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Abstract. In the fully dynamic edge connectivity problem, the input is a simple graph G undergoing edge
insertions and deletions, and the goal is to maintain its edge connectivity, denoted λG. We present two simple
randomized algorithms solving this problem. The first algorithm maintains the edge connectivity in worst-case
update time Õ(n) per edge update, matching the known bound but with simpler analysis. Our second algorithm
achieves worst-case update time Õ(n/λG) and worst-case query time Õ(n2/λ2

G), which is the first algorithm with
worst-case update and query time o(n) for large edge connectivity, namely, λG = ω(

√
n).

1 Introduction Finding the edge connectivity of a graph is a fundamental algorithmic problem in graph
theory. The edge connectivity of a graph G = (V,E), denoted λG, is defined as the minimum number of edges
that need to be removed from G in order to disconnect it; this is equivalent to the value of a global minimum cut
in G. It has long been known that it is possible to find the edge connectivity of a graph in Õ(m) time, where
n = |V |,m = |E| and Õ(·) hides polylogarithmic factors in n [Kar00, KT19, HRW20, MN20, GMW20].

We consider the problem of maintaining the edge connectivity of a graph G = (V,E) in a fully dynamic
setting, where the input is a dynamic graph presented as a fixed set of vertices and a sequence of edge insertions
and deletions, and the goal is to report the edge connectivity after each update. This problem has a rich history:
it was originally studied for constant values of edge connectivity (namely λG ∈ {1, 2, 3, 4}) see for example
[EGIN97, HdLT01, KKM13, CGL+20]; for the case λG = 1 there exists a randomized algorithm using worst-case
update time polylog(n) and a deterministic algorithm using amortized update time polylog(n) [HdLT01, KKM13].

These results are complemented by a deterministic algorithm for the case λG = logo(1) n, which achieves worst-case
update time no(1) [JST24].

For the case of general λG, there exist deterministic algorithms that maintain the edge connectivity in worst-
case time Õ(min

(
λ5.5
max

√
n,m1−1/12,m11/13n1/13, n3/2

)
) per update, where λmax is the maximum edge connectivity

of G throughout the algorithm’s execution [Tho07, GHN+23, dVC25]. Allowing for randomization, there exists
a randomized algorithm that maintains the edge connectivity in worst-case time Õ(n) per update [GHN+23].
Finally, for approximate maintenance which asks to maintain a (1 + ϵ)-approximation of the edge connectivity
[TK00, Tho07, EHL25], one can achieve a (1 + o(1))-approximation with worst-case update time no(1) [EHL25].

1.1 Contributions We focus on general edge connectivity, and present two new randomized algorithms
that achieve worst-case update time Õ(n) and Õ(n2/λ2

G) respectively. Both algorithms are based on the same
high-level idea, which is an efficient and simple implementation of a contraction algorithm that preserves the
edge connectivity. Our first algorithm matches the result of [GHN+23] but has a simpler and more intuitive
proof, while our second algorithm offers improved performance for dense graphs. Throughout, update time (of
an algorithm) refers to the worst-case time per edge update unless stated otherwise. We say that a randomized
algorithm succeeds with high probability if its probability of success is at least 1− 1/nc for any constant c > 0.
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Figure 1.1: Schematic comparison of existing algorithms for dynamic edge connectivity.

Theorem 1.1. There exists a fully dynamic algorithm that, given an unweighted dynamic graph G on n
vertices, maintains the edge connectivity of G with update time Õ(n). The algorithm is randomized and succeeds
with high probability.

Our second algorithm improves on the result of [GHN+23] for large edge connectivity, namely when λG = ω̃(
√
n).

Our result is actually stronger, since it is parametrized by the minimum degree of the graph at the time of the
update, δG, which is only larger than the edge connectivity λG and hence it implies an update time of Õ(n2/λ2

G).
Therefore, Theorem 1.2 improves on [GHN+23] for large edge connectivity, i.e. λG ≥ ω̃(

√
n), and is in fact the

first algorithm to achieve worst-case update time o(n) for large edge connectivity. Moreover, the improvement
applies also to graphs with large minimum degree but small edge connectivity. The improvement is even larger
when separating the update and query times, i.e. if the algorithm only needs to report the edge connectivity
occasionally.

Theorem 1.2. There exists a fully dynamic algorithm that, given an unweighted dynamic graph G on n
vertices, maintains the edge connectivity of G with update time Õ(n/δG) and query time Õ(n2/δ2G). The algorithm
is randomized and succeeds with high probability.

We now provide several details about the above results. The first one is that both results can report not only
the exact edge connectivity, but also the edges that form a minimum cut, which incurs an additional Õ(λG) time
per query. When reporting only the value of the edge connectivity, the algorithms are adversarially-robust, i.e.
they work against an adaptive adversary. This is because the edge connectivity is a deterministic function of the
graph and hence, as long as the algorithm returns the correct result, reporting it does not leak any information
to the adversary. In contrast, when reporting the edges of the minimum cut, our algorithms only work against
an oblivious adversary. Since in both cases the adversary lacks knowledge of the algorithms’ internal state, our
analysis only considers the case of an oblivious adversary.

