Sketching Cuts in Graphs and Hypergraphs

Dmitry Kogan
Weizmann Institute of Science
) Rehovot, Israel
dimakogan@gmail.com

ABSTRACT

Sketching and streaming algorithms are in the forefront of
current research directions for cut problems in graphs. In
the streaming model, we show that (1 —¢)-approximation for
MaX-CUT must use n' =) space; moreover, beating 4/5-
approximation requires polynomial space. For the sketching
model, we show that every r-uniform hypergraph admits a
(1+¢)-cut-sparsifier (i.e., a weighted subhypergraph that ap-
proximately preserves all the cuts) with O(e *n(r +logn))
edges. We also make first steps towards sketching general
CSPs (Constraint Satisfaction Problems).

Categories and Subject Descriptors

E.1 [Data]: Data Structures; F.2 [Theory]: Analysis of
Algorithms and Problem Complexity

General Terms
Theory, Algorithms

Keywords
Sketching, Sparsifiers, Streaming, Hypergraphs, Max-Cut

1. INTRODUCTION

The emergence of massive datasets has turned many al-
gorithms impractical, because the standard assumption of
having (fast) random access to the input is no longer valid.
One example is when data is too large to fit in the main
memory (or even on disk) of one machine; another is when
the input can be accessed only as a stream, e.g., because its
creation rate is so high, that it cannot even be stored in full
for further processing. Luckily, the nature of the problems
has evolved too, and we may often settle on approximate,
rather than exact, solutions.

These situations have led to the rise of new computational
paradigms. In the streaming model (aka data-stream), the
input can be accessed only as a stream (i.e., a single pass

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITCS’15, January 11-13, 2015, Rehovot, Israel.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3333-7/15/01 ...$15.00.
http://dx.doi.org/10.1145/2688073.2688093.

Robert Krauthgamer
Weizmann Institute of Science
Rehovot, Israel .
robert.krauthgamer@weizmann.ac.il

of sequential access), and the algorithm’s space complexity
(storage requirement) must be small relative to the stream
size. In the sketching model, the input is summarized (com-
pressed) into a so-called sketch, which is short yet suffices
for further processing without access to the original input.
The two models are related — sketches are often useful in the
design of streaming algorithms, and vice versa. In particu-
lar, lower bounds for sketch-size often imply lower bounds
on the space complexity of streaming algorithms.

Graph problems.

Recently, the streaming model has seen many exciting de-
velopments on graph problems, where an input graph G =
(V, E) is represented by a stream of edges. The algorithm
reads the stream and should then report a solution to a pre-
determined problem on G, such as graph connectivity or
maximum matching; see e.g. the surveys [37,27]. Through-
out it will be convenient to denote n = |V, and to assume
edges have weights, given by w : E — Ry. While initial
efforts focused on polylogarithmic-space algorithms, vari-
ous intractability results have shifted the attention to what
is called the semi-streaming model, where the algorithm’s
space complexity is O(n) In general, this storage is not
sufficient to record the entire edge-set.

Cuts in graphs is a classical topic that has been studied
extensively for more than half a century, and the last two
decades have seen a surge of attention turning to the ques-
tion of their succinct representation. The pioneering work
of Benczur and Karger [5] introduced the notion of cut spar-
sifiers: given an undirected graph G = (V, E,w), a (1 + ¢)-
sparsifier is a (sparse) weighted subgraph G’ = (V, E’,w')
that preserves the value of every cut up to a multiplicative
factor 1 + €. Formally, this is written as

w'(5,5) .

VS CV, 1§w(S’S)§1+s, (1)
where w(S, S) = >cep:|ens|=1 We is used to denote the value
of the cut. It is sometimes convenient to replace the left-
hand side of with 1 — ¢ or l—is, which affects ¢ < % by
only a constant factor. In addition to their role in saving
storage, sparsifiers are important because they can speed-
up graph algorithms whose running time depends on the
number of edges. Observe that sparsifiers are a particularly
strong form of graph-sketches since on top of retaining the
value of all cuts, they hold the additional property of being
subgraphs, rather than arbitrary data structures.

'We use O(f) to denote O(f polylog f), which suppresses
logarithmic terms.

Ahn and Guha [1] built upon the machinery of cut sparsi-
fiers to present an O(n/52)-space streaming algorithm that
can produce a (1 + ¢)-approximation to all cuts in a graph.
Further improvements handle also edge deletions |2} 3] |10],
or the stronger notion of spectral sparsification (see |16] and
references therein). These results are nearly optimal, due to
a space lower bound of Q(n/e?) bits for sketching all cuts in
a graph [4] (which improves an earlier bound of [1]).

Recent Directions.

These advances on sketching and streaming of graph cuts
inspired new questions. One direction is to seek space-
efficient streaming algorithms for specific cut problems, such
as approximating MAX-CuT, rather than all cuts. A second
direction concerns hypergraphs, asking whether cut sparsi-
fication, sketching and streaming can be generalized to hy-
pergraphs. Finally, viewing cuts in graphs and hypergraphs
as special cases of constraint satisfaction problems (CSPs),
we ask whether also other CSPs admit sketches. Currently,
there is a growing interest in generalizing graph cut prob-
lems to broader settings, such as sparsifying general set sys-
tems using small weighted samples [30], high-dimensional
expander theory [20], sparsest-cuts in hypergraphs [26] [25],
and applications of hypergraph cuts in networking [33].

1.1 Our Results

We first address a natural question raised in |14, Question
10], whether the well-known MAX-CUT problem admits ap-
proximation strictly better than factor 1/2 by streaming al-
gorithms that use space sublinear in n. Here, MAX-CUT de-
notes the problem of computing the value of a maximum cut
in the input graph G (and not the cut itself), since reporting
a cut requires space Q(n) (see Sectionfor a short proof).
We prove that for every fixed ¢ € (0, 5), streaming algo-
rithms achieving (1 — €)-approximation for MAX-CUT must
space. In fact, even beating 4/5-approximation
requires polynomial space. Our result is actually stronger
and holds also in a certain sketching model. Previously, it
was known that streaming computation of MAX-CUT ez-
actly requires (n?) bits [36]. Our proof is by reduction
from the BOOLEAN HIDDEN HYPERMATCHING problem, and
captures the difficulty of distinguishing, under limited com-
munication, whether the graph is a vertex-disjoint union of
even-length cycles (in which case the graph is bipartite) or
of odd-length cycles (in which case we can bound the maxi-
mum cut value). See Section [2| for details.

Second, we study sparsification of cuts in hypergraphs, and
prove that every r-uniform hypergraph admits a sparsifier
(weighted subhypergraph) of size O(rn/e?) that approxi-
mates all cuts within factor 1 £ €. This result immediately
implies sketching and streaming algorithms (following [1]).
Here, the weight of cut (9, S) in a hypergraph H = (V, E, w)
is the total weight of all hyperedges e € E that intersect both
S and S E| This question was raised by de Carli Silva, Har-
vey and Sato |7}, Corollary 8], who show that every r-uniform
hypergraph has a sparsifier of size O(n) that approximates
all cuts within factor ©(r?). Along the way, we establish
interesting, if not surprising, bounds on the number of ap-

2Another possible definition, see [7, Corollary 7], is
> ecr We-leNS|-lenS|. The latter definition seems techni-
cally easier for sparsification, although both generalize the
case of ordinary graphs (r = 2).

proximately minimum cuts in hypergraphs. Technically, this
is our most substantial contribution, see Section[3]for details.

