
Color-Distance Oracles and Snippets
Tsvi Kopelowitz∗1 and Robert Krauthgamer†2

1 University of Michigan, Ann Arbor, Michigan, USA
kopelot@gmail.com

2 Weizmann Institute of Science, Rehovot, Israel
robert.krauthgamer@weizmann.ac.il

Abstract
In the snippets problem we are interested in preprocessing a text T so that given two pattern
queries P1 and P2, one can quickly locate the occurrences of the patterns in T that are the closest
to each other. A closely related problem is that of constructing a color-distance oracle, where the
goal is to preprocess a set of points from some metric space, in which every point is associated
with a set of colors, so that given two colors one can quickly locate two points associated with
those colors, that are as close as possible to each other.

We introduce efficient data structures for both color-distance oracles and the snippets prob-
lem. Moreover, we prove conditional lower bounds for these problems from both the 3SUM
conjecture and the Combinatorial Boolean Matrix Multiplication conjecture.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Snippets, Text Indexing, Distance Oracles, Near Neighbor Search

1 Introduction

We introduce and study the following problem: preprocess a text T so that given two pattern
queries, P1 and P2, one can quickly locate the occurrences of the two patterns in T that
are closest to each other, or report the distance between these occurrences. This natural
task arises in many common indexing applications, for example, when searching a corpus
of documents for two query keywords, the relevance of a document may be measured by
the two keywords’ proximity inside the document. Web search engines often use this notion
of relevance by providing with each result a snippet — a subtext from the corresponding
webpage in which the two keywords appear close to each other, which is very useful to assess
the relevance of that result. This problem, which we call the snippets problem, turns out to
be a special case of a more general problem, which we define next, and deals with colored
points in a metric space.

Colored Points.

Let M be a metric space with distance function d(·, ·). Each point p ∈ M may have an
associated color cp ∈ [`], in which case we say that the point is colored. Let S ⊂M be a set
of N points. We call S a colored set if every point p ∈ S is colored. For a color c ∈ [`], let
P (c) denote the set of points in S which have color c. The distance between a point p ∈M
and a color c ∈ [l] is defined as d(p, c) := min{d(p, q) : q ∈ P (c)}. The distance between
two colors, called the color-distance, of c, c′ ∈ [`] is defined as d(c, c′) := min{d(q, q′) : q ∈
P (c), q′ ∈ P (c′)}.

∗ Work supported in part by NSF grants CCF-1217338, CNS-1318294, and CCF-1514383.
† Work supported in part by an Israel Science Foundation grant #897/13.

© Tsvi Kopelowitz Robert Krauthgamer;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Color-Distance Oracles and Snippets

One application for computing the distance of two colors arises in navigational tools.
For example, consider a user who is interested in visiting both a postoffice and a pharmacy.
One can color, in advance, all of the pharmacies with one color and all of the postoffices
with another color. The distance between the two colors corresponds to the closest pair of
a postoffice and a pharmacy. This leads to the following problem.

I Problem 1.1 (Color-Distance Oracle). The color-distance oracle problem asks to preprocess
a colored set S, so that given a query of two colors c, c′ ∈ [`], one can quickly report d(c, c′).

Multi-colored points.

A natural generalization of color-distance oracles is to let each point have several colors. For
example, a single location in a map could be both a postoffice and a pharmacy. A point
p ∈ M is said to be multi-colored if p has an associated nonempty set of colors C(p) ⊆ [`].
A set of points S ⊂M is a multi-colored set if each point p ∈ S is multi-colored.

I Problem 1.2 (Multi-Color-Distance Oracle). The multi-color-distance oracle problem asks
to preprocess a multi-colored set S, so that given a query of two colors c, c′ ∈ [`], one can
quickly report d(c, c′).

