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—— Abstract

The Johnson-Lindenstrauss transform is a fundamental method for dimension reduction in Euclidean

spaces, that can map any dataset of n points into dimension O(logn) with low distortion of their
distances. This dimension bound is tight in general, but one can bypass it for specific problems.
Indeed, tremendous progress has been made for clustering problems, especially in the continuous
setting where centers can be picked from the ambient space R%. Most notably, for k-median and
k-means, the dimension bound was improved to O(log k) [Makarychev, Makarychev and Razenshteyn,
STOC 2019].

We explore dimension reduction for clustering in the discrete setting, where centers can only
be picked from the dataset, and present two results that are both parameterized by the doubling
dimension of the dataset, denoted as ddim. The first result shows that dimension O.(ddim + log k +
log log n) suffices, and is moreover tight, to guarantee that the cost is preserved within factor 1+ ¢
for every set of centers. Our second result eliminates the loglogn term in the dimension through a
relaxation of the guarantee (namely, preserving the cost only for all approximately-optimal sets of
centers), which maintains its usefulness for downstream applications.

Overall, we achieve strong dimension reduction in the discrete setting, and find that it differs
from the continuous setting not only in the dimension bound, which depends on the doubling
dimension, but also in the guarantees beyond preserving the optimal value, such as which clusterings
are preserved.
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Dimension Reduction for Clustering: The Curious Case of Discrete Centers

1 Introduction

Oblivious dimension reduction, in the spirit of the Johnson and Lindenstrauss (JL)
Lemma [24], is a fundamental technique for many Euclidean optimization problems over
large, high-dimensional datasets. It has a strong guarantee: there is a random linear map
7 :R? — RY, for a suitable target dimension t = O(¢~2logn), such that for every n-point
dataset P C R?, with high probability, 7 preserves all pairwise distances in P within factor
l+e:

Ve,ye P, lw(z) —w(y)ll € 1t e)lz —yl|,

where throughout || - || is the Euclidean norm. This guarantee is extremely powerful,
particularly for algorithms: to solve a Euclidean problem on input P, one can apply the
map 7, solve the same problem on 7(P), which is often more efficient since 7(P) lies in low
dimension, and “lift” the solution back to the original dimension (as discussed further in
Section 1.2).

However, many problems require computational resources that grow exponentially with
the dimension (the curse of dimensionality), and hence even dimension ¢ = O(¢~2 logn) might
be too large. Unfortunately, this dimension bound is tight in general, i.e., for preserving all
pairwise distances [29], but interestingly one may bypass it for specific optimization problems,
by showing that the optimal value/solution is preserved even when the dimension is reduced
beyond the JL Lemma, say to dimension ¢t = O(¢~2), which is completely independent of n.
This raises an important question:

For which problems does dimension o(¢~2 logn) suffice for oblivious dimension
reduction?

Prior work has revealed an affirmative answer for several key problems, as we discuss
below. This paper studies this question for fundamental clustering problems, captured by
(k, z)-clustering, which includes the famous k-means and k-median problems as its special
cases. In (k, z)-clustering, the input is a dataset P C R?, and the goal is to find a set of
centers C of size |C| < k that minimizes

cost®(P,C) := Z dist*(p,C'), where dist*(p,C) := min|p — c|*.

py ceC
We can distinguish two variants, differing in their space of potential centers. In the continuous
variant, C' is a subset of R¢ (the centers lie in the ambient space), and in the discrete variant,
also called sometimes k-medoids, C' is a subset of P (or maybe of a larger set given as input).
A key feature of the discrete version, is that = : P — 7w (P) is invertible, hence each potential
center in 7(P) corresponds to a unique potential center in P (in contrast, a potential center
in the ambient space R has many preimages in R%). Thus, in the discrete version, a set of
centers computed for the dataset m(P) can be mapped back to the higher dimension and
serve as centers for the dataset P. See Section 1.3 for a discussion on practical applications
of the discrete variant.

The continuous variant is a success story of the “beyond JL” program. A series of
papers [3, 6, 2, 32] has culminated showing that target dimension ¢t = O(e~2log f), which
is independent of n, suffices to preserve all the solutions within factor 1 £+ . Curiously,
Charikar and Waingarten [4] observed that the discrete variant behaves very differently:
certain instances require t = Q(logn), even for kK = 1 (when using the standard Gaussian-
based map 7). Counterintuitively, restricting the centers to be data points makes dimension
reduction significantly harder!
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To bypass this limitation, we consider the doubling dimension, which was identified
in previous work as a natural parameter that is very effective in achieving “beyond JL”
bounds [20, 33, 22, 18, 14]. Formally, the doubling dimension of P, denoted ddim(P), is
the smallest positive number such that every ball in the finite metric P can be covered by
24dim(P) ha]ls of half the radius. For several problems, including nearest neighbor [20], facility
location [33, 18], and maximum matching [14], target dimension ¢t = O(e~?log L - ddim(P))
suffices. Note that restricting the doubling dimension does not immediately imply a better
dimension reduction of the JL flavor, as there are datasets P C R? with ddim(P) =
O(1) where no linear map can approximately preserve all pairwise distances (see e.g., [20,
Remark 4.1]).

1.1 Main results

We present the first dimension reduction results for discrete (k, z)-clustering, along with
matching lower bounds. Our first result (Theorem 1.1) provides a strong approximation
guarantee, but requires a loglogn term in the target dimension, which we show is necessary.
Our main result (Theorem 1.2) avoids this loglogn term, through a relaxation of the
guarantee that maintains its algorithmic usefulness, e.g., it still implies that the optimal
value is preserved up to factor 1 + €.

In all our results, the random linear map = is given by a matrix G € R**¢ of iid Gaussians
N(0, %), which we refer to as a Gaussian JL map. This is nowadays a standard JL map [19, 13],
and our results may extend to other JL maps, similarly to prior work in this context. We
denote the optimal value of discrete (k, z)-clustering by

t*(P) = i t*(P,C
PP = o i o (PO

however for sake of exposition, we omit z and focus on z = 1 or z = 2, which are discrete
k-median and k-means. We use the notation O(f) to hide factors that are logarithmic in f,
although below it only hides a log % factor.

» Theorem 1.1 (Informal version of Theorem 3.1). For suitable t = O(¢~2(ddim(P) + logk +
loglogn)), with probability at least 2/3,

1. opt(G(P)) < (1 +¢)opt(P), and

2. for all C C P,|C| < k, we have cost(G(P),G(C)) > (1 — ¢) cost(P, C).

This theorem has immediate algorithmic applications. First, it implies that the optimal
value is preserved, i.e., opt(G(P)) € (1 £ ¢) opt(P). Second, for every C C P and § > 1,
if the set of centers G(C) is a S-approximate solution for the instance G(P), then C' is a
(1 + O(e))B-approximate solution for the instance P. Therefore, the theorem fit into the
general paradigm of using oblivious linear maps — apply the mapping, solve the problem in
low dimension, and lift the centers back to the higher dimension.