Finally, as a step towards understanding the sketching
complexity of a wider range of CSPs, we show that every k-
SAT instance on n variables admits a sketch of size O(kn/c?)
that can be used to (1+¢)-approximate the value of all truth
assignments. We prove this result in Section [3.3] by reducing
it to hypergraph sparsification. We remark that sketching of
CNF formulae was studied in a different setting, where some
computational-complexity assumptions were used in [8] to
preclude a significant size-reduction that preserves the sat-
isfiability of the formula. Our sparsification result differs
in that it approximately preserves the value of every assign-
ment.

1.2 Related Work

Independently of our work, Kapralov, Khanna and Su-
dan [15] study the same problem of approximating MAX-
CuUT in the streaming model. They first prove that for ev-
ery fixed ¢ > 0, streaming algorithms achieving (1 — ¢)-
approximation for MAX-CUT must use n'~ () space. (This
is similar to our Theorem) They then make significant
further progress, and show that achieving an approximation
ratio strictly better than (the trivial) 1/2 requires Q(y/n)
space. In fact, this result holds even if the edges of the
graph are presented in a random (rather than adversarial)
order.

Hypergraph sparsifiers of size O(n?/e?) are implied by a
result of Newman and Rabinovich [30] for the following prob-
lem of approximating measures on set systems. Let F be a
set system over a finite set X, let u be a measure on X (which
naturally extends to a measure on F) and let ¢ € (0,1).
The goal is to construct a measure p*, supported on a small
subset of X, such that the extensions of 1 and of p* to F
approximate each other, i.e., VS € F, u*(S) € (1 £¢)u(S).
They show a construction in which the support size of p* can
be bounded by a structural parameter of F called triangular
rank and denoted trk(F). Specifically, in their construction
|supp(1*)| = O(trk(F) - log | F|/e*). They also define split-
ting set systems — a special class of set systems in which
X,F C 2" are two families of subsets of some underlying
set V. For splitting systems they prove |30, Claim 4.1] that
trk(F) < |V| — 1. The archetype of splitting set systems
is in fact graph and hypergraph cuts, where V is the set of
vertices, X is the set of hyperedges, and F is the set of cuts.
Therefore their construction implies hypergraph sparsifiers
of size O(n2/52)E|

More broadly, the general theme of graph compression —
succinctly representing a graph while preserving some of its
combinatorial properties — is studied extensively in the lit-
erature, with many examples of various flavors. A classical
example is a Gomory-Hu tree [12] which is a weighted tree
that represents the minimum s — ¢ cut values for all pairs of
vertices in an input graph. Another notable example is the
notion of graph spanners (defined by Peleg and Schiiffer [31])

3Their argument does not imply a bound stronger than
O(n?/e?) even for r-uniform hypergraphs. They show
that trk(F) > VCdim(F) where VCdim(F) is the Vapnik-
Chervonenkis dimension of the set system. FEven when
F is the family of cuts of a (2-uniform) graph, it holds
VCdim(F) > n — 1, which follows, for example, from con-
sidering a path on n vertices, and observing that the set of
n — 1 edges is shattered by the set of cuts.

— spar subgraphs that approximately preserve the shortest
path distances between all pairs of vertices in the graph. The
related notion of distance oracles (introduced by Thorup and
Zwick [32]) deals with arbitrary data structures, rather than
subgraphs, that can approximate the distances between all
pairs of vertices, with emphasis on achieving low space and
very fast query time. Other models aim to preserve the
combinatorial property of interest only with respect to some
predetermined (small) subset of the vertices, called termi-
nals. For example, Moitra [28] introduced the notion of
vertezx sparsifiers — graphs (not necessarily subgraphs) that
approximately preserve the values of minimum cuts sepa-
rating any partition of the terminals. In a subsequent work,
Leighton and Moitra [23| extended this definition and intro-
duced flow sparsifiers — graphs that approximately preserve
the congestion of every multicommodity flow with endpoints
supported on the set of terminals.

2. SKETCHING MAX-CUT

The classical MAX-CUT problem is perhaps the simplest
MaX-CSP problem. Thus, it has been studied extensively,
leading to fundamental results both in approximation algo-
rithms [11] and in hardness of approximation [21]. It is thus
natural to study MAX-CUT also in the streaming model.
As mentioned above, preserving the values of all cuts in a
graph requires linear space even if only approximate values
are required [1} 4], which raises the question whether smaller
space suffices to approximate only the MAX-CUT value (as
mentioned above, it is natural to require the algorithm to
report only the value of the cut as opposed to the cut itself,
see Section [2.2)).

Sketching all cuts in a graph clearly preserves also the
maximum-cut value, and thus an O (%) space streaming
algorithm for (1 — ¢)-approximation of MAX-CuT follows
immediately from [1]. Yet since the maximum cut value is
always Q(m), where m is the total number (or weight) of
all edges, a similar result can be obtained more easily by
uniform sampling (achieving em additive approximation for
all cuts) |35, Theorem 21]. The latter approach has the
additional advantage that it immediately extends to hyper-
graphs.

It turns out that this relatively straightforward approach
is not far from optimal, as we prove that streaming al-
gorithms for (1 — ¢)-approximation of MAX-CUT require

1-0(e)

n space.

THEOREM 2.1. Fix a constant € € (0,%). Then every

(randomized) streaming algorithm that computes a (1 — ¢)-
approzimation of the MAX-CUT walue in n-vertex graphs re-
quires space Q(nl_l/t) fort= Li - %J, which in particular
means space n' =9,
To prove this result, we consider the somewhat stronger one-
way two-party communication model, where instead of arriv-
ing as a stream, the set of edges of a graph is split between
two parties, who engage in a communication protocol to
compute (approximately) the graph’s maximum-cut value.
Since a lower bound in this model immediately translates
to the original streaming model, the theorem above follows
immediately from Theorem below.

2.1 Proving Theorem 2.1

DEFINITION 2.2 (MAX-Cut®). Let G = (V,E4 U EB)
be an_input graph on |V| = n vertices with maximum cut
valufl c*, and € > 0 some small constant. MaX-CUT® is a
two-player communication game where Alice and Bob receive
the edges Ea and Ep respectively and need to output a value
¢’ such that with high probability (1 —e)c* < < c*.

THEOREM 2.3. Fiz a constant € € (0, %) Then the ran-
domized one-way communication complezity of MAX-CuUT®

is QYY) fort = = — 3]

The proof is by a reduction from the following communi-
cation problem studied in [34].

DEFINITION 2.4 (BHHY). The BooLEAN HIDDEN Hy-
PERMATCHING problem is a communication complexity prob-
lem where

o Alice gets a boolean vector x € {0,1}" where n = 2kt
for some integer k,
e Bob gets a perfect hypermatching M on n vertices where
each edge has t vertices and a boolean vector w of length
n/t.
Let Mz denote the length-n/t boolean vector

@ LMy 5> @ TM,y, 4.4

1<i<t 1<i<t

where (My1,...,Mi¢),...,(Myj1,..., Myyy) are the edges
of M. It is promised that either Mz & w = 1™/ or Mz®w =

0™*. The problem is to return 1 in the former case, and to

return 0 in the latter.