One straightforward way for solving the multi-color-distance oracle problem is to create
|C(p)| copies of each point, one for each color, and apply a solution for the color-distance
oracle problem (such as Theorem 2). The size of the instance of the newly created instance
is
∑
p∈S |C(p)|, which could be much larger than N = |S|. Notice that this quantity is

actually the size of the input for the multi-color-distance oracle problem, since generally
speaking, each point may need to have its colors listed explicitly. Nevertheless, there are
interesting cases in which the list of colors for each point need not be given explicitly. One
such example is in the snippets problem, which falls under the notion of a color hierarchy,
described next.

Color hierarchies.

We say that a multi-colored set S admits a color hierarchy if for every two colors c, c′ ∈ [l],
either one of the sets P (c) and P (c′) contains the other, or the two sets are disjoint (a
formal terminology is that {P (c)}c∈[l] is a laminar family). It is easy to see that a color
hierarchy can be represented by a rooted forest (i.e., each tree has a root) TS of size O(`),
where each color c is associated with a vertex uc in this forest, such that the descendants
of uc are exactly all the vertices uc′ whose color c′ satisfies P (c′) ⊆ P (c). We convert the
forest TS to a rooted tree by adding a dummy root vertex and making it the parent of all
of the roots of the trees in the forest. With the aid of TS , a multi-colored set S that admits
a color hierarchy can be represented using only O(N + `) machine words, because it suffices
to describe the tree and associate with each point just one color (the color with the lowest
corresponding vertex in TS); the other colors of this point are implicit from TS (the colors
on the path to the root of TS). This leads us to the following problem.

I Problem 1.3 (Multi-Color-distance Oracle with a Color Hierarchy). The multi-color-distance
oracles with a color hierarchy problem asks to preprocess a multi-colored set S that admits a
color hierarchy, so that given a query of two colors c, c′ ∈ [`], one can quickly report d(c, c′).

1.1 Our Results
Our main result is a data structure for the snippets problem, summarized as follows.

T. Kopelowitz and R. Krauthgamer 3

I Theorem 1. For every fixed ε > 0, there is a data structure for the snippets problem with
preprocessing time O(N1.5 logεN), query time O(|P1|+ |P2|+

√
N logεN)), and space usage

O(N) words.

To prove Theorem 1 we solve the more general problems of colored and multi-color-
distance oracles. These data structures use (in a black-box manner) an algorithm (data
structure) for nearest neighbor search.

Nearest Neighbor Search (NNS).

In the Nearest Neighbor Search (NNS) problem, the goal is to preprocess a set of points
S ⊂ M (recall M is a metric space), so that given a point p ∈ M one can quickly report
argminq∈S{d(p, q)}. Given an NNS algorithm for k = |S| points, we denote its preprocessing
time by tnns(k), its query time by qnns(k), and its space usage by snns(k). Once the nearest
neighbor is found, one can evaluate the distance between p and its nearest neighbor by
invoking the function d (we assume such evaluation takes O(1) time, for simplicity), thereby
obtaining d(p, S).

With the aid of an NNS data structure for point sets in a metric M , we prove the
following theorem in Section 2.

I Theorem 2 (Color-distance Oracle). Assume there is a data structure that supports NNS
queries on a set of k points from M using preprocessing time tnns(k), query time qnns(k),
and space usage snns(k) words. Then for every 0 < τ ≤ N , there exists a color-distance
oracle for N -point sets in M , that has preprocessing time O(tnns(N)+N · τ ·qnns(N)), query
time O(τ · qnns(N)), and space usage O(snns(N) + (Nτ)2) words.

Our solution for the multi-color-distance oracles with a color hierarchy problem is based
on the notion of range NNS, which is defined as follows.

I Problem 1.4 (Range NNS). In the range NNS problem the goal is to preprocess an array A
of N points from a metric M , so that given two indices 1 ≤ i ≤ j ≤ N and a point p ∈M ,
one can quickly find the NNS of p in the set {A[i], A[i+ 1], . . . , A[j]}.

We prove the following theorem in Section 3.