It is interesting to compare our result with the continuous variant of (k, z)-clustering. On
the one hand, to preserve the optimal value in the continuous variant, we know from [32]
that target dimension O(e=2?log £) suffices, independently of ddim(P). On the other hand,
Theorem 1.1 further provides a “for all centers” guarantee, which is not attainable in the
continuous version (by any linear map), by simply considering centers in the kernel of the
linear map (see Theorem 6.1). We examine and discuss these guarantees more carefully in
Section 1.2.
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Matching lower bounds. The results in Theorem 1.1 are nearly tight for Gaussian JL maps,
and likely for all oblivious linear maps. It is known that achieving opt(G(P)) € (1+¢) opt(P)
requires target dimension ¢t = Q(log k), even for a dataset P of doubling dimension O(1) [33],
and another known lower bound is that t = Q(ddim(P)), even for k = O(1) [4]. It is easy to
tighten these bounds with respect to the dependence on €. We complete the picture, and
show in Theorem 6.2 the multiplicative approximation of Theorem 1.1 requires dimension
t = Qe %loglogn), even for k = 1 and a dataset P of doubling dimension O(1).

To get some intuition about the discrete variant, we briefly recall the hard instance of [4],
taking z = 1 for simplicity. Consider k = 2, and let P be the first n standard basis vectors,
thus ddim(P) = logn. The pairwise distances all equal v/2, hence opt(P) = v/2 - (n — 2).
The standard basis vectors form a well-known hard instance for the JL. Lemma, hence, when
using target dimension ¢ = o(¢~?logn), with high probability, there exists j1 € [%] such that
|Gej, || < 1—10e. Similarly, let jo > & be such an index for the last § standard basis vectors.
Let Gej, , Gej, be the two centers for G(P), and assign the first % basis vectors to Ge;, and
the last § vectors to Geej,. Now a simple argument using the independence between the two
halves shows that opt(G(P)) < (1 —¢)v/2-n < (1 —¢/2) opt(P) with probability 2/3.

A relaxed guarantee. Our main result avoids the loglogn term in Theorem 1.1 by slightly
relaxing the guarantee, while keeping it useful for downstream applications.

» Theorem 1.2 (Informal version of Theorem 5.1). For suitable t = O(¢~2(ddim(P) +logk)),
with probability at least 2/3,

1. opt(G(P)) < (1 +¢)opt(P), and

2. for oll C C P,|C| <k, we have cost(G(P),G(C)) > min{(1 — &) cost(P, C'), 100 opt(P)}.

This theorem implies that the optimal value is preserved, i.e., opt(G(P)) € (1 +¢€) opt(P).
Let us further examine which solutions are preserved under this guarantee: For all C' C P
and 1 < 3 < 2% if the set of centers G(C) is a B-approximate solution for the instance

T+e>
G(P), then C is a (1 4+ O(e))B-approximate solution for the instance P. Recall that for
Theorem 1.1, we had a similar claim, but without the restriction g < %. The constant

100 here is arbitrary, and can be changed to any a > 2, at the cost of increasing the target
dimension by an additive O(¢~2loglog a) term.

1.2 Various notions for preserving solutions

We study several definitions for dimension reduction for k-clustering. All these definitions
require (perhaps implicitly) that opt(G(P)) < (1+¢) opt(P), i.e., that the optimal value has
bounded expansion. This direction is often easy because it suffices to analyze one optimal
solution for P. In the other direction, one may naively require that opt(G(P)) > (1—e¢) opt(P),
however this is rather weak, as it does not guarantee that solutions are preserved. Moreover,
even requiring that an optimal solution for G(P) is a near-optimal solution for P is quite
limited, because a near-optimal solution for G(P), say one found by a (1 + )-approximation
algorithm, may be lifted to a poor solution for P. In fact, such a phenomenon was observed
for minimum spanning tree (MST) when using target dimension ¢ = o(logn): an optimal
MST of G(P) is a (1 + €)-approximate MST of P, however a (1 + ¢)-approximate MST of
G(P) may have large cost for P [33]. Ideally, we want the cost of every solution to have
bounded contraction, as it allows to lift any solution for G(P) to a solution for P, and we
thus consider several different notions for the set of solutions, as follows. For simplicity, we
present these for z = 1 in the discrete setting, but they extend naturally to all z > 1 and to
the continuous setting.
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1. Partitions. A solution is a partition P = (Py,...,P;) of P. Its cost is defined as
k .
cost(P) := >, mincep, > cp, [P — cl|-
2. Centers. A solution is a set of centers C = (¢1,...,cx) C P. Its cost is defined as
cost(P,C) := ZPGP dist(p, C).
3. Centers and partitions. A solution is a partition P = (Py,..., P;) of P and a set of
centers C' = (c1,...,c) C P. Its cost is defined as cost(P,C) := Zle > pep, llp—cill-
These definitions are fairly natural, and were used in prior work on dimension reduction,
e.g., partition-based solutions were used in [32] for k-means and k-median, and center-based
solutions were used in [22] for k-center. It was observed in [4] that not all “for all” guarantees

are the same; in particular, “for all centers” and “for all partitions” are incomparable.
However,“for all centers and partitions” is clearly stronger than both.

Next, we define contraction for solutions, capturing the two notions in Theorems 1.1
and 1.2. The notion in Theorem 1.1 is simply of multiplicative contraction: A solution S has
(1 — €)-contraction if cost(G(S)) > (1 — ¢) cost(S). The notion in Theorem 1.2 is new, at
least in the context of dimension reduction, and goes as follows.

» Definition 1.3 (Relaxed Contraction). A solution S has a-relazed (1 — €)-contraction (for
a>1,e>0) if cost(G(S)) > min{aopt(P), (1 — ¢) cost(S5)}.

Using these definitions, we can restate Theorem 1.1 as having (1 — €)-contraction for all
centers, and restate Theorem 1.2 as achieving 100-relaxed (1 — €)-contraction for all centers.
In fact, we can strengthen Theorem 1.1 to assert (1 — ¢)-contraction for all centers and
partitions.

» Theorem 1.4 (Strengthened Theorem 1.1, informal). For suitable t = O(e~2(ddim(P) +
log k + loglogn)), with probability at least 2/3, for all partitions P = (Py,...,P;) of P and
sets of centers C = (¢1,...,cx) C P,

cost(G(P),G(C)) > (1 —€) cost(P, C).

This strengthening is not attainable for Theorem 1.2, as dimension Q(e~2loglogn) is needed
to get a “for all centers and partitions” guarantee, even for relaxed contraction (see The-
orem 6.3). However, we do not know if a “for all partitions” guarantee is possible without
the loglogn term. If it is possible, then a curious phenomenon will occur: we get a “for
all partitions” and a “for all centers” guarantees, but not a “for all centers and partitions”
guarantee. All our results are summarized in Table 1.

Candidate centers. We consider also a more general variant of k-clustering, where the
candidate centers are part of the input (given either explicitly or implicitly): Given a dataset
P and candidate-centers set @, the goal is to find C' C @ of size |C| < k that minimizes
> pep dist®(p, C). When Q = R? or Q = P, we obtain the continuous and discrete variants,
respectively.

We observe a slightly different phenomenon in terms of the attainable contraction: to get
(1 — ¢)-contraction, one needs target dimension ©(¢~2log|Q|), and the lower bound holds
even when both P and @ are doubling and £ = 1. We can still obtain claims analogous
to Theorems 1.2 and 1.4, albeit with relaxed contraction: a “for all partitions and centers”
using dimension ¢t = O(e~?(ddim(P U Q) + log k 4 loglogn)), and a “for all centers” for the
same target dimension but without the loglogn term. See Table 1 for references.

82:5
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Table 1 Summary of our results for dimension reduction for k-clustering. The notions of “for all”
centers and/or partitions, and of multiplicative/relaxed contraction are as explained in Section 1.2.
Some lower bounds apply even for preserving the optimal value; for clarity, it is noted in the table
they hold “even for value”. In the setting of candidate centers, the size of the candidate set is denoted
by s. Suppressing logé terms and the dependence on « for a-relaxed contraction.