LEMMA 2.5 (|34, THEOREM 2.1]). The randomized one-
way communication complexity of BHHY, where n = 2kt for
some integer k > 1 s Q(n'~t).

PROOF OF THEOREM [2.3l We show a reduction from
BHHY, to Max-Cutr®. Consider an instance (x, M,w) of
the BHHY, problem: Alice gets = € {0,1}", and Bob gets a
perfect hypermatching M and a vector w € {0,1}"/*.

We construct a graph G for the MAX-CuUT® problem as
follows (see Figure for an example):

e The vertices of G are V' = {v; } 27 U{u;}27% U{wl}fZ{t

e The edges E4 given to Alice are: for every ¢ € [n], if
x; = 0, Alice is given two “parallel” edges (u2i—1, v2i—1),
(u2i,v2:); if z; = 1, Alice is given two “cross” edges
(u2i—1,v2i), (w2, V24—1).

e The edges Ep given to Bob are: for each hyperedge
M; = (i1,42,...,4t) € M (where the order is fixed
arbitrarily):

— For k=1,2,...,t—1, Bob is given
(UQik—17U2ik+1—1) and (u2ik,U2ik+1)

— For k =t, Bob is given (u2;,,w2;) and
(1}21'17171112;'71);

— If w; = 0 Bob is given two “parallel” edges
(w2;,v2i;,) and (w2;-1, vai; —1);
if w; = 1, Bob is given two “cross” edges
(w2j7'U2i1—1) and (w2j—177}2i1)

4For the proof of the lower bound it suffices to restrict
our attention to unweighted graphs, with all edges having
unit weight.

Figure 1: An example of a gadget constructed in the
proof of Theorem for t = 3, a matching M that
contains the hyperedge M, = (1,2,3), z1 = 1, 22 = 0,
z3 = 1 and w; = 0. The result is two paths of length
7. Alice’s and Bob’s edges are shown as solid and
dashed lines respectively.

By definition, for each j € [n/t], if M; = (i1,42,...,4t) €
M and (Mz); ® w; = 0 we have 3 1 _, x;, @ w; = 0. Since
the number of 1 bits in the latter sum is even, when we start
traversing from ug;, we go through an even number of “cross”
edges and complete a cycle of length 2¢ 4+ 1. Similarly when
starting our traversal at uz;, -1 we complete a different cycle
of the same length. Therefore if (z, M,w) is a 0O-instance
the graph consists of 2* paths of (odd) length 2¢ + 1 each.
Therefore the maximum cut value is ¢ = 2t - 27" =4n.

On the other hand if (Mz); ®w; = 1, starting our traver-
sal at wo;,—1, we pass an odd number of cross edges and
end up at wugi,, from where we once again pass an odd
number of cross edges, to complete a cycle of total length
2. (2t 4+ 1) = 4t + 2 that ends back in ug;, —1. Therefore, if
(z, M,w) is a l-instance the graph consists of n/t paths of
(even) length 4t + 2 each. The maximum cut value in this
case is] = 4n +27%.

Observing that cf/c; = =20~ = 2 <] — ¢, we con-

4n+2n/t 2t+1

clude that a randomized one-way protocol for MAX-Cut®
(on input size n’ = 4n + n/t = O(n)) gives a randomized
one-way protocol for BHHY,. By Lemma the Theorem

follows. [

PROOF OF THEOREM 23] Any streaming algorithm for
MAX-CuT® leads to a one-way communication protocol in
the two party setting. Moreover the communication com-
plexity of this protocol is exactly the space complexity of the
streaming algorithm. Hence by Theorem the streaming
space complexity is at least as high as the one way random-
ized communication complexity. []

2.2 Reporting a Vertex-Bipartition
(rather than a value)

We show a simple Q(n) space lower bound for reporting a
vertex-bipartition that gives an approximate maximum cut.

PROPOSITION 2.6. Let € € (0, %) be some small constant.
Suppose sk is a polynomial time sketching algorithm that
outputs at most s = s(n,e) bits, and est is an estimation
algorithm, such that together, for every n-vertex graph G,
(with high probability) they output a vertex-bipartition that
gives an approximately mazimum cut; i.e., est(sk(G)) = S

such that w(S,S) > (1 — €)w where W is the mazimum cut
in G. Then s > Q.(n).

PROOF. Let C C {0,1}" be a binary error-correcting code
of size |C| = 2 with relative distance e. We may assume
w.l.o.g. that for every z € C the hamming weight |z| is
exactly n/2 (for instance by taking C' = {zZ : x € C} where
Z denotes the bitwise negation of z), and that there are no
xz,y € C such that |z — §| < $n (since for every z € C
there could be at most one “bad” y, and we can discard one
codeword out of every such pair).

Fix a codeword =z € {0,1}" and consider the complete
bipartite graph G, = (V, E) where V = [n] and E = {(,) :
z; = 0Az; = 1}. The maximum cut value in G, is obviously
@ = n’/4. Let y € {0,1}" such that ien < |z —y| < 2.
Identifying z, y with subsets Sz, Sy C [n], and using the fact
that [S.ASy| = |z — y| > ien, the value of the cut (S, Sy)
in G is

|E(Sy, 8y)| = % =[S0\ Syl (2 1Sy \ Sa)
— 1S, \ Sl (2 = 12\ 5,]) < (1 — Q) 2.

Let sk(Gy) be the sketch of G, and let est(sk(Gy)) = S
be the output of the estimation algorithm on the sketch of
G. Therefore if the sketch succeeds (which by our assump-
tion happens with high probability) and the cut (S, S) has
value at least (1 — §(g))w, then by the preceding argument
the corresponding vector g is of relative hamming distance
smaller than § from x and then one can decode = from S E|
By standard arguments from information theory, the size s
of a sketch that succeeds with high probability must be at
least Q(log |C]) = Q:(n). O

2.3 2/3-Approximation of Max-Cut in the Two
Party Model

While [15] have recently shown that a polynomial num-
ber of bits is necessary for any non-trivial (i.e., strictly bet-
ter than 1/2) approximation of MAX-CUT in the streaming
model, we remark that a 2/3-approximation communication
protocol that uses only a logarithmic number of bits exists
in the one-way two-party model. In the latter model, the
problem of giving a (1 — ¢)-approximation of the maximum
cut exhibits an exponential gap in the communication com-
plexity between the case of ¢ = 1/5, where we have shown
that a polynomial number of bits is necessary, and the case
e = 1/3, for which logarithmically many bits suffice, as fol-
lows from the following simple protocol.

2

PROPOSITION 2.7. Let G = (V,Ea U EB) be an input
graph on |V| = n vertices. Let wa and wp be the mazimum
cut values in Ga = (V,Ea) and Gg = (V, EB) respectively.
Then the maximum cut value w in G satisfies

2(wa +wp) <w < wa + wp.