I Theorem 3 (Multi-Color-distance Oracle with a Color Hierarchy). Assume there is a range
NNS algorithm for k-point sets in a metric M that uses preprocessing time trnns(k), query
time qrnns(k), and space usage srnns(k) words. Then for every 0 < τ ≤ N , there exists a
multi-color-distance oracle for N -point sets in M that admit a color hierarchy, (specifically,
the multi-coloring of the input S is given implicitly via a tree TS), that has preprocessing
time O(trnns(N) + N2

τ · (qrnns(N) + log log log N
τ)), query time O(τ · qrnns(N)), and space

usage O(srnns(N) + (Nτ)2) words.

Conditional Lower Bounds.

Solving the multi-color-distance oracle problem with poly-logarithmic query time and non-
trivial preprocessing time seems to be extremely difficult, leading to the question of finding a
polynomial time lower bound. Polynomial (unconditional) lower bounds for data structure
problems are considered beyond the reach of current techniques. Thus, it is common to
prove conditional lower bounds (CLBs) based on the conjectured hardness of some “basic”
problem. One of the most popular conjectures for CLBs is that the 3SUM problem (given
n integers determine if any three sum to zero) cannot be solved in truly subquadratic time,

4 Color-Distance Oracles and Snippets

where truly subquadratic time is O(n2−Ω(1)) time. This conjecture is reasonable even if the
algorithm is allowed to use randomization, see e.g. [30, 1, 23, 15].

Another popular conjecture is the combinatorial Boolean matrix multiplication (BMM)
conjecture. In the BMM problem we are given two n × n Boolean matrices A and B and
the task is to compute the Boolean product of the two matrices. The combinatorial BMM
conjecture states that combinatorial algorithms for computing this Boolean product require
runtime Ω(n3−o(1)), see [1].

In Section 5 we prove CLBs for the color-distance oracle problem based on the 3SUM and
combinatorial BMM conjectures. Moreover, these CLBs hold also for approximate versions
of the color-distance oracle problem, where the answer to a color-distance query between
two colors c and c′ is required to be between d(c, c′) and α · d(c, c′), where α ≥ 1 is a stretch
parameter. The CLBs are summarized as follows.

I Theorem 4. Assume the 3SUM conjecture holds. Then for every fixed 0 < γ < 1 and fixed
α ≥ 1, every data structure for the color-distance oracle problem with stretch α for points
on the line, that has preprocessing time tCDO and query time qCDO, must satisfy

tCDO +N
1+γ
2−γ qCDO = Ω

(
N

2
2−γ−o(1)

)
.

Notice that by taking γ arbitrarily close to 0, a linear preprocessing time implies an Ω(N0.5−o(1))
query time. This is line with other conditional lower bounds based on the 3SUM conjec-
ture [23].

I Theorem 5. Assume the combinatorial BMM conjecture holds. Then every combinatorial
data structure for the color-distance oracle problem with constant stretch α ≥ 1 for points
on the line, that has preprocessing time tCDO and query time qCDO, must satisfy

tCDO +N · qCDO = Ω
(
N1.5−o(1)

)
.

Comparing Theorem 5 with Theorem 1 and assuming the combinatorial BMM conjecture
holds, it is impossible to obtain a polynomial speedup in both the preprocessing and query
time of Theorem 1 via combinatorial algorithms. However, it might be possible to obtain
a polynomial speedup in one of them. We emphasize that the proofs of Theorems 4 and 5
are for the one dimensional case, and thus the conditional lower bounds apply to the special
case of the snippets problem.

1.2 Related Work
Perhaps the most related problem color-distance oracles is the (approximate) vertex-labeled
distance oracles for graphs problem, where we are interested in preprocessing a colored
graph G so that given a query of a vertex q and a color c we can return d(q, c) (or some
approximation thereof). Hermelin, Levy, Weimann and Yuster [16] introduced this problem
and provided, amongst other results, a data structure using O(kn1+1/k) expected space with
stretch (4k−5) and O(k) query time. In another result they showed how to reduce the space
usage to O(kN`1/k) at the expense of an exponential stretch (2k − 21). Chechik [8] showed
how to reduce this stretch back down to (4k − 5).