Problem Target dimension V partitions | V centers | contraction Reference
Continuous | O(¢~%logk) yes no multiplicative [32]
Qe % logk) no no even for value (33]
>d—-1 no yes even for relaxed | Thm 6.1
Discrete O(e~2(ddim +log k + loglogn)) | yes yes multiplicative Thm 3.1
O(e72(ddim +1log k)) no yes relaxed Thm 5.1
? yes no any OPEN
Qe ?loglogn) yes yes even for relaxed | Thm 6.3
Q(e % loglogn) no yes multiplicative Thm 6.2
Qe % logk) no no even for value (33]
Q(e7%ddim) no no even for value [4]
Candidate O(e?log s) yes yes multiplicative Thm 4.1
centers O(£7%(ddim + log k + loglogn)) | yes yes relaxed Thm 4.2
O(e™2(ddim +log k)) no yes relaxed Thm 5.1
Qe %log s) no yes multiplicative Thm 6.4

1.3 Other related work

Besides the aforementioned results for “beyond JL” for clustering problems, there are also
several improved bounds for other classes of problems such as Max-Cut [28, 27, 5], numerical
linear algebra [31, 37, 7], and other applications [1, 15, 21].

The discrete k-median problem in Euclidean space was originally shown to be NP-hard
by Papadimitriou, even for the case of d = 2 [34]. In terms of hardness of approximation,
the current state of the art is that one cannot approximate the discrete k-means or k-median
problem beyond 1.07 and 1.17, respectively, assuming P # NP [11, 12]. As for upper bounds,
the best approximation factors known in polynomial time are 2 + ¢ for any fixed ¢ > 0 for
discrete Euclidean k-median [10] and 5.912 for discrete Euclidean k-means [8]. There are
also algorithms that achieve 1 4 ¢ approximation (again in the discrete case) in time that is
doubly exponential in the doubling dimension, see [9] for a thorough discussion.

The discrete variant that we study may also be preferred over the continuous version
in certain applications. First, it is thought to be less sensitive to outliers in practice than
the continuous version [35, 25]. Second, in applications where cluster centers are used as
data summarization, interpretability might require the centers to be part of the dataset. For
example, in applications based on machine-learning embeddings of objects such as text [38],
an arbitrary vector in the embedding space might not represent any actual object. A similar
issue arises for structured data such as sparse data or images, e.g., the “average image” is
visually random noise [30, 36] or the average of sparse vectors is not necessarily sparse. A
discrete center, however, represents an actual underlying object, and thus preserves the
underlying properties of the input points.

1.4 Technical overview

Since the dimension-error tradeoff behaves differently between the discrete and continuous
settings, it is not surprising that our results for the discrete setting require new techniques.
To simplify the discussion, we focus on the k-medoids (z = 1) case, and an alternative
guarantee that only preserves the optimal value, i.e.,

opt(G(P)) € (1 +¢)opt(P), (1)



S.-H.-C. Jiang, R. Krauthgamer, S. Sapir, S. Silwal, and D. Yue

with target dimension bound t = O(e¢~2(ddim(P) + log k)) which is the same as that in
Theorem 1.2. While this is a weaker guarantee than both Theorem 1.1 and Theorem 1.2, it
already introduces major technical challenges, and the techniques for this claim covers most
of our new ideas.

We begin our discussion with the case k = 1. We first argue that even for this case, a
natural framework based on extension theorems (which has been used in previous works on
dimension reduction for clustering) fails in our discrete case.

Failure of extension theorems in the discrete setting. To prove (1) (and possibly more
general claims), a natural framework based on extension theorems have been widely used
in dimension reduction for clustering. Specifically, given an arbitrary center v in the target
space (e.g., v is the optimal 1-median center of G(P)), one can define an “inverse image” u
in the original space such that cost(P,u) < (1 + €) cost(G(P),v), and this directly implies
opt(G(P)) > ﬁ opt(P). The key step of defining “inverse image” is precisely what an
extension theorem does. This framework is widely used in prior works such as [32, 22, 4], in
the spirit of the classic Kirszbraun extension theorem [26] or the robust one-point extension
theorem [32, Theorem 5.2]. However, such extension theorems are only known to work in
the continuous setting, which require to pick the inverse image u € R¢ from the entire R?
and cannot be restricted only to the data points u € P.!

Our techniques. We start with & = 1 case (a detailed discussion can be found in Sec-
tion 1.4.1). In this case, we first obtain a target dimension bound with an O(loglogn) factor,
by utilizing the existence of a small movement-based coreset. A coreset is a small accurate
proxy of the dataset, and the movement-based coreset additionally requires the existence
of a “local” mapping such that each data point can be mapped to a nearby coreset point.
The dimension reduction simply preserves the pairwise distance on the coreset, and (1) is
argued via the local mapping. A conceptually similar coreset-to-dimension-reduction idea
has been employed in [4] for continuous k-median, and one main difference is that we also
utilize the locality property (movement-based) of the coreset, see a more detailed comparison
in Section 1.4.1.

Then, to remove the O(loglogn) factor, we consider a weaker guarantee as in Theorem 1.2,
where we prove the (1 + ¢) relative error only for near-optimal solutions, and for the other
solutions we have a flat 100 opt(P) error. This relaxed guarantee is strong enough for (1)
(and many other applications), which may be of independent interest to further studies. Our
analysis is crucially built on this small vs large cost case, albeit we also need to consider the
middle ground of the mix of the two.

Finally, we discuss the generalization to & > 1 in Section 1.4.2, which introduces several
nontrivial technical complications from k = 1.

1.4.1 The k = 1 case

The easy side of (1) is the upper bound opt(G(P)) < (1 + ¢) opt(P), even for the general
k case. The reason is that it suffices to preserve the cost w.r.t. an optimal center set
C*, and since C* is a fixed solution, even a target dimension t = O(¢~2log(1/¢)) will be
sufficient. This is a standard argument also observed in prior works. The lower bound

1 We note that the Kirszbraun theorem may be adapted to work for the discrete case when the target
dimension ¢ = O(logn), but this dimension bound is too large to be useful.
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opt(G(P)) > (1 — €) opt(P) is the major challenge. To prove this inequality, we want to
preserve the clustering cost w.r.t. the optimal center set of G(P), denoted by C. Since C' is
a random set that depends on G, preserving its cost is almost the same as preserving the
cost of all center sets, which is exactly the guarantee 2 of Theorems 1.1 and 1.2.

To introduce our new techniques, we first establish a weaker target dimension bound of
O(e72(ddim + loglogn)), and this part contains main ideas for proving Theorem 1.1. We
then overview the key steps to eliminate the extra loglogn term, which also reflects how we
prove Theorem 1.2.

The O(loglogn) bound: from coreset to dimension reduction. To prove (1), we use
an approach inspired by the movement-based coreset construction in Euclidean spaces [17].
Roughly speaking, a movement-based coreset? is a subset S C P, such that there exists a
mapping o: P — S satisfying > p [[p—o(p)[| < O(e) opt(P). Our framework is summarized
as follows: we first construct a movement-based coreset S to compress the dataset P. Next,
we apply the standard JL lemma to preserve pairwise distances in the coreset S within
(1£¢), which requires O(¢~?log |S|) target dimensions. After this step, the optimal value of
S is already preserved, namely, opt(G(S)) € (1 £ &) opt(.S). Finally, it suffices to show that
the cost of snapping data points to their nearest neighbor in S (i.e., >° p [[p — S(p)| and
> pep IGp — GS(p)])) is negligible in both original and target spaces.