PrOOF. Consider cuts Ca,Cp : V — {0,1} such that
w(Ca) = wa and w(Cp) = wp. Let C:V — {0,1} be a
cut chosen uniformly at random from {Ca,Cp,Ca & Cg}
where we define (Ca @ Cp)(v) = Ca(v) + Cp(v) (mod 2)
for every v € V. For an edge e = (u,v) € Ca, either
Cg(u) ® Cg(v) = 1 or (Ca ®Cg)(u) + (Ca ® C)(v) =

®Since the cuts (S, S) has the same value as (S, S), the
vector xg can actually be e-close to Z, but by taking our code
to have no codeword being close to the negation of another
codeword we can always try decoding both xs and Zs.

(Ca(u) +Ca(v)) + (Ca(u)+Cs(v)) = 14+ 0 = 1. Either
way Proe,(ca,cp.cancpile € C] = 2. Similarly the same
holds for an edge e € Cp. Therefore by linearity of expecta-
tion a random cut in {Ca,Cp,Ca @ Cp} has value at least
%(wA + wg). The second inequality is trivial. [

COROLLARY 2.8. The one-way communication complex-
ity of Max-CuTr'/? is O(logn).

ProOOF. Alice uses her input to compute the value wa
and sends it to Bob. Bob uses his input to compute the
value wp and outputs 2(wa +wgp). O

3. SKETCHING CUTS IN HYPERGRAPHS

In their celebrated work, Benczir and Karger [5] (with fur-
ther improvements and simplifications in |18} |19} |6]) showed
an effective method to sketch the values of all the cuts of
an undirected (weighted) graph G = (V, E, w) by construct-
ing a cut-sparsifier, which is a subgraph with different edge
weights, that contains only O (n/aQ) edges, and approxi-
mates the weight of every cut in G up to multiplicative fac-
tor 1 £ . We generalize the ideas of Benczir and Karger
to obtain cut-sparsifiers of hypergraphs, as stated below.
Such sparsifiers (and sketches) can be computed by stream-
ing algorithms that use O(rn) space for r-uniform hyper-
graphs using known techniques (of [1] and subsequent work).
Throughout this work we allow r-uniform hypergraphs to
contain also hyperedges with less than r endpoints (for in-
stance by allowing duplicate vertices in the same hyperedge).

THEOREM 3.1. For every r-uniform hypergraph
H = (V,E,w) and an error parameter ¢ € (0,1), there is a
subhypergraph H. (with different edge weights) such that:

e H. has O (n(r + logn)/e®) hyperedges.

e The weight of every cut in H. is within 1 +¢& times the

weight of the corresponding cut in H.

Furthermore, H can be constructed in O(mn?) time where
m = |E| is the number of hyperedges in the original hyper-
graph.

A key combinatorial property exploited in the Benczir-
Karger analysis is an upper bound on the number of cuts
of near-minimum weight [17]. It asserts that the number
of minimum-weight cuts in an n-vertex graph is at most n?
(which had been previously shown by [24] and [9]), and more
generally, there are at most n2* cuts whose weight is at most
a > 1 times the minimum (more refined bounds for oo = 4/3
and @ = 3/2 appear in [29] and [13] respectively). These
bounds are known to be tight (e.g., for an n-cycle). Cor-
rectly generalizing this property to r-uniform hypergraphs
appears to be a nontrivial question. A fairly simple analysis
generalizes the latter bound to n"*, but using new ideas, we
manage to obtain the following tighter bound.

THEOREM 3.2. Let H = (V, E,w) be a weighted r-uniform
hypergraph with n vertices and minimum cut value w. Then
for every half-integer o« > 1, the number of cuts in H of
weight at most cad is at most O(2°"n>*).

We prove this “cut-counting” bound in Section With
this bound at hand, we prove Theorem similarly to the
original proof of [5] for graphs, as outlined in Section

Cuts in hypergraphs are perhaps one of the simplest ex-
amples of CSPs, which we now formally define.

DEerFINITION 3.3. A Constraint Satisfaction Problem is a
quintuple (X, X, P,C,w) where:
e Y is a finite alphabet,
o X ={x1,...,z,} is a set of variables taking their val-
ues from %,
P ={P,..., P} is set of r-ary predicates,
o C ={C1,...,Cn} is a set of constraints, where each
constraint C; consists of one of the predicates P; and
a sequence of variables (xij)j—1 from X,
o w: C — Ry is a weight function on the set of con-
straints.

For example, in the case of cuts in hypergraphs, the vertices
are variables over the binary alphabet, and the hyperedges
are constraints defined by the predicate NOT-ALL-EQUAL.
A natural question is whether general CSPs admit sketches
as well, where a sketch should provide an approximation
to the value of every assignment to the CSP (as usual, the
value of an assignment is the total weight of constraints it
satisfies). Specifically we think of both ¥ and P as being of
constant size, and are interested in the dependence on n and
r. Although we are still far from answering this question
in full generality, we prove that for the well-known SAT
problem, sketching is indeed possible.

THEOREM 3.4. For every error parameter e € (0,1), there
is a polynomial time sketching algorithm that produces from
anr-CNF formula ® onn variables a sketch of size O(rn/e?),
that can be used to (1 £ €)-approzimate the value of every
asstgnment to P.

3.1 Counting Near-Minimum Cuts in Hyper-
graphs

In this subsection we prove our upper bound on the num-
ber of near-minimum cuts (Theorem . We generalize
Karger’s min-cut algorithm [17] to hypergraphs, and then
show that its probability to output any individual cut is
not small (Theorem, which immediately yields a bound
on the number of distinct cuts. Finally, we show that the
exponential dependence on r in Theorem is necessary

(Section B.1.3).
3.1.1 A Randomized Contraction Algorithm

Consider the following generalization of Karger’s contrac-
tion algorithm [17] to hypergraphs.

Algorithm 3.5 CONTRACTHYPERGRAPH
Input: an r-uniform weighted hypergraph H = (V, E, w)
a parameter o > 1
Output: acut C = (S,V\ S5)
1: H + H
2: while |V(H')| > ar do
3: e < random hyperedge in H' with probability pro-
portional to its weight
4: contract e by merging all its endpoints and removing
self-loopﬁﬂ
5: C' + random cut in H' (bipartition of V(H'))
6: return the cut C'in H inducecﬂ)y the cut C’

5Self-loops refers to hyperedges that contain only a single
vertex. Note also that the cardinality of an edge can only
decrease as a result of contractions.

"Since after the sequence of contractions, each vertex in
V(H) corresponds to exactly one vertex in V(H'), a vertex

THEOREM 3.6. Let H = (V, E,w) be a weighted r-uniform
hypergraph with minimum cut value W, let n = |V|, and let
a > 1 be some half-integer. Fix C = (S,V \ S) to be some
cut in H of weight at most a. Then Algorithm[3.5 outputs
the cut C' with probability at least Zm"fl“ for

20+ 1 (n—a(r —2) -
(r+1) 20

if ar < n and Qn,ra = 1 otherwise.

Q@n,ria =

Since Theorem [3.6] gives a lower bound on the probability
to output a specific cut (of certain weight), and different
cuts correspond to disjoint events, the theorem implies that
the number of cuts of weight at most c is at most

(20”_1 - 1) (7‘ + 1) n _ ar 2o
Qnra 2a +1 90) = O @77,
proving Theorem [3.2]

ProOF. Fix C = (S,V '\ S) to be some cut of weight aw
in H. For ¢ € [n], denote by I; the iteration of the algo-
rithm where H’ contains t vertices. Since a contraction of a
hyperedge may reduce the number of vertices by anywhere
between 1 and r — 1, in a specific execution of the algo-
rithm, not necessarily all the {I;}{—; occur. Similarly, let
the random variable F; be the edge contracted in iteration
t.

