not collect x. We need to show that

r · 0 + y′ − φ · x ≥ x′

which holds since online changes allocation.
√

2In a sense, this is a potential function analysis. See [9].

4. qT = 1, qT+1 = φ. Then offline collects y and online
does not collect x. We need to show that

r · 0 + φ · y′ − x ≥ y′

i.e., that y′ ≥ 1
φ−1
· x = φ · x, which holds since online

changes allocation.
√

Consider now the cases in which the allocation of the of-
fline at times T and T + 1 are different. Then the benefit of
the offline at time T is OFFT = 0. In addition ON∗T = x,
so inequality (5) simplifies to

r ·ONT + qT+1 ·ON∗T+1 − qT · x ≥ OFF ∗T+1 −OFF ∗T

5. qT = φ, qT+1 = φ. Then offline and online both do not
collect x. We need to show that

r · 0 + φ · y′ − φ · x ≥ y′ − x

i.e., that y′ ≥ x, which clearly holds since online changes
allocation.

√

6. qT = 1, qT+1 = 1. Then offline does not collect y and
online does not collect x. We need to show that

r · 0 + y′ − x ≥ x′ − y

and since online changes allocation we indeed get y′ ≥
φ · x+ x′ ≥ x+ x′ − y.

√

7. qT = φ, qT+1 = 1. Then offline does not collect x and
online collects x. We need to show that

r · x+ x′ − φ · x ≥ y′ − x

i.e., that 2x + x′ ≥ y′, which holds since online keeps
the previous allocation.

8. qT = 1, qT+1 = φ. Then offline does not collect y and
online collects x. We need to show that

r · x+ φ · x′ − x ≥ x′ − y

i.e., that φ · x+ (φ− 1)x′ + y ≥ 0, which clearly holds.

6.2 Multiple servers with lookahead one
We present an online algorithm for the web server farm

problem with multiple servers and lookahead one, as stated
in the following theorem. We omit the proof of the lower
bound for lack of space.

Theorem 9. There is a deterministic algorithm for the
web server farm problem that achieves competitive ratio 2
when the number of servers k is even, and competitive ratio
ck = 2 + 2/(2k − 1) when k ≥ 3 is odd. Furthermore, no
online algorithm achieves a lower competitive ratio.

Proof. We distinguish between even and odd numbers
of servers. For an even k, the algorithm splits the set of
servers into two sets of equal size. The first set of servers
is allocated so as to always collect the k/2 largest benefits
on the odd time steps. These servers spend the even time
steps in reallocation to those sites where they will be able
to collect in the following time step, which is odd, the k/2
largest benefits. On even time steps, these servers may col-
lect zero benefit in the worst case. The second set of servers

Workload Avail. Opt. Disc. L = 1 Disc. L = 4 Reset. L = 4 Reset. L = 8

ran-24 9494 7871 7750 (98.5%) 7803 (99.1%) 7484 (95.1%) 7753 (98.5%)
com1-15 4634 3904 3899 (99.9%) 3901 (99.9%) 3875 (99.3%) 3894 (99.8%)
com1-25 4634 4634 4634 (100 %) 4634 (100%) 4629 (99.9%) 4634 (100%)
com2-15 7265 4227 4217 (99.8%) 4218 (99.8%) 4163 (98.5%) 4183 (99.0%)
com2-25 7265 6013 6007 (99.9%) 6009 (99.9%) 5966 (99.2%) 5990 (99.6%)

Table 2: Experimental results

is scheduled in a symmetric way. It collects the k/2 largest
benefits on the even time steps and spends the odd time
steps on reallocation to the best sites for the following time
step which is even. We conclude that at each time t, the
total benefit that the k servers collect is at least as large as
the k/2 largest benefits at this time t, which is clearly at
least half the benefit that an optimal offline algorithm can
collect at this time t. Therefore, the competitive ratio of
this algorithm is at most 2.

For an odd k, the algorithm splits the servers into three
groups. Two groups are of size (k−1)/2 each, and the third
group contains one server. The first group of servers collects
the (k − 1)/2 largest benefits on the odd time steps. The
second group collects the (k − 1)/2 largest benefits on the
even time steps. Let Ft denote the (k+ 1)/2 largest benefit
in step t. The last server tries to collect Ft on each time
step, as follows. On the step t the server either collects Ft
or it moves to the site q such that dq,t+1 = Ft+1. The server
collects Ft if 2Ft > Ft+1; otherwise the server moves to site
q. If the server collects Ft on some step t, it sacrifices the
step t+ 1 on a move to the k+1

2
th best site q for step t+ 2,

i.e., dq,t+2 = Ft+2.
For the sake of analysis we split time into phases: the

first phase starts at time step 0 (by convention we assume
that benefits at this time step are equal to zero). A phase
ends at time step t + 1 if the server from the third group
collects Ft in step t. The next phase starts at step t+2, and
so on. Notice that the server from the third group always
starts the phase allocated to the k+1

2
th best site. Consider

the first phase. We claim that Ft ≥ 1/4
∑t+1
i=1 Fi. Indeed,

2Fi ≤ Fi+1 for i = 1, . . . , t− 1 and 2Ft > Ft+1. Therefore

t+1∑
i=1

Fi < Ft

t+1∑
i=1

1/2t−i ≤ 2Ft

∞∑
j=0

1/2j = 4Ft.