Two pattern document retrieval problems.

Another related body of work are document retrieval problems on two patterns. In the
Document Retrieval problem [28] we are interested in preprocessing a collection of documents

T. Kopelowitz and R. Krauthgamer 5

X = {D1, · · · , Dk} where N =
∑
D∈X |D|, so that given a pattern P we can quickly report

all of the documents that contain P . Typically, we are interested in run time that depends
on the number of documents that contain P and not in the total number of occurrences of P
in the entire collection of documents. In the Two Patterns Document Retrieval problem we
are given two patterns P1 and P2 during query time, and wish to report all of the documents
that contain both P1 and P2. In the Forbidden Pattern Document Retrieval problem [14] we
are also interested in preprocessing the collection of documents but this time given a query
P+ and P− we are interested in reporting all of the documents that contain P+ and do not
contain P−.

All known solutions for the Two Patterns Document Retrieval problem or the Forbidden
Pattern Document Retrieval problem with non trivial preprocessing use at least Ω(

√
N) time

per query [28, 11, 17, 18, 14]. In a recent paper, Larsen, Munro, Nielsen, and Thankachan [25]
show lower bounds for these problems conditioned on the hardness of BMM. More recently
some CLBs for both problems were shown from the 3SUM conjecture as well [23].

Nearest Neighbor Search.

The NNS problem has been studied intensively for many metric spacesM , due to its numer-
ous applications. The literature on both theoretical and practical aspects is very extensive,
and we provide below only a brief overview of leading theoretical approaches.

In the classical setting where M is a D-dimensional Euclidean space, the standard al-
gorithm is to preprocess the point set by computing a Voronoi diagram, which has a fast
query time. However, the Voronoi diagram requires O(ndD/2e) time and space, which is pro-
hibitive unlessD is rather small. Several algorithms are known to achieve (1+ε)-approximate
NNS in RD (often under any `p norm) by employing various space partitions. Specifically,
Arya, Mount, Netanyahu, Silverman, and Wu [5] achieve preprocessing time that is linear in
the number of points k (but exponential in D), which is quite effective when the dimension
D is not too large. Locality Sensitive Hashing (LSH), which was introduced by Indyk and
Motwani [19] and further refined later, see e.g. [3, 4], is an alternative approach that is often
preferred for high dimension D, because its performance is polynomial in D (although its
query time is typically polynomial, and not logarithmic, in k).

In general metric spaces (i.e., not of the form RD), NNS is considered a very difficult
problem. But under certain “bounded growth” conditions on the data, one can obtain
performance that is similar to, or even better than, the low-dimensional Euclidean case, see
e.g. [10, 20, 24, 12], and the survey [9].

2 Color-distance Oracle

Proof of Theorem 2. We begin by preprocessing each set P (c) with a NNS data structure.
This takes a total of O(snns(N)) words of space and O(tnns(N)) time. A color c is said to be
light if |P (c)| < τ . If color c is not light then it is heavy. Notice that there can be at most
N/τ heavy colors. For each pair of heavy colors we precompute and store their distances in
a lookup table using O((Nτ)2) words. The computation of the entries for this table is done
directly using O(Nτ) NNS queries. To answer a color-distance query on two colors c and
c′, if both colors are heavy then we use the lookup table for their precomputed distance.
Otherwise, assume without loss of generality that c is light. We then execute |P (c)| < τ

NNS queries on P (c′), one for each of the points in P (c), and the distance between c and c′
is the smallest distance found by any of these NNS queries.

6 Color-Distance Oracles and Snippets

To summarize, the preprocessing time is O(tnns(N) +N · τ · qnns(N)), the query time is
O(τ · qnns(N)), and the space usage is O(snns(N) + (Nτ)2) words.