We say that an iteration I; is bad if E, € C (i.e., the
hyperedge contains vertices from both S and V' \ S). Oth-
erwise, we say it is good (including iterations that do not
occur in the specific execution such as I1,...,). For any

ar—1 _
2 1 <

fixed ey, ...,er41 € E define
qt(e’"«a"'aet‘f’l) =
Pr[l,...,I1 are good|E, = en, ..., Eirp1 = €t41]

Note that g, is simply the probability that all iterations of
the algorithm are good i.e., no edge of the cut C is con-
tracted. When that happens, in step [§] of the algorithm,
there exists a cut C’ in H’' that corresponds to the cut C
in H. Since at that stage, there are at most ar vertices
in H', the probability of choosing C’ is at least ﬁ
Hence the overall probability of outputting cut C is at least
qn - ﬁ We thus need to give a lower bound on ¢,,. To
this end we prove below the following lemma.

LEMMA 3.7. gi(en,...,et41) > Qira for every t € [n],
and every en,...,ery1 € B\ C.

Using the lemma for ¢t = n bounds the overall probability of
outputting cut C' and proves Theorem |

3.1.2 Proof of Lemma[3.7]

We prove the lemma by (complete) induction on ¢. For
the base case, note that g(en,...,er41) =1for 1 <t < ar
since no contractions take place in those iterations.

For the general case, fix an iteration I; and from now on,
condition on some set of values E, =en,..., Fi11 = ery1.
All probabilities henceforth are thus conditioned, and for
brevity we omit it from our notation. Observe that depend-
ing on the cardinality of E}, the next iteration (after itera-
tion I;) may be one of It_1, ..., [t—ry1. Let p; = Pr[|E¢| = 1]

bipartition in H’ naturally induces a vertex bipartition in

and let y; = Pr[|Ey| =i A E; € C]EHﬂ We can now write a
recurrence relation:

gi(en,...,et41) =

= Pr[[t, ...,h are good | En, =en,..., Fi1 = et+1]

:ipr[w = inE: ¢C]

~Pr[[t,i+17...,l1 are good | |E¢| =4, E; ¢ C]

T

= Z(pz —4i)Eg, [Qt—i+1(€n, ceey

=2

err1, Br) | |Be| =i, By ¢ C}

3

v

(pz - yi)Qtf'H»l,'r,a-

i=2
Fori=2,...,rlet Wi = 3>/,)00, w(e’) be the total
weight of hyperedges in H' of cardinality i (at iteration t)
and let W = Y7, W; be the total weight in H'.

Observe that p; = W' since F; is chosen with probability
proportional to the hyperedge s weight, and Zuev/ deg(v) =
> o1 - Wi since a hyperedge of cardinality ¢ is counted %
times on the left-hand side. By averaglng, there exists a
vertex v € V(H') such that deg(v) < +37_,4- Wi, and
since it induces a cut in H Whose welght is exactly deg(v),
we obtain that W < deg(v) < 137 i Wi.
Next note that

%\g

Zz;yz—Pr[EtEC S %Z W Zz i,
where the first inequality uses the conditioning on all previ-
ous iterations being good, which means that all hyperedges
in C have survived in H', and thus wg (C) = wy/ (C).
Altogether, to prove the lemma it suffices to show that
the value of the following linear program is at least Q¢ r.a-
From now on we omit the subscripts r and «, denoting Q; =

Qt,r,a-

Pi — Yi)Qi—i+1

minimize E

subject to 0 S Yi < pi

>het

1=2

Zyi <3< ZZ “ Pi-
1=2 =2

First observe that the last constraint implies

T T T ka T
DS EY U mSE) ren=F Y <) p ()
i=2 i=2 i=2 i=2 i=2

which means that in every feasible solution there is always
some y; < p;. This implies that in every optimal solution,
the last constraint is tight, since otherwise increasing such a

Vi=2,...,7

8Since not all iterations occur in all executions, it might
be the case that no edge is contracted in iteration ¢. In
that case iteration t is good, and hence by the induction
hypothesis the claim holds.

“Note that |e| refers to the edge’s cardinality, whereas
w(e;) refers to its weight.

y; will decrease the value of the solution, without violating
any of the other constraints.

It is easy to see that this linear program is both feasible
and bounded, and therefore has an optimal solution that
is basic (i.e., a vertex of the polytope). The dimension of
the linear program (i.e., the number of variables) is 2r — 2,
and thus in a basic feasible solution (at least) 2r — 2 of the
2r constrains must be tight. Therefore there are at most 2
loose (i.e., not tight) constraints among the 2r—2 constraints
0 < y; < p;, meaning there are at most 2 indices ¢,j such
that p; # 0. We proceed by analyzing the four possible
cases:

e 0 <y, =p; and 0 < y; = p;. This case is not possi-
ble, since that would have implied 7 _, yi = > ;_, ps,
contradicting ([2)).

e 0 =1y; <p;and 0 = y; < p;. This case is also not
possible since that would have implied }°7_, y: = 0,
contradicting the tightness of the last constraint in an
optimal solution.

e 0 =y; <p;and 0 < y; = p;. Since all other p, = 0,
the other LP constraints become

pit+p;i=1
0+4p; =i +y; = $(ipi+Jps)-

Solving the two equations we obtain:

LP = (17 HM W)Qz i+1

2 (1 - t+a1 oz'r‘) Qt i+l = t-ﬁ—tazarom" Qt it1- (3)

To use the induction hypothesis, we distinguish be-
tween two cases:

1. t—i4+ 1 > ar, in which case it is thus sufficient
to prove the following claim.

CLAIM 3.8. For every half-integer @ > 1 and
integers r > 1 > 2 and t > ar + i — 1, it holds
Qt—i+1,r,a > t+ai—ar.

Qt,r,a - t—ar
t—a(r—2)\
PRrROOF. Recall that Q: = ('rj_ll) (2(a))
and denote t' =t — ar. Then
2041 (t'+2a
Qt7i+l,r,o¢ o (r+1) (2)
T 2a41 (t/—it2a+1

Qt,r,a ('rj—l) (2)
B ' +2a)---(t'+1)
T W H2a—i+ 1) H1—i+1)
(' +2a)--- (' +2a—i42)
N vt —i+2)

2c 2c

=(1+=)... (1

(+%) (i)

20\ 1
2 (1 + 7)
20(i — 1)

1+ ”

S14 % _ttai-ar
t—ar

2. t— 1+ 1 < ar, in which case Q¢—;+1 = 1. Here
we get

i i
LP2>1—-m 2l -aig =

> 2a+1 —
= (T+1>(t—az((r;~—2)) Qt,

1 1
ai+1 2 ar+1

where the last inequality follows from the fact
that t —a(r—2) > ar+1—a(r —2) > 2a+ 1.

e 0 <y <p;and 0 =y; = p;. In this case p; = 1,
Yi = %, and therefore
LP = (1 - %) Qt—i"'l 2 (1 = a r— 7,)) Qt i+1,
which is exactly as in in the previous case.