The construction of the coreset is essentially the same as that in [17], except that [17]
also assigns weight to the coreset points and here we only need the point set itself. We
review the construction. This construction is based on a sequence of nets, a standard tool
for discretizing metrics. Formally, a p-net of a point set P is a subset N C P, such that 1)
the interpoint distances in N are at least p, and 2) every point in P has a point in N within
distance p. (See the more detailed definition in Definition 2.3). Denote ¢* € P as an optimal
discrete 1-median center. We construct nets on a sequence of balls centered at ¢* with

Construct the level £ net Ny as an erp-net on the ball B(c*,r), and denote N := |J,26)" N,
to be the union of all logn levels of nets.

By the standard packing property of doubling metrics, each net has size |N;| <
O(e=0Wdim)) " thus |N| < O(e¢~9@dim) Jogn), which implies a target dimension t =
O(e7%(ddimloge™! + loglogn)). On the other hand, let G(¢) € G(P) be an optimal
discrete 1-median center of G(P). Then the total cost of snapping ¢ and all data points
to the nearest neighbor in N (i.e., > p(llp — N(®)[l + [lc = N(c)[|)) can be bounded by
O(e)(opt(P) + cost(P, c)) in the original space. Based on results in [20], we further show
that this snapping cost in the target space (i.e., >° p([[Gp — GN(p)|| + [[Ge — GN(c)])))
can increase by at most a constant factor.

Finally, we note that the above analysis can be applied to obtain the “for all centers”
guarantee in Theorem 1.1, or even the stronger “for all centers and partitions” guarantee in
Theorem 1.4.

Comparison to [4]. The locality property (movement-based) of the coreset is crucial to
our analysis. To see this, let us investigate the proof in [4], which also uses coresets for
dimension reduction but only works for the continuous setting. Specifically, it shows the
existence of a coreset S of P which with high probability satisfies: (i) S is a coreset of P;
(ii) the pairwise distances within S are preserved by G within (1 £ ¢)-factor; and (iii) G(5)

2 This definition is tailored to our need and may be slightly different to that in the literature.
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is a coreset of G(P). To see why this implies the desired bound opt(G(P)) > (1 — ) opt(P),
let v € R™ be an optimal center for continuous 1-median of G(P). By property (iii),
opt(G(P)) > (1 —e) cost(G(S),v). Property (ii) and the Kirszbraun Extension Theorem [26]
imply, as explained in [4], the existence of u € R? (intuitively, a pre-image of v) such
that cost(G(S),v) > (1 — ¢) cost(S, u). Finally, by property (i) we can bound cost(S,u) >
(1 —¢)cost(P,u) > (1 —¢)opt(P).

This elegant argument for the continuous 1-median breaks for discrete variant at the
step of finding u that is a pre-image of an optimal center v € G(P). This issue may seem
surprising, because u := G~!(v) € P is a natural candidate. However, it is not clear
whether cost(G(S),v) > (1 —¢) cost(S, u) holds, because property (ii) only preserves pairwise
distances within S, and it is possible that v ¢ G(S). Another option is to define u via the
Kirszbraun Extension Theorem, but then w is not guaranteed to be in P, i.e., might be an
infeasible solution, hence we can no longer argue that cost(P, u) > opt(P). Therefore, in the
discrete setting we need to utilize more structures of the coreset, and the locality properties
of movement-based coresets are key for resolving the issue.

Removing the loglog n term via relaxed guarantee Let us first recall the cause of the
loglogn term. We apply the JL. Lemma to N, which is a union of logn nets, each of size
g~0(ddim) " The Joglogn thus comes from a union bound over all logn levels. To bypass this
union bound, we use two technical ideas. First, we avoid touching cross-level pairs and only
apply the union bound for each N, separately. This requires us to always snap p and ¢ to
the same level of net when handling each p € P. Second, for a single level, we analyze its
maximum distance distortion which is a random variable, and bound the expectation. We
remark that some levels will be distorted significantly, but the average distortion is (14 O(¢)).

Similar ideas have been used by prior works (e.g., [14]).

Consider the following two extremes. First, suppose c is the closest point to c*, say,
Vp € P,|lc—c*|| < |p—c*|. For every p € P, we can snap p to its nearest neighbor in net N,.
Observe that ¢ can also be covered by N,. The cost of snapping p and ¢ can both be bounded
by O(¢g) - ||p — ¢*||, and we show that on average, the cost of snapping Gp and Ge is bounded
by O(e) - ||p — ¢*|| as well, which adds up to O(e) opt(P). The other extreme is that c is very
far from c*, i.e, ||c — ¢*|| > opt(P)/10. In this case, we can no longer snap ¢ to the same net
as p (like the previous case). We show that in this case, cost(G(P), Ge) > 100 opt(P).

If ¢ does not fall into any of the above two extremes, our analysis is a combination of
them. Indeed, we show the relazed “for all centers” guarantee,

Ve e P, cost(G(P),Ge) > min{(1 — €) cost(P, c), 100 opt(P)}. (2)

Note that this is exactly the same as the guarantee 2 of Theorem 1.2, and that the two terms
in the min correspond to the aforementioned two extremes, respectively. Specifically, we
first specify a level ¢ and its corresponding radius 7. If ||c — ¢*|| > 74, then we fall into the
second extreme and show that cost(G(P), Ge) > 100 opt(P). Otherwise, ||c — ¢*|| < ry, then
we handle each p € P differently, depending on the distance ||p — ¢*||. If ||p — ¢*|| > r¢, then
we use the same argument as the first extreme — snapping both p and ¢ to N,,, bounding the
snapping cost, and analyzing the additive contraction. If ||p — ¢*|| < ry, then we snap both
p and ¢ to Ny. Since / is a fixed level, a union bound over Ny is affordable and we obtain
cost(G(P),Gc) > (1 — €) cost(P, ¢) in this case.
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1.4.2 Generalizationto k > 1

Instead of directly generalizing (2), we first show a weaker guarantee: for target dimension
t = O0(e?ddimlog k),

vC C P,|C| =k, Z IGp — GC(p)|| > min{(1 — €) cost(P, C), 100 opt(P)}, (3)

peEP

where C(p) is the center in C closest to p. Note that (3) is weaker than what we desire in
Theorem 1.2, for the following two reasons. First, the target dimension is worse than the
O(¢72(ddim + log k)) in Theorem 1.2. Second, the left hand side of (3) can be much larger
than cost(G(P), G(C)), since the image of C(p) under G (i.e., GC(p)) is not necessarily the
nearest neighbor of Gp in G(C). Nonetheless, the proof of (3) already captures most of
our key ideas. In the end of this section, we briefly discuss how we obtain a sharper target
dimension bound as well as a stronger guarantee.

Suppose C* C P is an optimal solution, which induces a clustering C* = {S7,55,..., 5} }.
Our general proof framework is the same as the k = 1 case — considering the “distance”
between C' and C*, if C is “far from” C*, then we show cost(G(P),G(C)) > 100 opt(P);
otherwise we show cost(G(P),G(C)) > (1 — &) cost(P, C).