J

Since we may assume that snns(k) = Ω(k) (as we need to store all of the points in S),
picking τ =

√
N the preprocessing time becomes O(tnns(N)+N1.5qnns(N)), the space usage

becomes O(snns(N)) and the query time is O(
√
N · qnns(N)).

3 Multi-color-distance Oracle

Proof of Theorem 3. Assume without loss of generality that TS is an ordinal tree (the
children of each vertex are ordered). For every point p ∈ S we create a new vertex up and
add it to TS as a child of the single vertex representing the color set C(p). This process
adds N leaves to TS and now each leaf is associated with a unique point. With the aid of
TS we embed the set S in an array A, where the order is determined by the order in which
the leaves (corresponding to points in S) are encountered during a pre-order traversal of
TS . After the construction of A, by the properties of ordered traversals on trees, each color
c ∈ [`] is associated with a range in A. We preprocess A using a RNNS data structure.

Next, we partition A into blocks of size τ . For each pair of blocks we precompute and
store the two closest points, one from each block, together with their distances in a N

τ ×
N
τ

matrix B. The entry B[i][j] corresponds to the two closest points between the ith and jth
blocks. It is straightforward to compute each entry in O(τ · qrnns(N)) time, for a total of
O(N

2

τ · qrnns(N)) time to precompute the B. Next, we preprocess B using a 2D Range
Minimum Query (2DRMQ) data structure [2]. Such data structures preprocess a matrix of
values (in our case these are the distances that are stored in B) so that given a rectangle in
the matrix, defined by its corners, we can quickly return the entry with the smallest value.
The 2DRMQ data structure uses O((Nτ)2) space and O((Nτ)2 log log log N

τ) preprocessing
times, and the query time is constant.

Answering a query.

To answer a multi-color-distance oracle query between two colors c and c′, let [xc, yc] and
[xc′ , yc′] be the ranges in A that are associated with c and c′ respectively. Each interval
can be partitioned into three parts, based on the block partitioning. The first (last) part
is a suffix (prefix) of some block that starts from the left (ends at the right) endpoint of
the interval. The middle part is everything else, which completely spans some consecutive
blocks. Notice that the first and last part have size at most τ . For the two middle parts
(one for each color) we find the two closest points by invoking the 2DRMQ data structure
on B, since the two contiguous ranges define a natural rectangle in B. This covers all of
the possible combinations of two points from the two middle parts and takes constant time.
Now to the remaining parts. Each of the O(τ) points in the first and last parts of [xc, yc]
is queried against the entire range [xc′ , yc′] with the range NNS data structure. Similarly,
each of the O(τ) points in the first and last parts of [xc′ , yc′] is queried against the entire
range [xc, yc] with the range NNS data structure. This costs O(τ · qrnns(N)) time. Finally,
we take the minimum over all of the answers to the queries. Since the queries together cover
all of the possible pairs of points, the minimum over all queries is the distance between the
colors.

J

T. Kopelowitz and R. Krauthgamer 7

4 Back to Snippets

Amulti-color-distance oracle with a color hierarchy can be used to solve the snippets problem
as follows. During the preprocessing phase we construct the suffix tree for the text T . Every
internal node in the suffix tree defines a unique color. Location i in T is colored with all of the
colors defined by nodes on the path from the root of the suffix tree to the leaf corresponding
to the suffix at location i. Thus, the suffix tree represents the color hierarchy of the set of
colors.

Given two query patterns, P1 and P2, we first locate their corresponding vertices in the
suffix tree. This takes O(|P1| + |P2|) time. These two nodes define the two colors that we
give as input to the multi-color-distance oracle query. It is straightforward to see that the
answer to this color-distance oracle query is exactly the distance of the two patterns in T .