Having bounded the value of the linear program, this com-
pletes the proof of Lemma [3.7]

3.1.3 Lower Bound

For completeness, we remark that at least for a > 1, the
exponential dependence on r in Theorem [3.2]is indeed neces-
sary. Consider a “sunflower” hypergraph on n = rm—m+1
vertices that consists of m hyperedges of size r, intersecting
at a single vertex, supplemented with m two-uniform cliques
of size r each — one for each of the hyperedges. Each of the
cardinality-r hyperedges is given weight 1 and each of the
i is gi =1 The minimum
cut value in this graph is 1, since every cut contains at least
one of the r-hyperedges. However, all Q(m - 2") cuts given
by the 2" bipartitions of a single r-hyperedge, are of weight
at most a.

3.2 Proof Of Theorem 3.1]

We prove Theorem [3-1] by closely following the proof in the
original setting of graphs in [5], and thus we refrain from re-
peating the full details. Instead, we present an outline of
the proof (following the presentation in [6]) while emphasiz-
ing the reasons it translates to the hypergraph setting and
handling the differences that require a separate treatment.

The main tool used by Benczir and Karger is random
sampling: each edge e is included in the sparsifier with prob-
ability pe, and given weight we /pe if it is included. It is im-
mediate that every cut in the sparsifier preserves its weight
in expectation. The main task is thus to carefully select
the sampling probabilities p. in order to both obtain the re-
quired number of edges in the sparsifier, and guarantee the
required concentration bounds.

As a rough sketch, to guarantee concentration, one needs
to apply a Chernoff bound to estimate the probability that
the weight of a specific cut (which is a sum of the inde-
pendent samples of the edges it contains) deviates from its
expectation. Subsequently, a union bound over all cuts is
used to show the concentration of all cuts. A priori it is un-
clear whether the Chernoff bound is strong enough to handle
the exponentially many different cuts in the union bound.
The remedy comes from Theorem [3.2] that counts the num-
ber of cuts of each weight. It is still unclear how should the
random sampling be tuned to handle both the small and
large cuts simultaneously. If we are to chose the sampling
probability to be small enough to handle the exponentially
many large cuts, we run into trouble of small cuts having
large variance. On the other hand, increasing the sampling
probability imposes a risk of ending up with too many edges
in the sparsifier.

Following Bencziur and Karger, we now show that when
no edge carries a large portion of the weight in any of the
cuts, the cut-counting theorem is sufficient to obtain con-
centration.

THEOREM 3.9. Let H = (V, E,w) be a r-uniform hyper-
graph on n vertices, let € > 0 be an error parameter, and fix
d>1. If H = (V,E’,w') is a random subhypergraph of H
where the weights w’' are independent random variables dis-
tributed arbitrarily (and not necessarily identically) in the
interval [0,1], and the expected weight of every cut in H'
exceeds p. = 5 (r+ (d+2)Inn), then with probability at
least 1 —n~
expectation.

4 every cut in H' has weight within 1+ ¢ of its

One can verify that the proof of the analogous theorem for
graphs, as appears in [19], easily extends to the hypergraph
setting. Indeed, for the sake of this proof, a cut is merely a
sum of independently sampled edges/hyperedges. The lower
bound on the weight of the minimum expected cut w allows
one to show that probability of a cut of weight a to deviate
from its expectation is at most n~*4*t2).e~%" which trades-
off nicely with the bound on the number of cuts given by
Theorem

Informally, Theoremimplies that in order to obtain the
desired concentration bound in the general case, the sam-
pling probability of an edge must be inversely proportional
to the size of the largest cut that contains that edge. This
motivates the following definitions, and the theorem that
follows them.

DEFINITION 3.10. A hypergraph H is k-connected if the
weight of each cut in H is at least k.

DEFINITION 3.11. A k-strong component of H is a max-
imal k-connected vertex-induced subhypergraph of H.

DEFINITION 3.12. The strong connectivity of hyperedge
e, denoted ke, is the maximum value of k such that a k-
strong component contains (all endpoints of) e.

Note that one can compute the strong connectivities of
all hyperedges in a hypergraph in polynomial time as fol-
lows. Compute the global minimum cut, and then proceed
recursively into each of the two subhypergraphs induced by
the minimum cut. The strong connectivity of an edge would
then be the maximum among the minimum cuts of all the
subhypergraphs it has been a part of throughout the recur-
sion. The minimum cut in a hypergraph was shown by [22]
to be computable in O(n? logn +mn) time. Note that since
the total number of subhypergraphs considered throughout
the recursion is at most n, there are at most n different
strong-connectivity values in any hypergraph.

THEOREM 3.13. Let H be an r-uniform hypergraph, and
let € > 0 be an error parameter. Consider the hypergraph H.
obtained by sampling each hyperedge e in H independently
with probability pe = W, giving it weight we /pe if

it is included. Then with probability at least 1 — O(n~%)

1. The hypergraph H. has O (% (r +logn)) edges.

2. Every cut in H. has weight between (1 —¢) and (1+¢)
times its weight in H.

The proof of the theorem is again identical to the proof
of [6, Theorem 2.6] for the graph setting. This includes
a bound on the total number of edges in H. that follows
from the property that }°__,we/ke < n—1 (see [6, Lemma
2.7]). The only thing that needs verifying is that strong-
connectivity induces a recursive partitioning of the vertices
of the hypergraph, just as it does when dealing with graphs.
This is in fact the case, mainly because the components con-
sidered in the definitions are vertex-induced, and therefore
the cardinality of the hyperedges plays no part. One can
then decompose the hyperedges of the hypergraph to “lay-
ers”, based on their strong-connectivity, and apply Theorem
to each layer separately.

As to the running time, it is dominated by the time re-
quired to compute the strong connectivities of all the edges
in the hypergraph, which as mentioned above, can be done
by running the O(n? log n + mn) min-cut algorithm at most
n times. Therefore, the total running time required to com-
pute H. is O(n®logn 4+ mn?). Since we may assume that
m = Q(nlogn) (as there is no point to construct the spar-
sifier otherwise), the second term dominates and thus the
running time is simply O(mn?).

To complete our discussion we bring the reader’s attention
to a couple of places where the cardinality of the hyperedges
has played part:

e The modified parameter p. = w counters

the number of cuts from Theorem - at most
0O(2°"n?*) cuts of weight aab) and the number of dis-
tinct edge-connectivity values, which is at most nm

e The number of edges in the sparsifier is (with high
probability) O (% (r + logn)) since the sampling prob-
ability is also linear in r.

3.3 SAT Sparsification

LEMMA 3.14. For every r-CNF formula ® with n vari-
ables and m clauses, there exists an (r 4+ 1)-uniform hyper-
graph H with 2n + 1 vertices, and a mapping I1 : {0,1}" —
{0,1}*" " (from assignments to ®, to cuts in H), such that
for every assignment p, it holds that vals (p) = valu (II(p)).

Proor. Consider an m-CNF formula & with variables
{zi}icin). We construct the weighted hypergraph H whose
vertices are {x;, —\ml}ze[n] and a special vertex F. For each
clause €;, VUi, V- - -V4;, , we add a hyperedge {¢;,, ..., 4;,., F}.
Moreover, let II be the mapping that maps an assignment
to ® to the cut in H obtained by placing all vertices cor-
responding to true literals on one side, and the F' vertex
together with all vertices corresponding to false literals on
the other side.