However, an immediate issue is how to define that C' and C* are far from or close
to each other. For each i € [k], we specify a “threshold level” of cluster S}, denoted by
l;. We say C is “far from” C* if there exists ¢ € [k], such that dist(c¢},C) > 10ry,. In
this case, the cost of connecting B(c},ry,) to C is already high. We further prove that
cost(G(P), G(C)) > 100 opt(P), by careful analysis of the randomness of G.

Now suppose C'is “close to” C*, i.e., Vi € [k], dist(c}, C) < 10ry,. Our key observation is
that for every p € S}, C(p) should also be close to ¢}, i.e.,

Vpe S, C(p) = cill < Omax{[lp — ¢, re. })- (4)

As a natural generalization of the k = 1 case, we lower bound ||Gp — GC(p)|| for p € S
differently, depending on the distances |C(p) — ¢f||. If ||C(p) — ;|| > re,, then we snap both
p and C(p) to the (enlarged) net N,. (We can do this since (4) holds.) Otherwise, we snap
both p and C(p) to the (enlarged) net Ny,. The snapping cost and the distance contraction
are bounded similarly to the k = 1 case. This simply introduces an extra log k factor in the
target dimension.

Decoupling ddim from log k. So far, we only obtain an O.(ddimlog k) bound, instead
of O.(ddim +logk). This is due to error accumulation: Recall we handle each (optimal)
cluster S} separately, each of which incurs an O(e) opt(P) additive error; hence, we have to
rescale £ by a 1/k factor to compensate the accumulated error of k clusters, resulting in an
O(e~2ddimlog k) target dimension (naively, that results in O(s~2k? ddim) target dimension,
but this is avoided by an easy adaptation).

To decouple these two factors, we need more delicate analysis for the error. For “far’
points p € SF with ||C(p) — ¢f|| > r¢,, the snapping and distortion error is O(e)||p — ;||
in expectation, which adds up to O(g) opt(P) and does not incur any error accumulation.

)

However, the error accumulation happens for “close” points p with ||C(p) — ¢f|| < 74,
p — Ny(p)||, is already

where the snapping cost within a single cluster S}, namely Epe S
O(e) opt(P), which accumulates to O(ke) opt(P).

To reduce the error accumulation, we further divide the close points (i.e., ||C(p) — ¢f|| <
re,) into two ranges, namely, the close range ||C(p) — || < r¢,/k and the middle range
IC(p) — c&|| € [re,/k,7e,], and handle these two ranges differently. The cost of points in the
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close range can be bounded by O(e/k) opt(P), which adds up to O(e) opt(P). For points in
the middle range, we handle them in a point-by-point manner, at the cost of poly(k)e_Q(EZt)
per point. Since there are at most k - O(log k) levels in the middle range, a union bound over
all net points at these levels will be affordable.

Handling nearest neighbor assignment in the target space. Recall that (4) conerns the
cost ||Gp— GC(p)||, which is the cost in the target space with respect to the nearest neighbor
assignment in the original space. However, what we really need is the nearest neighbor
assignment in the target space. To capture such misalignment in the original and target
spaces, we define a mapping f to be the assignment in the target space, i.e., f(p) is the
center in C realizing dist(Gp, G(C)), so that cost(G(P), G(C)) = 3_ p [|Gp — Gf(p)||, and
f(p) = C(p) does not hold in general. We attempt to modify the previous analysis to lower
bound each ||Gp — G f(p)| instead of ||Gp — GC(p)||.

To lower bound this distance, we attempt to replace every C(p) with f(p) in our previous
proof. The analysis becomes problematic, as our structural observation (4) no longer holds if
we change C'(p) to f(p), and this turns out to be the only place where our analysis does not
go through. To resolve this issue, let us focus on the bad scenario where f(p) is sufficiently
far from ¢, i.e., || f(p) — ¢f|| > max{||p — ¢f||,r¢, }. This implies f(p) is also far from p. We
further show that ||Gp — Gf(p)|| > |lp — ¢;| by careful analysis of G’s randomness. On the
other hand, we have |[p — C(p)|| < O(|lp — ¢||) by (4). Therefore, we can directly lower
bound ||Gp — Gf(p)|| by |lp — C(p)|| in this case.

2 Preliminaries

Consider a point set P C R?. For every 2 € R?, denote by P(z) the point in P closest
to z and dist(z, P) := ||z — P(x)|| (recall that throughout || - || is the Euclidean norm).
Denote diam(P) := max{dist(p, q): p,q € P} as the diameter of P. For x € R and r > 0,
denote by B(z,r) := {y € R%: |z —y|| < r} the ball centered at z with radius r. Recall
that for k € N and z > 1, the (k, z)-clustering cost of P w.r.t. center set C C R |C| < k
is costj (P, C) :=3_  pdist(p, C)*. The optimal discrete (k, z)-clustering cost of P w.r.t. a
candidate center set @ C R? is denoted by opti (P, Q) := mingccg,cj<k costy (P, C), and by
opt(P, Q) for short when k, z are clear from the context. Denote opt(P) := opt(P, P) and
opt-cont(P) := opt(P,R?) for simplicity.
We use the following generalized triangle inequalities.

» Lemma 2.1 (Generalized triangle inequalities [32]). Let (X, dist) be a metric space. Then
for every z > 1, e € (0,1) and p,q,r € X,

dist(p, ) = (1 — ze) dist(p, r)* — e~ dist(q,7)".

z—1
1
dist(p,¢)* < (1 + E)Z_l dist(p,r)* + <1_8> dist(g, 7).

2.1 Doubling dimension and nets

» Definition 2.2 (Doubling dimension [16]). The doubling dimension of a set P C R%, denoted
ddim(P), is the minimum m > 0, such that ¥r > 0, every ball in P with radius v can be
covered by at most 2™ balls of radius r/2.

Our proof uses p-nets for doubling sets, whose definition and key properties are described
here.

ITCS 2026
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» Definition 2.3 (p-net). Let P CR? and p > 0. A subset N C P is called a p-packing of P
if Vu,v € N, |lu—v| > p. The subset N is called a p-covering of P if Vo € P, there exists
u € N such that x € B(u, p). The subset N is called a p-net of P if N is both a p-packing
and p-covering of P.

» Lemma 2.4 (Packing property [16]). Let P C R% and N C P be a p-packing of P. Then
[N] < (diam(P)/p)@tddmE),
2.2 Dimension reduction

For simplicity, we only consider random linear maps defined by a matrix of iid Gaussians,
which are known to satisfy the JL Lemma [19, 13].

» Definition 2.5. A Gaussian JL map is a t X d matrix with i.i.d. entries drawn from
N(0,1).

't
Recall the following concentration bound [20, Eq. (7)] (see also [33, Eq. (5)]), from which
one can deduce the JL lemma.

» Lemma 2.6 ([20, Eq. (7)]). Let x € R% e > 0 and a Gaussian JL map G € R, We have
Pr(|Gz| ¢ (1£e)zl)) < exp(—?t/8).
The following two lemmas regard Gaussian JL maps when applied to doubling sets.

» Lemma 2.7 ([20, Lemma 4.2]). There exist universal constants Ay, Aa > 0 such that for
every subset P C B(0,1) of the Euclidean unit ball in R, t > A; - ddim(P) + 1, D > 10, and
a Gaussian JL map G € Rt™*?,

Pr(3z € P,||Gz| > D) < e~ A2tP%,

» Lemma 2.8 ([18, Lemma 3.21]). There exists universal constants Ay, As, L > 1, such that
for every P c R%\ B(0,1),e > 0,t > A; ddim(P), and a Gaussian JL map G € R**9,

Pr(3z € P,||Gz| < +) < e~ 2",

3  The first upper bound

We prove Theorem 1.1 (a.k.a Theorem 1.4) in this section, formally stated below.