For p ≤ k, if S(τ, p) is a sum of the p largest benefits in step
τ , then

∑
τ S(τ, p) ≥ p/k

∑
τ OFFτ and

t+1∑
τ=1

ONτ ≥
t+1∑
τ=1

S

(
τ,
k − 1

2

)
+ Ft

≥ 3

4

t+1∑
τ=1

S

(
τ,
k − 1

2

)
+

1

4

t+1∑
τ=1

S

(
τ,
k + 1

2

)

≥
(

3(k − 1)

8k
+

(k + 1)

8k

) t+1∑
τ=1

OFFτ

=
2k − 1

4k
OFF = c−1

k OFF .

The same proof holds for any phase, and therefore we
have proved that our algorithm is ck-competitive for odd
k ≥ 3.

7. RANDOMIZED ONLINE ALGORITHMS
In this section we derive tight bounds on the competi-

tive ratio of randomized online algorithms with lookahead
L. These bounds are stated in the following theorem. We re-
mark that our randomized algorithm requires only O(logL)
random bits, independent of the input length.

Theorem 10. There is a randomized online algorithm
for the benefit task system problem with competitive ratio
1 + 1/L. Furthermore, no randomized algorithm achieves a
lower competitive ratio, even for the web server farm prob-
lem with one server.

Proof. The idea behind the algorithm is that with looka-
head L, we can compute an optimal path for L time steps.
However, we may have to make a poor move, in which we
collect little or no benefit, in order to reach the first state
on this path. After following this path, we can again choose
the best state to move to during the next time step, possi-
bly without collecting any benefit at all, but ensuring the
best starting point for the next L steps. We refer to this as
the “resetting” algorithm, since it operates in stages, after
each of which it resets to an optimal state for the upcoming
stage. The online algorithm will collect at least as much
benefit as the optimal offline algorithm on every step except
the resetting steps. Notice that there are L + 1 possible
“phases”: phase j means (potentially) giving up all benefit
during steps i · (L+1)+ j for each i, where 0 ≤ j ≤ L. Since
the sets of steps whose benefit is given up is these phases
are mutually disjoint, the total benefit lost in all phases is
at most the offline benefit. Randomizing over these choices,
the online algorithm loses in expectation only a 1/(L + 1)
fraction of the offline benefit, and the competitive ratio is at
most 1

1−1/(L+1)
= 1 + 1/L.

For any ε > 0, we show a lower bound of (L + 1)/(L +
ε) for the one-server problem. Our randomized adversary
generates a demand matrix {di,t} with d1/εe rows and L+2
columns (which can be repeated indefinitely), and a benefit
matrix of all ones. The first column of the demand matrix
contains all zeroes, the next L columns contain all ones,
and exactly one randomly chosen row in the last column
contains a one and the rest contain zeroes. The optimal
choice is for the server to move during the first step to the
row containing the one in column L + 2, and to stay in
that row for L+ 1 steps, collecting a total benefit of L+ 1.
Any randomized online strategy stands only an ε chance of
choosing this row, and with probability at least 1 − ε must
either miss the benefit in this column, or forgo benefit in
some earlier column in order to collect it. Thus the expected
benefit collected by the randomized online algorithm is at
most L+ ε.

8. EXPERIMENTAL RESULTS
We have implemented the offline optimal, discount, and

intermittent reset algorithms for the web server farm prob-
lem and measured their performance. We used a randomly
generated input, and inputs generated from commercial re-
tail web server logs. The online algorithms perform very well
on these inputs, both in cases of overloaded and underloaded
servers. In fact, the discount algorithm with lookahead one
and the intermittent reset algorithm with lookahead eight
match the optimal offline performance in the case of under-
loaded servers. (This is not surprising, since it can be shown
that if the optimal offline algorithm is able to collect all the
available benefit, then the greedy algorithm with lookahead
one achieves this optimal benefit.) The discount algorithm
performs better, with less lookahead, than the intermittent
reset algorithm, and is within 0.2% of optimal on all the
commercial trace instances, even with lookahead one. We
use the (untuned) value of 2 as the discount factor.

The random problem instance has 3 customers and 400
time steps. Demands are generated uniformly between 0
and 16, and revenues uniform between 0 and 2.