For an assignment ¢ to ®, it is clear that a hyperedge is
contained in the cut II(p) if and only if at least one of the
vertices it contains is on the opposite side of F'. Therefore
the weight of ®(¢) is exactly the value of . [J

Theorem [3.4] follows from Lemma [3.14] and Theorem [B.11
The running time for constructing the sketch of the CNF
formula is dominated by the running time of constructing
the hypergraph sparsifier, which is O(mnz), where m is the
number of clauses in the original CNF formula.

Tn their analysis [6] take a union bound over n? dis-
tinct edge-connectivity values. For hypergraphs using the
stronger linear bound (instead of the trivial n") is crucial.

4. FUTURE DIRECTIONS

Our results raise several questions that deserve further
work.

Sketching Max-Cut.

Our results and the results of |[15] make progress on the
streaming complexity of approximating MAX-CuUT, showing
polynomial space lower bounds. To fully resolve this prob-
lem, one still needs to determine whether ©(n) space is nec-
essary for any non-trivial approximation (i.e., strictly better
than 1/2), or whether there is a sublinear-space streaming
algorithm that beats the 1/2-approximation barrier.

Also of interest is the communication complexity of ap-
proximating MAX-CuUT in the multi-round two-party model,
and even a multi-round analogue of BOOLEAN HIDDEN HY-
PERMATCHING.

Sketching Cuts in Hypergraphs.

Can one improve over the linear dependence on r in hy-
pergraph sparsification (Theorem ? Or perhaps prove
a matching lower bound? Such a refinement could be es-
pecially significant when the hyperedge cardinality is un-
bounded, in which case the known upper bound is O(n?/s?).

General CSPs.

Do all CSPs admit sketches of size (in bits or in machine
words) o(n"), or even O(n), that preserve the values of all
assignments? From the direction of lower bounds, we may
even restrict ourselves to sketches that are sub-instances, and
ask whether there exist CSPs where such sketches require
size Q(nr) or even n(M?

S. ACKNOWLEDGEMENTS

We thank Alexandr Andoni and David Woodruff for useful
discussions at early stages of this work. Work supported
in part by a US-Israel BSF grant #2010418, Israel Science
Foundation grant #897/13, and by the Citi Foundation.

6. REFERENCES

[1] K. J. Ahn and S. Guha. Graph sparsification in the
semi-streaming model. In 36th International
Colloquium on Automata, Languages and
Programming: Part II, ICALP ’09, pages 328-338.
Springer-Verlag, 2009. arXiv:0902.0140,
do0i:10.1007/978-3-642-02930-1_27.

[2] K. J. Ahn, S. Guha, and A. McGregor. Analyzing
graph structure via linear measurements. In
Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’12, pages
459-467. STAM, 2012.
d0i:10.1137/1.9781611973099.40.

[3] K. J. Ahn, S. Guha, and A. McGregor. Graph
sketches: Sparsification, spanners, and subgraphs. In
Proceedings of the 31st Symposium on Principles of
Database Systems, PODS 12, pages 5-14. ACM, 2012.
doi:10.1145/2213556.2213560.

[4] A. Andoni, R. Krauthgamer, and D. P. Woodruff. The
sketching complexity of graph cuts. CoRR,
abs/1403.7058, 2014. arXiv:1403.7058.

[5] A. A. Benczir and D. R. Karger. Approximating s-t
minimum cuts in O(n?) time. In Proceedings of the

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

28th Annual ACM Symposium on Theory of
Computing, STOC 96, pages 47-55, New York, NY,
USA, 1996. ACM. |doi:10.1145/237814.237827.

A. A. Benczir and D. R. Karger. Randomized
approximation schemes for cuts and flows in
capacitated graphs. CoRR, ¢s.DS/0207078, 2002.
arXiv:cs/0207078.

M. K. de Carli Silva, N. J. A. Harvey, and C. M. Sato.
Sparse sums of positive semidefinite matrices. CoRR,
abs/1107.0088, 2011. arXiv:1107.0088.

H. Dell and D. van Melkebeek. Satisfiability allows no
nontrivial sparsification unless the polynomial-time
hierarchy collapses. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC ’10, pages
251-260. ACM, 2010. doi:10.1145/1806689.1806725.
E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov.
On the structure of the system of minimum edge cuts
in a graph. Issledovaniya po Diskretnoi Optimizatsii,
pages 290-306, 1976. URL: http://alexander-
karzanov.net/Scanned01d/76_cactus_transl.pdf.

A. Goel, M. Kapralov, and I. Post. Single pass
sparsification in the streaming model with edge
deletions. CoRR, abs/1203.4900, 2012.
arXiv:1203.4900.

M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite
programming. J. ACM, 42(6):1115-1145, Nov. 1995.
doi:10.1145/227683.227684.

R. E. Gomory and T. C. Hu. Multi-terminal network
flows. Journal of the Society for Industrial and Applied
Mathematics, 9:551-570, 1961. |doi:10.1137/0109047.
M. Henzinger and D. P. Williamson. On the number
of small cuts in a graph. Information Processing
Letters, 59(1):41 — 44, 1996.
d0i:10.1016/0020-0190(96)00079-8.

P. Indyk, A. McGregor, I. Newman, and K. Onak.
Open questions in data streams, property testing, and
related topics. http://people.cs.umass.edu/
“mcgregor/papers/11-openproblems.pdf, 2011. See
also http://sublinear.info/45.

M. Kapralov, S. Khanna, and M. Sudan. Streaming
lower bounds for approximating MAX-CUT. In
Proceedings of the 25th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2015. To Appear.
arXiv:1409.2138.

M. Kapralov, Y. T. Lee, C. Musco, C. Musco, and

A. Sidford. Single pass spectral sparsification in
dynamic streams. In Proceedings of the 55th Annual
IEEE Symposium on Foundations of Computer
Science, 2014. larXiv:1407.1289.

D. R. Karger. Global min-cuts in RA/C, and other
ramifications of a simple min-cut algorithm. In
Proceedings of the 4th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’93, pages 21-30,
Philadelphia, PA, USA, 1993. Society for Industrial
and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=313559.313605.
D. R. Karger. Better random sampling algorithms for
flows in undirected graphs. In Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 98, pages 490-499. STAM, 1998.

http://arxiv.org/abs/0902.0140
http://dx.doi.org/10.1007/978-3-642-02930-1_27
http://dx.doi.org/10.1137/1.9781611973099.40
http://dx.doi.org/10.1145/2213556.2213560
http://arxiv.org/abs/1403.7058
http://dx.doi.org/10.1145/237814.237827
http://arxiv.org/abs/cs/0207078
http://arxiv.org/abs/1107.0088
http://dx.doi.org/10.1145/1806689.1806725
http://alexander-karzanov.net/ScannedOld/76_cactus_transl.pdf
http://alexander-karzanov.net/ScannedOld/76_cactus_transl.pdf
http://arxiv.org/abs/1203.4900
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1137/0109047
http://dx.doi.org/10.1016/0020-0190(96)00079-8
http://people.cs.umass.edu/~mcgregor/papers/11-openproblems.pdf
http://people.cs.umass.edu/~mcgregor/papers/11-openproblems.pdf
http://sublinear.info/45
http://arxiv.org/abs/1409.2138
http://arxiv.org/abs/1407.1289
http://dl.acm.org/citation.cfm?id=313559.313605

[21]

[22]

[23]

[24]

URL:
http://dl.acm.org/citation.cfm?id=314613.314833.
D. R. Karger. Random sampling in cut, flow, and
network design problems. Mathematics of Operations
Research, 24(2):383-413, 1999.
doi:10.1287/moor.24.2.383.