In order to use Theorem 3 we need to specify a range NNS data structure that works
in a metric defined by locations of an array. For this we can use the range predecessor
data structures [13, 29, 26, 31, 27, 6, 7, 22, 21]. In these data structures the goal is
to preprocess an array A of n elements from integer universe [u] so that given a query
range_pred(x, y, p) where 1 ≤ x ≤ y ≤ n and p ∈ [u] the data structure quickly returns
argmaxq∈{A[x],A[x+1],...,A[y]}{q < p}. Using, for example, the data structure of [29] the pre-
processing time is O(n logn), the query time is O(logε n) and the space usage is O(n) words,
where ε > 0 is an arbitrarily small constant. Plugging these runtimes into Theorem 3 and
setting τ =

√
N completes the proof of Theorem 1.

Notice that if the multi-color-distance oracle would return the two points that are closest,
and not just their distance, then we could also report the two occurrences of the patterns
that are closest to each other. Our implementations of multi-color-distance oracle do in fact
allow for this information to be returned.

5 Conditional Lower Bounds

Offline SetDisjointness.

Both the 3SUM problem and the combinatorial BMM problem can be reduced to the SetDis-
jointness data structure problem. In this problem we wish to preprocess a family of sets F ,
all from universe U , with total size N =

∑
S∈F |S| so that given a query of pointers to two

sets S, S′ ∈ F , one can quickly determine if S ∩ S′ = ∅. For a SetDisjointness data structure
let tp denote the preprocessing time and let tq denote query time. The following theorems
summarize the best known CLBs for the SetDisjointness data structure problem from the
3SUM and combinatorial BMM conjectures.

I Theorem 6 ([23]). Assume the 3SUM conjecture holds. For every fixed 0 < γ < 1, any
data structure for SetDisjointness has tp +N

1+γ
2−γ tq = Ω

(
N

2
2−γ−o(1)

)
.

I Theorem 7 (Folklore). Assume the combinatorial BMM conjecture holds. Any combinat-
orial data structure for SetDisjointness has tp +N · tq = Ω

(
N1.5−o(1)).

SetDisjointness via color-distance oracles

We prove next that the SetDisjointness data structure problem can be reduced to the color-
distance oracle problem. Combining this reduction with Theorems 6 and Theorem 7 we
obtain CLBs for the the color-distance oracle problem from both the 3SUM conjecture and
the combinatorial BMM conjecture. Moreover, this reduction also holds for approximate

8 Color-Distance Oracles and Snippets

versions of the color-distance oracle problem. In these versions the answer to a color-distance
query between two colors c and c′ can be as large as α · d(c, c′), where α ≥ 1 is a constant
stretch parameter.

I Theorem 8. If there exists a color-distance oracle with constant stretch α ≥ 1 for points
on the line with tCDO preprocessing time and qCDO query time, then there exists a data
structure for online SetDisjointness where tp = O(tCDO log k) and tq = O(qCDO log k).

Proof. We reduce the SetDisjointness problem to the color-distance problem as follows. Let
F = {S1, · · · , Sk}. For each Si we define a unique color ci. For an element e ∈ U let |e|
denote the number of subsets containing e. Since each element in U appears in at most O(k)
subsets, we partition U into Θ(log k) parts where the ith part Pi contains all of the elements
e ∈ U such that 2i−1 < |e| ≤ 2i. An array Xi is constructed from Pi = {e1, · · · e|Pi|} by
assigning an interval Ij = [fj , `j] in Xi to each ej ∈ Pi such that no two intervals overlap.
Every interval Ij contains a list of all of the colors of sets in F that contain ej . This implies
that |Ij | = |ej | ≤ 2i. Furthermore, for each ej and ej+1 we separate Ij from Ij+1 with a
dummy color d listed 2i + 1 times at locations [`j + 1, fj+1 − 1]. Finally, we pad each Xi so
that its size is exactly N . This is always possible since

∑
e∈U |e| = N (so the array is never

of size more than N).
We now simulate a SetDisjointness query on subsets (Si, Sj) ∈ F by performing a color-

distance query on colors ci and cj in each of the Θ(log k) arrays. There exists a Pi for
which the two points returned from the query are at distance strictly less than 2i + 1 if and
only if there is an element in U that is contained in both Si and Sj . Thus, using O(log k)
color-distance queries we solve the SetDisjointness query.