The commercial traces were collected from two different
retail sites, which will remain unnamed due to confidential-
ity constraints. One of these is separated into “browse” and
“buy” transactions. We treat these separately (i.e., so that
we have three different “customers”), and assign revenue
three times as great to the “buy” transactions since they
represent actual monetary transactions. Each trace repre-
sents the requests arriving at a web server over a 24-hour
period. We separate these into 288 five-minute buckets, i.e.,
our time unit is five minutes. We scale the inputs using re-
alistic server rates, which results in demands ranging in the
low tens of servers for two customers, and up to two servers
for the third (the one that handles the “buy” transactions).

Table 2 shows the algorithms’ performance. The column
labeled “Avail.” denotes the total available revenue for the
problem instance, i.e., the revenue that would be collected
with an infinite number of servers. The next column, labeled
“Opt”, shows the revenue collected by the optimal offline al-
gorithm. The next four columns show the revenue collected
by the discount algorithm and the intermittent reset algo-
rithm with differing amounts of lookahead (one and four for
the discount algorithm, and four and eight for the intermit-
tent reset algorithm). All values are rounded to the nearest
integer. The “Workload” column indicates the trace used
(random and the two commercial traces, com1 and com2)
and the number of servers.

Acknowledgements.
We thank Maria Minkoff for helpful discussions and insights.

9. REFERENCES
[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network

Flows: Theory, Algorithms, and Applications. Prentice
Hall, 1993.

[2] B. Awerbuch, Y. Azar, A. Fiat and F.T. Leighton,
“Making Commitments in the Face of Uncertainty: How to
Pick a Winner Almost Every Time”. Proc. 28th ACM
Symp. on Theory of Computing (STOC), pp. 519–530,
1996.

[3] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and

B. Schieber, “A unified approach to approximating
resource allocation and scheduling”. Proc. 32nd ACM
Symp. on Theory of Computing (STOC), pp. 735–744,
2000.

[4] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour and

B. Schieber, “Bandwidth allocation with preemption”.
SIAM Journal on Computing, 28 (1999), pp. 1806–1828.

[5] A. Bar-Noy, S. Guha, J. Naor and B. Schieber,
“Approximating the throughput of multiple machines
under real-time scheduling”. Proc. 31st ACM Symp. on
Theory of Computing (STOC), pp. 622–631, 1999.

[6] A. Bar-Noy, Y. Mansour and B. Schieber,
“Competitive dynamic bandwidth allocation”. Proc. 17th
ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing (PODC), pp. 31–39, 1998.

[7] S. Baruah, G. Koren, D. Mao, B. Mishra,

A. Raghunathan, L. Rosier, D. Shasha and F. Wang,
“On the competitiveness of online real-time task
scheduling”. Proc. 12th IEEE Symp. on Real Time
Systems, pp. 106–115, 1991.

[8] S. Baruah, G. Koren, B. Mishra, A. Raghunathan,

L. Rosier and D. Shasha, “Online scheduling in the
presence of overload”. Proc. 32nd IEEE Symp. on
Foundations of Computer Science (FOCS), pp. 101–110,
1991.

[9] A. Borodin and R. El-Yaniv, On-Line Computation and
Competitive Analysis. Cambridge University Press, 1998.

[10] A. Borodin, N. Linial and M.E. Saks, “An optimal
on-line algorithm for metrical task system”. J. ACM,
39(1992), pp. 745–763.

[11] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank,

and A. Schrijver, Combinatorial optimization. John
Wiley & Sons Inc., New York, 1998.

[12] J.A. Garay, I.S. Gopal, S. Kutten, Y. Mansour and

M. Yung, “Efficient online call control algorithms”. Proc.
2nd Israel Conf. on Theory of Computing and Systems,
pp. 285–293, 1993.

[13] A.K. Iyengar, Mark S. Squillante and L. Zhang,
“Analysis and Characterization of Large-Scale Web Server
Access Patterns and Performance”. World Wide Web,
2(1999), pp. 85–100.

[14] G. Koren and D. Shasha, “D-over: An optimal on-line
scheduling algorithm for overloaded real-time systems”.
SIAM Journal on Computing, 24 (1995), pp. 318–339.

[15] R.J. Lipton and A. Tomkins, “On-line interval
scheduling”. Proc. 5th ACM-SIAM Symp. on Discrete
Algorithms (SODA), pp. 302–311, 1994.

[16] M.S. Manasse, L.A. McGeoch and D.D. Sleator,
“Competitive algorithms for server problems”. J. of
Algorithms, 11 (1990), pp. 208–230.

[17] C.N. Potts and L.N.Van Wassenhove, “Integrating
scheduling with batching and lot sizing: A review of
algorithms and complexity”. J. of the Operational Research
Society, 43 (1992), pp. 395–406.

[18] M.S. Squillante, D.D. Yao and L. Zhang, “Web Traffic
Modeling and Web Server Performance Analysis”, Proc.
38th IEEE Conf. on Decision and Control, pp. 4432–4437,
1999.

[19] http://www.ibm.com/services/webhosting/-
full services.html

[20] http://www.exodus.com/managed services/-
content distribution/index.html