T. Kaufman, D. Kazhdan, and A. Lubotzky.
Ramanujan complexes and bounded degree topological
expanders. In Proceedings of the 55th Annual IEEE
Symposium on Foundations of Computer Science,
2014. larXiv:1409.1397.

S. Khot, G. Kindler, E. Mossel, and R. O’Donnell.
Optimal inapproximability results for MAX-CUT and
other 2-variable CSPs? SIAM Journal on Computing,
37(1):319-357, 2007.
d0i:10.1137/S0097539705447372.

R. Klimmek and F. Wagner. A simple hypergraph min
cut algorithm. Technical Report B 96-02, Freie
Universitéat Berlin, Fachbereich Mathematik, 1996.
URL: http://edocs.fu-berlin.de/docs/servlets/
MCRFileNodeServlet/FUDOCS_derivate_
000000000297/1996_02.pdf.

F. T. Leighton and A. Moitra. Extensions and limits
to vertex sparsification. In 42nd ACM symposium on
Theory of computing, STOC, pages 47-56. ACM,
2010. doi:10.1145/1806689.1806698.

M. V. Lomonosov and V. Polesskii. Lower bound of
network reliability. Problemy Peredachi Informatsii,
8(2):47-53, 1972. URL:
http://www.mathnet.ru/links/
36bd620cb75111781cef454d72£0d773/ppi824.pdf.

A. Louis. Hypergraph Markov operators, eigenvalues
and approximation algorithms. CoRR, abs/1408.2425,
2014. larXiv:1408.2425!

A. Louis and Y. Makarychev. Approximation
algorithms for hypergraph small set expansion and
small set vertex expansion. In Approximation,
Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM
2014), volume 28, pages 339-355, 2014.
doi:10.4230/LIPIcs.APPROX-RANDOM.2014.339.

A. McGregor. Graph stream algorithms: A survey.
SIGMOD Rec., 43(1):9-20, May 2014.
do0i:10.1145/2627692.2627694.

A. Moitra. Approximation algorithms for
multicommodity-type problems with guarantees

29]

30]

(31]

(32]

(33]

(34]

(35]

(36]

37]

independent of the graph size.

In 50th Annual Symposium on Foundations of
Computer Science, FOCS, pages 3-12. IEEE, 2009.
doi:10.1109/F0CS.2009.28.

H. Nagamochi, K. Nishimura, and T. Ibaraki.
Computing all small cuts in an undirected network.
SIAM Journal on Discrete Mathematics,
10(3):469-481, 1997.
do0i:10.1137/S0895480194271323.

I. Newman and Y. Rabinovich. On multiplicative
A-approximations and some geometric applications.
SIAM Journal on Computing, 42(3):855-883, 2013.
doi:10.1137/100801809.

D. Peleg and A. A. Schiffer. Graph spanners. J.
Graph Theory, 13(1):99-116, 1989.
doi:10.1002/jgt.3190130114.

M. Thorup and U. Zwick. Approximate distance
oracles. J. ACM, 52(1):1-24, 2005.
do0i:10.1145/1044731.1044732.

Y. Yamaguchi, A. Ogawa, A. Takeda, and S. Iwata.
Cyber security analysis of power networks by
hypergraph cut algorithms. In Proceedings of the Fifth
Annual IEEFE International Conference on Smart Grid
Communications, 2014. To appear. URL:
http://www.keisu.t.u-tokyo.ac.jp/research/
techrep/data/2014/METR14-12.pdf.

W. Yu and E. Verbin. The streaming complexity of
cycle counting, sorting by reversals, and other
problems. In Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
11-25, 2011. d0i:10.1137/1.9781611973082.2.

M. Zelke. Algorithms for Streaming Graphs. PhD
thesis, Mathematisch-Naturwissenschaftliche Fakultét
II, Humboldt-Universitdt zu Berlin, 2009. Published at
Siidwestdeutscher Verlag fiir Hochschulschriften. URL:
http://www.tks.informatik.uni-frankfurt.de/data/
doc/diss.pdf.

M. Zelke. Intractability of min- and max-cut in
streaming graphs. Inf. Process. Lett., 111(3):145-150,
Jan. 2011./doi:10.1016/3.1p1.2010.10.017.

J. Zhang. A survey on streaming algorithms for
massive graphs. In C. C. Aggarwal and H. Wang,
editors, Managing and Mining Graph Data, volume 40
of Advances in Database Systems, pages 393—420.
Springer, 2010. doi:10.1007/978-1-4419-6045-0_13|

http://dl.acm.org/citation.cfm?id=314613.314833
http://dx.doi.org/10.1287/moor.24.2.383
http://arxiv.org/abs/1409.1397
http://dx.doi.org/10.1137/S0097539705447372
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000297/1996_02.pdf
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000297/1996_02.pdf
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000297/1996_02.pdf
http://dx.doi.org/10.1145/1806689.1806698
http://www.mathnet.ru/links/36bd620cb75111781cef454d72f0d773/ppi824.pdf
http://www.mathnet.ru/links/36bd620cb75111781cef454d72f0d773/ppi824.pdf
http://arxiv.org/abs/1408.2425
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.339
http://dx.doi.org/10.1145/2627692.2627694
http://dx.doi.org/10.1109/FOCS.2009.28
http://dx.doi.org/10.1137/S0895480194271323
http://dx.doi.org/10.1137/100801809
http://dx.doi.org/10.1002/jgt.3190130114
http://dx.doi.org/10.1145/1044731.1044732
http://www.keisu.t.u-tokyo.ac.jp/research/techrep/data/2014/METR14-12.pdf
http://www.keisu.t.u-tokyo.ac.jp/research/techrep/data/2014/METR14-12.pdf
http://dx.doi.org/10.1137/1.9781611973082.2
http://www.tks.informatik.uni-frankfurt.de/data/doc/diss.pdf
http://www.tks.informatik.uni-frankfurt.de/data/doc/diss.pdf
http://dx.doi.org/10.1016/j.ipl.2010.10.017
http://dx.doi.org/10.1007/978-1-4419-6045-0_13

	Introduction
	Our Results
	Related Work

	Sketching Max-Cut
	Proving Theorem 2.1
	Reporting a Vertex-Bipartition (rather than a value)
	2/3-Approximation of Max-Cut in the Two Party Model

	Sketching Cuts in Hypergraphs
	Counting Near-Minimum Cuts in Hypergraphs
	A Randomized Contraction Algorithm
	Proof of Lemma 3.7
	Lower Bound

	Proof Of Theorem 3.1
	SAT Sparsification

	Future Directions
	Acknowledgements
	References