» Theorem 3.1. Let e > 0, z > 1 and d,ddim, k € N and a Gaussian JL map G € R*?¢
with suitable t = O(z%¢~2(ddimlog(z/¢) + logk + loglogn)). For every set P C R with
ddim(P) < ddim, with probability at least 2/3,

1. opti(G(P)) < (1 +¢)opti(P), and

2. for all centers C = (¢1,...,cx) C P and all partitions P = (S1,...,Sk) of P,

cost; (G(P),G(C)) > (1 —¢) costi(P,C),

k
where costi,(P,C) =>", Zpesi llp — ¢il|?-

We use the following lemma to bound the clustering cost of a fixed set of centers and
partition of P. The proof can be found in the full version [23].
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» Lemma 3.2. Lete >0, 2 > 1 and d,k € N and a Gaussian JL map G € R**? with
suitable t = O(2%c=2loge™!). For every set P C R%, every set of centers (c1,...,cr) C RY
and every partition P = (S1,...,Sk) of P, with probability at least 9/10,

costi,(G(P),G(C)) < (1 + ¢) costi (P, C).

Proof of Theorem 3.1. Consider an optimal discrete k-median of P. Denote by C* =

{cf,...,c;} C Pand by S7,...,S; the centers and clusters (respectively) in that solution.

Applying Lemma 3.2 to the optimal center set C* and the partition P* = (S7,...,S}), we
have that with probability at least 9/10,

opt(G(P)) < cost(G(P*),G(C*)) < (1 +¢) cost(P*,C*) = (1 + ¢) opt(P),

concluding the first part of the theorem.

Denote by 7o the largest radius of any cluster S;. Pick a suitable m = O(logn) such
that 2™ = n'0. For i € [0,m] and j € [k], set r; = ro/2¢, and P;; = S; N B(cy,74), i-e., for
every cluster, we have a sequence of geometrically decreasing balls. Additionally, let N; be
an £3r;-net of U;P;;. By Lemma 2.4, |N;| < ke—O(ddim(P))

For each x,y € Ujg[o,m)Ni, by Lemma 2.6,

£0(ddim(P))

Pr(|Gi — Gyl > (1+ )| —yl) < exp(—=2/8) < =

Thus, by a union bound, w.p. at least 9/10,

Yo,y € UepmyNes G = Gyl < (14 9)lla — yl. )
Furthermore, for each i € [0,m],y € N;, by Lemma 2.7,

Pr(3p € PN B(y,%r;) s.t. |G(p — y)|| > 10e37;) < exp(—Q(t)).
By a union bound, w.p. at least 9/10,

Vi € [0,m],y € Ny,p € PN B(y,&r;), 1G(p — )| < 10&3r,. (6)

By another union bound, Equations (5) and (6) hold with probability at least 2/3.
We are now ready to prove the second part of the theorem. Let C' = {c1,...,cx} C P and
let a partition P = (S1,...,S;) of P. For every p € P we denote by u, the nearest net-point

to p in the level such that P; \ P,y contains p, and the radius of that level is denoted r,,.

Denote by f(p) the center in C assigned to p according to the partition P. Recall that C*(p)
is a point in C* that is nearest to p. Observe that

2 o \*
Z%S"(W) +

k m-—1

> > @Il =00 opt(P),

1 =0 peP; j\Piy1,;

pEP J
and
(375)° < I (p) — C*(f ()7 by definition
< |f(p) = C*(p)|I* C*(f(p)) is nearest to f(p) from C*
<27 Yp—fIF+2*7p— C*(p)|I* by Lemma 2.1. (7)
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Therefore,

cost(G(P),G(C))

=) G- Gfp)l*
peEP
>y (1= ze)[|Gup — Gy |* — 7| Gp — Guy|* — 77| Gf (p) — Gugiy|I*
peP
> Z(l —ze)(1 —&)*|lup — up I” — £ *(10e°r,)* — e *(10e°r ;) )*
peP
> (1=ze)’(1=e)flp— fO)7 = Oe)*r] — Oe)*rF
peEP
> (1=3z)|p— f(P)|F = Oe)*r; — O(e)° 2> H(Ilp = F®)IIF + lp — C* (1))
peP

> (1= O(ze)) cost(P,C) — O(e) - opt(P),

where the first and the third inequalities follow from the generalized triangle inequality
(Lemma 2.1), the second inequality follows from (5) and (6) and the fourth inequality follows
from (7). Rescaling € — ¢/z concludes the proof. <

4 General candidate centers

We now consider a generalization of Theorem 3.1, to the setting where the centers are from
a (possibly different than the input) candidate set ). Unfortunately, to obtain multiplicative
contraction in this setting, we have to pay ©(¢~?log|Q|) in the target dimension. We state
the upper bound below, and the matching lower bound is provided in Theorem 6.4. The
proofs appear in the full version [23].

» Theorem 4.1. Lete >0, 2> 1 and d, k,s € N and a Gaussian JL map G € R**¢ with
suitable t = O(z%¢~2(log s + zlog(z/¢))). For every set P C R? and every candidate center
set Q C R? with |Q| = s > k, with probability at least 2/3,

1. opti(G(P),G(Q)) < (1 +¢)opti(P,Q), and

2. for every C = (c1,...,¢ck) C Q and every partition P = (S1,...,Sk) of P,

costi (G(P),G(C)) > (1 —¢) costi(P,C),

where costi,(P,C) = Zf:l ZpGSj,

To bypass the O(¢~2log|Q|) barrier in the target dimension, we consider relaxed con-
traction, and prove the following.

p—cill®

» Theorem 4.2. Lete >0, z > 1 and d,ddim, k € N and a Gaussian JL map G € Rt*?¢
with suitable t = O(z2c~2(ddim log(z/¢) +log k +loglog o +loglogn)). For every n-point set
P C R? and every candidate center set Q C R? with ddim(P U Q) < ddim, with probability
at least 2/3,

1. opti (G(P), G(Q)) < (1 + ) opti (P, Q), and

2. for every C = (c1,...,cx) C Q and every partition P = (S1,...,Sk) of P,

cost; (G(P),G(C)) > min{a - opt;(P,Q), (1 — &) costi (P, C)},

k
where costi,(P,C) =>" Zpesi llp — ¢il|?-
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5 Improved upper bound: Removing the loglogn term

We prove Theorem 1.2 in this section. In fact, we prove the following for the more general
candidate centers setting, and get Theorem 1.2 by setting Q) = P.

» Theorem 5.1. Let 0 < e < %, z>1, a>2 and d,ddim € N and a Gaussian JL map

G € R™? with suitable t = O(z%c~%(ddimlog(z/e) + zlog(z/¢) + logk + loglog a)), the
following holds. For every P,Q C R? with ddim(P U Q) < ddim, with probability at least
2/3,

1. opti(G(P),G(Q)) < (1 +¢)opti(P,Q), and

2.VC CQ,|C| =k,

cost} (G(P),G(C)) > min{a - opt} (P, Q), (1 — &) costi (P, C)}.

Consider an optimal discrete k-median of P w.r.t. candidate center set (). Denote
by C* = {cf,...,c;} C Q and by S},...,S; the centers and clusters (respectively) in
that solution. Denote g := opt(P,Q)**. For £ € N and i € [k], set r, = ro/2¢, and
P} = SN B(c;, 1), ie., for every cluster, we have a sequence of geometrically decreasing
balls. Additionally, let N} be an e3rg-net of (P UQ) N B(c},mp—10g-1). Let Ny :=J; Ni.