Finally, notice that the reduction also holds for the approximate case, as for any constant
α the reduction can overcome the α approximation by separating intervals using 2iα + 1
instances of the dummy color d. J

Acknowledgments

We thank Sharma Thankachan for suggesting to consider range predecessor data structures,
thereby significantly simplifying our earlier, more complicated, solution.

References
1 A. Abboud and V. Vassilevska Williams. Popular conjectures imply strong lower bounds

for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pages 434–443, 2014. doi:http://dx.doi.org/10.1109/FOCS.2014.53.

2 A. Amir, J. Fischer, and M. Lewenstein. Two-dimensional range minimum queries. In
Combinatorial Pattern Matching, 18th Annual Symposium, CPM, pages 286–294, 2007.
doi:http://dx.doi.org/10.1007/978-3-540-73437-6_29.

3 A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. In 47th Annual IEEE Symposium on Foundations of Computer Science,
pages 459–468. IEEE, 2006. doi:http://dx.doi.org/10.1109/FOCS.2006.49.

4 A. Andoni and I. Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In 47th Annual ACM on Symposium on Theory of Computing, STOC ’15, pages
793–801. ACM, 2015. doi:http://dx.doi.org/10.1145/2746539.2746553.

5 S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm
for approximate nearest neighbor searching in fixed dimensions. J. ACM, 45(6):891–923,
1998. doi:http://dx.doi.org/10.1145/293347.293348.

http://dx.doi.org/http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-540-73437-6_29
http://dx.doi.org/http://dx.doi.org/10.1109/FOCS.2006.49
http://dx.doi.org/10.1145/2746539.2746553
http://dx.doi.org/10.1145/293347.293348

T. Kopelowitz and R. Krauthgamer 9

6 M. A. Babenko, P. Gawrychowski, T. Kociumaka, and T. A. Starikovskaya. Wavelet trees
meet suffix trees. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 572–591, 2015. doi:http://dx.doi.org/10.1137/1.
9781611973730.39.

7 D. Belazzougui and S. J. Puglisi. Range predecessor and lempel-ziv parsing. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 2053–2071, 2016. doi:10.1137/1.9781611974331.ch143.

8 S. Chechik. Improved distance oracles and spanners for vertex-labeled graphs. In ESA,
pages 325–336, 2012. doi:10.1007/978-3-642-33090-2_29.

9 K. Clarkson. Nearest-neighbor searching and metric space dimensions. In G. Shakh-
narovich, T. Darrell, and P. Indyk, editors, Nearest-Neighbor Methods for Learning and
Vision: Theory and Practice, pages 15–59. MIT Press, 2006. URL: http://kenclarkson.
org/nn_survey/p.pdf.

10 K. L. Clarkson. Nearest neighbor queries in metric spaces. Discrete Comput. Geom.,
22(1):63–93, 1999.

11 H. Cohen and E. Porat. Fast set intersection and two-patterns matching. Theor. Comput.
Sci., 411(40-42):3795–3800, 2010.

12 R. Cole and L.-A. Gottlieb. Searching dynamic point sets in spaces with bounded doubling
dimension. In 38th annual ACM symposium on Theory of computing, pages 574–583. ACM,
2006. doi:http://doi.acm.org/10.1145/1132516.1132599.

13 M. Crochemore, C. S. Iliopoulos, M. Kubica, M. S. Rahman, G. Tischler, and T. Walen.
Improved algorithms for the range next value problem and applications. Theor. Comput.
Sci., 434:23–34, 2012.

14 J. Fischer, T. Gagie, T. Kopelowitz, M. Lewenstein, V. Mäkinen, L. Salmela, and
N. Välimäki. Forbidden patterns. In LATIN, 2012. doi:http://doi.acm.org/10.1007/
978-3-642-29344-3_28.