For p € P UQ, recall C*(p) is the closest center to p in C*. Let j, € N be the level
satisfying r;, 41 < [|[p — C*(p)|| < r;,. Denote 7, := r;, for simplicity. We have the following
claim.

» Lemma 5.2. ) .77 < 2%opti (P, Q).

For C C @ and p € P, recall we denote by C(p) the point closest to p in C. We have the
following lemma that upper bounds the distance from C(p) to C*(p) (and also the distance
from C(p) to p).

» Lemma 5.3. Let C C Q. Then for every i € [k] and p € S}, it holds that ||C(p) — cf| <
4max{ry, [|cf — C(cf)]}-

Proof.

1C(p) =il < [IC(p) —pll + [Ip — | by triangle inequality
< llc(e) = pll+lp =<l C(p) is the point closest to p in
<[1C(e) =€l +lie; = pll+llp — e by triangle inequality
< dmax{ry, | — ()]} b

Proof of Theorem 5.1. The first guarantee is the same as Theorem 3.1, so we omit its

proof and focus on the second guarantee. For a generic solution C C Q,|C| = k, denote

C = {c1,c2,...,c,}. Denote f(p) == G~HGC(Gp)), i.e., f(p) is a center in C realizing

dist(Gp, G(C)). For j € [k], denote S; := {p € P: f(p) = ¢;} as the cluster induced by c;.
For every i € [k], define the “threshold level” of cluster i as

; :=max{l: |P}|-r§ > aopt(P,Q)}. (8)

We also define the i-th “buffer” as I; := [¢; — log(2000L?), ¢; + log(ak)], where L is the
(sufficiently large) constant in Lemma 2.8.
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For 0 < £ < m, denote random variable 8, to be the minimum real, such that Vu,v €
Ny, ||Gu— Go|| > (1 — e — Bee)||lu — v||. Denote random variable 4, to be the minimum real,
such that Vu € Ny,v € B(u,e3r), ||Gu— Go|| < ~ee®ry. For p e PUQ, write 3, := 3;, and
Vp 1= j, for simplicity.

In the following lemma, we define our good events and bound their success probability.
The proof can be found in the full version [23].

» Lemma 5.4. With probability at least 0.99, the following events happen simultaneously.
2
(@) > opep Bory < e~ L opt(P,Q), and > pep Vs < 107 - O(opt(P, Q).

(b) Vi € [k],V¢ € I;, Yu € Ny,v € B(u,e3ry), ||Gu— Gol|| < 10e3r,.
(c) Vi€ [k],VL € I;, every net point w € Ny satisfies that VP’ C P,
z z z €
Y NG =Gull > (1=2)* Y llp—ull* — .5 opt(P. Q).

peEP’ peEP’

(d) Vi€ [k],Vy € B(c},40L - r4,), |Gy — Gef|| < 400L - 1y, .
(e) Vi€ [k],Vy € (PUQ)\ B(c;,2000L? - rp,), |Gy — Gct| > 2000L - 1, .
(f) Forp € P, denote by random variable &, := miny. |, —p|>orr,, |Gy—Gp||. Then Vi € [k],

> &> aopt(P,Q).
pGPZl_

(g) Forp € P, denote ny, := miny,. |y_p|>orLr, |Gy — Gp||. Then Vi € [k],

Z max{0, (9r,)* — 77;} < e 0. Z -

pEST pES?

The proof proceeds by a careful case analysis.

Case 1, one cluster with no cover: max;<;<k{l||lc; — C(c})|| — 10L - 74} > 0. Then
there exists 7 € [k], such that ||cf — C(cf)|| > 10L - ry,. Intuitively, this means all points in C
are far away from c. Write

cost(G(P), G(O)) = cost(G(P},), G(C)) = Y |Gp — Gf@)II*. 9)

PEP;,
Note that for every p € Pgii,

lp—f®I > llp—Cp)ll
> |C(p) = ¢l = llp — < ||
> i = Cle)Hl = llp = <l
> 10L -1y, — 1
> 9L - ry,.

Therefore, ||Gp — Gf(p)|| > &,. Combining with (9) yields

cost(G(P),G(C) = Y IGp = Gf(p)|* = Y & > aopt(P,Q),

pePgi pePgi

where the last inequality follows from event f.
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Case 2, max;<;<p{l|c; —C(c})||=10L -7z, } < 0. Then for every i € [k], ||c; —
10L - ry,, which intuitively means every center in C* has a nearby neighbor in C.

Cle)l <

Comparing “fake” centers to optimal centers. Let i € [k]. For every p € S}, we consider
the distance of p’s “fake” center f(p) (recall, G f(p) realizes dist(Gp, G(C))) from p’s optimal
center ¢;. There are three ranges we consider for ||f(p) — ¢}l

Define R; := {p € S}: ry,/(ak) < | f(p) — c;|| < 2000L? - 14, }, and denote R := Ule R;
(called “the middle range”). Moreover, define T; := {p € S;: || f(p) — ¢}|| < r¢,/(ck)}, and
denote T' := Ule T; (called “the close range”).

Case 2.1, the middle range p € R. Let us first lower bound ||Gp — Gf(p)|| for p € R.
Assume C*(p) = ¢} and f(p) = ¢;, where i,j € [k]. Since p € R;, we can assume ry; <
lle; — cf|| < r¢ for some level £ € I;. Let u; ; be the net point in N, closest to ¢;. Then

1Gp = Gf(p)I” = (1 = 26)[|Gp — Guy 5|17 — e77[|Gej — Gu 4|7
> (1 —2¢)||Gp — Guy j||* — e~ *(10er,)*
> (1 - 26)[|Gp — Guij||* = O(e)**||ej — ¢;|IF
> (1= 2¢)|Gp — Guij||* = O()**||lp — ¢ |I* — O(e)*|Ip — ¢; |7
= (1= 29)[|Gp — Gui|I* = O(&)*[lp — f(D)|I* = O(e)**|lp — C* ()%,

where the first and the last inequalities follow from Lemma 2.1 and the second inequality
follows from event b. Summing over p € R, we have

> IGp—Gfp)lIF
pPER
kE k
=2 > lIGp-aGylF
i=1 j=1peR;NS;

O |lp ~ F®)II* = O(e)*[lp — C* )

NER
NER

( (1 —2¢)||Gp — Gu; ;|7 —

i=1 j=1peR;NS;
kK k

>3 S (- 0)lGr - Gulf - 0@ Yl S~ 0e)* opi(P,Q)
i=1 j=1peR;NS; pER

Applying event c to net point u; ; and subset R; N.S;, we have

SHI[E

Mw

) Y lp =il = 5 opt(P.Q)
i=1 j=1 peER;NS;
~0(e) ) llp—fp O(e) opt(P, Q)
PER
0(2€)) > llp = f()IIF = O(e) opt(P, Q)
pER
—0(22)) Y [lp— C(p)|I* = O(e) opt(P, Q). (10)
PER
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Case 2.2, the close range p € T'. This is somewhat of a special case of Case 2.1. Assume
C*(p) = ¢f and f(p) = ¢;, where i,j € [k]. Since p € R;, we have ||¢; — ¢ < r¢ for
¢ =1{; +log(ak). Let u; ; be the net point in Ny closest to ¢;. We have,

Gp = Gf(p)|I* > (1 = 2¢)[|Gp — Gu j||* — e *||Gej — Gui 51|
> (1 - 2¢)||Gp — Gui;||” — O()*r7.

If p ¢ B(cf,r¢,41), then
re < gl —cill < 5plllp = cill +llej — el 1) < g (llp = ¢jll + 7o)

Rearranging, we obtain r, < ||p — ¢;||. Summing over p € T', we have

> Gy - Gf(p)|IF
peT
k k

=33 X lep-Gel
k k
>3 > (1 -z0)liGp - Guyylf

—0(©)*Ip—¢|F) = O(e)*

PN B(C?,T‘[i+1)’ Ty

Applying event ¢ to net point u; ; and subset T; N S, we have

235 > (1-0GIp = uisl = 5 0pt -0 b = 5l1°) — Ocopt)

k k
>33 Y (-0 = el — 15 0pt ) — Ocopt)

i=1 j=1peT; ﬂS]’

> (1-0(22)) Y lIp = Cp)|I* = O(e) opt(P, Q). (11)

peT

Case 2.3, the far range p ¢ R U T. We now consider points p € SF\ (RUT), i.e.,
lf(p) — c;|| = 2000L?ry,. Suppose f(p) = c¢;. By e, |Ge; — Gef|| > 2000Lry, .

> Claim 5.5. In this case, 7, > 10Lry,.

Proof. Assume by contradiction that r, < 10Lr,. By Lemma 5.3, [|C(p) — ¢f| <
dmax{ry, ||c; — C(c})||} <40Lry,. Thus by d, Gp, GC(p) € B(Gc;,400Lry,). Therefore,

[Gej — Geill < [|Gej — Gpl| + [|Gp = Gejl| < |GC(p) — Gpll + [[Gp — Ge|| < 800Lry,,
contradiction. 4
Therefore, by Lemma 5.3, ||C(p) — ¢f|| < 4r, and hence

lp—C)ll < lp—cill+ IC(p) — ¢l < 5ryp. (12)

On a high level, as can be seen by the claim, we have that both f(p) and p are far from ¢;.
We split into cases depending on which of p or f(p) is farther from ¢ (up to a constant), as
follows.
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Case 2.3.1, pe S\ (RUT), and || f(p) — c}|| > 10Lr,. By triangle inequality,

lp = F@) = [1f(p) = cill = llp = il = 9L - 7.

By the definition of n,, we have ||Gp — Gf(p)|| > np. Therefore,

> 1Gp — Gf(p)|I”
pesi\(RUT)
1 £(p)—c}1>10Lr,
> > R since ||[p — f(p)ll = 9Lry

pEST\(RUT)
£ (p)—cilI>10Lry

> Z (9rp)* — Z T by event g

pESI\(RUT) peS?
If(p)—cilI>10L7y

> Z (5rp)* e 9 Z T

pEST\(RUT) pes:
Il f(p)—cilI>10Lr,
D D e D DL by (12) (13)
pGS:\(RUT) pes*

I £(p)=cilI>10Lry

Case 2.3.2, pe S\ (RUT), and || f(p) — c;|| < 10Lr,. Denote u, and uy, to be
the net points in IN;, that are closest to p and f(p), respectively. Then

IGp—Gf(p)l®

(1 = 22¢)||Gup — Gus ||” — 7 7||Gp — Guy||* — e *[|Gf(p) — Guyp |I”
(1 —2ze)(1 — & = Bpe)*lup — up(p)|* — 267 (1)

(1 —3ze = Bpze)|lup —upp)ll* — O(e )227; T

(1= 3ze = Bpze)llp — f(D)I* — O(e)*r; — O(e) 51

Since |lp = f(P)I| < [lp — i | + [/ (p) = i | < rp +10Lrp < 20Lrp, we have

> (1= 3ze)lp = fO)IF = Bpze - (20L)*r; — O(e)*r} — O(e)** 5.

VIV oIV

Therefore,

> IGp — Gf(p)|I*

peSI\(RUT)
| f(p)—cF||<10Lry,

>(1-32) S = I —2200)* Y Bori - 0 Y (14

peS}\(RUT) pese 5=
| f(p)—c||<10LT,

(14)
Wrap Up. Combining (14) and (13), we have

Y Gp-Gf@IIF=(1-32¢) > p—C)*

pES\(RUT) pESF\(RUT)
—2e(20L)* Y Byry = O(e)* > (L+;)r;
pESY pESY
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Summing over i € [k] yields

> lGr-Gr)l

peP\(RUT)
>(1=32) > |p=CI*—2e(200)* Y Bpry — 0(€)** > (1 +7;)r5
pEP\(RUT) peEP peEP
> (1 —3ze) Z lp—C)|* - ZE(QOL)Ze_Q(Ezt) -opt(P, Q) — O(£)** - opt(P, Q)
peP\(RUT)
>(1-32¢) > lp—C®I*—O0()-opt(P,Q), (15)
pEP\(RUT)

where the second last inequality follows from event a and Lemma 5.2. Finally, we combine
(10),(11) and (15) and obtain

cost(G(P),G(C)) > (1 — O(ze)) cost(P,C) — O(e) - opt(P, Q) > (1 — O(z¢)) cost(P, C).

Rescaling e — £/z concludes the proof. <

6 Lower bounds

In this section, we state our lower bounds. For simplicity, we do not try to optimize the
dependence on z. All lower bounds are presented for z = 1. All the proofs are provided in
the full version [23]. Denote by 04 the origin of R%. For ease of presentation, we allow P to
be a multi-set.

» Theorem 6.1 (Continuous, for all centers). Let n,d € N, and P = {04}". Let G €
RE=DXd pe any linear map. Then, there exists ¢ € R® such that > pep IGp — Ge|| =0 and

Yopeplp—cl =n.

The next theorem shows that in order to bound the (multiplicative) contraction for all
centers, we need either dimension Q(loglogn), or to relax the definition of contraction (as is
done in Theorem 5.1).

» Theorem 6.2 (Discrete, for all centers). Let n,d € N and € € (0,3). There exists P C R?
of size |P| =n and ddim(P) = ©(1), such that if G is a Gaussian JL map onto dimension
t < ae 2loglogn for a sufficiently small constant a > 0, then with probability at least 2/3,

there exists c € P such that 3 p|[|Gp — Ge|| < (1 =€) > cpllp—cl|-

Next, we show that dimension Q(loglogn) is necessary, even for the relaxed notion of
contraction, for preserving all partitions and centers.

» Theorem 6.3 (Discrete, for all partitions and centers). Let n,d € N and ¢ € (0,%). There
exists P C R? of size |P| = n and ddim(P) = O(1), such that if G is a Gaussian JL map
onto dimension %5_2 <t <ae2loglogn for a sufficiently small constant a > 0, then with

probability at least 2/3, there exists (c1,c2) C P and a partition (Py, Py) of P such that

> Y ler-Gell<min{(-¢) 3 > Ip—cill, 1000pt(P) }.

i€{1,2} peP; i€{1,2} pEP;

» Theorem 6.4 (Discrete, for all centers, with candidate center set). Let n,s,d € N and
e € (0,1). There exists P,Q C R? of sizes |P| = n,|Q| = s, and ddim(P U Q) = O(1),
such that if G is a Gaussian JL map onto dimension t < ac 2logs for a sufficiently
small constant a > 0, then with probability at least 2/3, there exists ¢ € Q such that

2opep G = Gel| < (1 =€) 3 pcpllp =<l
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