15 A. Grønlund and S. Pettie. Threesomes, degenerates, and love triangles. In Proceedings
of the 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages
621–630, 2014.

16 D. Hermelin, A. Levy, O. Weimann, and R. Yuster. Distance oracles for vertex-labeled
graphs. In Automata, Languages, and Programming - 38th International Colloquium, IC-
ALP (2), 2011. doi:10.1007/978-3-642-22012-8_39.

17 W. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. String retrieval for multi-pattern
queries. In SPIRE, 2010.

18 W. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. Document listing for queries with
excluded pattern. In CPM, 2012.

19 P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In 30th Annual ACM Symposium on Theory of Computing, pages 604–613,
May 1998.

20 D. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics. In 34th
Annual ACM Symposium on the Theory of Computing, pages 63–66, 2002.

21 O. Keller, T. Kopelowitz, S. Landau Feibish, and M. Lewenstein. Generalized substring
compression. Theor. Comput. Sci., 525:42–54, 2014. doi:http://doi.acm.org/10.1016/
j.tcs.2013.10.010.

22 O. Keller, T. Kopelowitz, and M. Lewenstein. Range non-overlapping indexing and success-
ive list indexing. In Algorithms and Data Structures, 10th International Workshop, WADS,
pages 625–636, 2007. doi:http://doi.acm.org/10.1007/978-3-540-73951-7_54.

23 T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the 3SUM conjecture. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 1272–1287, 2016. doi:10.1137/1.9781611974331.ch89.

http://dx.doi.org/10.1137/1.9781611973730.39
http://dx.doi.org/10.1137/1.9781611973730.39
http://dx.doi.org/10.1137/1.9781611974331.ch143
http://dx.doi.org/10.1007/978-3-642-33090-2_29
http://kenclarkson.org/nn_survey/p.pdf
http://kenclarkson.org/nn_survey/p.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/1132516.1132599
http://dx.doi.org/http://doi.acm.org/10.1007/978-3-642-29344-3_28
http://dx.doi.org/http://doi.acm.org/10.1007/978-3-642-29344-3_28
http://dx.doi.org/10.1007/978-3-642-22012-8_39
http://dx.doi.org/http://doi.acm.org/10.1016/j.tcs.2013.10.010
http://dx.doi.org/http://doi.acm.org/10.1016/j.tcs.2013.10.010
http://dx.doi.org/http://doi.acm.org/10.1007/978-3-540-73951-7_54
http://dx.doi.org/10.1137/1.9781611974331.ch89

10 Color-Distance Oracles and Snippets

24 R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for proximity search.
In 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 791–801, January
2004.

25 K. Green Larsen, J. I. Munro, J. Sindahl Nielsen, and S. V. Thankachan. On hardness of
several string indexing problems. In CPM, 2014.

26 M. Lewenstein. Orthogonal range searching for text indexing. In Space-Efficient Data
Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion
of His 66th Birthday, pages 267–302, 2013.

27 J. I. Munro, Y. Nekrich, and J. Scott Vitter. Fast construction of wavelet trees. In String
Processing and Information Retrieval - 21st International Symposium, SPIRE, pages 101–
110, 2014.

28 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In SODA, pages
657–666. ACM/SIAM, 2002.

29 Y. Nekrich and G. Navarro. Sorted range reporting. In Algorithm Theory - SWAT 2012 -
13th Scandinavian Symposium and Workshops, pages 271–282, 2012.

30 M. Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In STOC, pages
603–610. ACM, 2010. doi:10.1145/1806689.1806772.

31 C. Yu, W. Hon, and B. Wang. Improved data structures for the orthogonal range successor
problem. Comput. Geom., 44(3):148–159, 2011.

http://dx.doi.org/10.1145/1806689.1806772

	Introduction
	Our Results
	Related Work

	Color-distance Oracle
	Multi-color-distance Oracle
	Back to Snippets
	Conditional Lower Bounds