The second detail is that it is possible to combine the results, to obtain an algorithm with update time
Õ(min {n, n2/δ2G}). A comparison of existing results with our work is given in Figure 1.1. As explained above we
use the fact that the update time of Theorem 1.2 can be stated as Õ(n2/λ2

G).

1.2 Future Work The main open question remaining is to achieve worst-case update time o(n)
for all edge connectivity values. Prior work achieves this for edge connectivity λG = o(n1/11/ polylog n)
[Tho07, JST24, dVC25]. Our results complement these results and achieve it for large edge connectivity, namely
λG = ω̃(

√
n). Perhaps surprisingly, the remaining case is that of intermediate connectivity, λG ∈ [n1/11, n1/2].
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2 Proof of Main Theorems A powerful tool for finding a minimum cut that has been used extensively in
past work is a family of contraction procedures first introduced by Kawarabayashi and Thorup [KT19], which we
call KT-style contractions [KT19, HRW20, GNT20, Sar21, AEG+22, KK25]. In general, KT-style contractions
preserve the minimum cut value of an input graph G while reducing the number of vertices to Õ(n/δG), where δG
is the minimum degree in G. The edge connectivity can then be more efficiently computed on a smaller contracted
graph G′ = (V ′, E′). This general approach has also been employed to design an efficient algorithm for dynamic
edge connectivity [GHN+23]. Specifically, the algorithm leverages the 2-out contraction technique of [GNT20] to
maintain a contracted multigraph G′ of the input graph G [GHN+23], and constructs a maximal δG-packing of
forests in G′.

Definition 2.1 (Maximal k-Packing of Forests). Given a (multi)graph G, a maximal k-packing of forests is
a set of edge-disjoint forests T1, . . . , Tk of G that are maximal, i.e. for every i ∈ [k] and e ∈ E \ ∪jTj, the edge
set Ti ∪ {e} contains a cycle. A maximal k-packing of forests in a multigraph includes at most one parallel edge
in each forest.

The main idea of [GHN+23] is that the edge connectivity of G is at most δG, and therefore if a global
minimum cut of G is preserved in G′, then all its edges are contained in a maximal δG-packing of forests in
the multigraph G′. Therefore, the edge connectivity of G′ (and hence of G) is equal to the edge connectivity

of H = (V ′, T1 ∪ . . . ∪ TδG), where {Ti}δGi=1 is a maximal δG-packing of forests in G′. Furthermore, the number

of edges in H is at most Õ(n) since each forest Ti has at most O(|V ′|) = Õ(n/δG) edges, and hence the edge
connectivity of H can be computed in time Õ(n) using some static algorithm for edge connectivity.

From a simplicity perspective, the main drawback of [GHN+23] is that it does not maintain an explicit
contraction of the graph, but rather only its connected components. It then recovers the forest packing using
linear-sketching techniques, which complicates the algorithm. Another drawback of this approach is that linear
sketching only recovers unweighted edges of the contracted multigraph G′. However, by reinterpreting the
contracted multigraph as a weighted graph (merging parallel edges), we can take advantage of the fact that
when δG ≥ ω(

√
n) the graph G′ becomes very small.1 In fact, the number of edges in G′ is Õ(n2/δ2G), which

enables solving the edge connectivity problem in õ(n) worst-case time per edge update when δG ≥ ω(
√
n).

Our algorithms follow the general recipe of [GHN+23], with the main difference being that our contraction
algorithm maintains an explicit KT-style contraction as a weighted graph.2 This both simplifies the algorithm
and improves the update time whenever δG ≥ ω(

√
n). Specifically, we leverage the τ -star contraction procedure

of [AEG+22, KK25], which was originally designed for finding a global minimum cut in the cut-query model. The
procedure works as follows. Sample a set of center vertices R ⊆ V by including each vertex v ∈ V independently
with probability p = O(logn/τ). Let H = {v ∈ V \R | dG(v) ≥ τ} be the set of non-center vertices with degree
at least τ , where throughout dG(v) is the degree of v in G. Then, for every v ∈ H, uniformly sample a vertex
r ∈ NG(v) ∩ R, where NG(v) is the neighborhood of v in G, and contract the corresponding edge (v, r), keeping
parallel edges, which yields a contracted multigraph G′. The main guarantee of this procedure is that if G has a
minimum cut that is non-trivial, i.e., not composed of a single vertex, then λG = λG′ with constant probability.
An illustration of the τ -star contraction is given in Figure 2. The following theorem states this formally.

Theorem 2.2 ([AEG+22, KK25]). Let G = (V,E) be an unweighted graph on n vertices with at least one
minimum cut that is non-trivial. Then, τ -star-contraction with p = 800 log n/τ yields a contracted graph G′ such
that,

1. if τ ≤ δG, then with probability at least 1 − 1/n4 all vertices in V \ R are contracted and G′ has at most
Õ(n/τ) vertices, and

2. λG′ ≥ λG, and equality holds with probability at least 2 · 3−13.

The following technical lemma provides the guarantees of the τ -star contraction procedure in a fully dynamic
setting. Using this lemma our algorithms maintain a KT-style contraction of the graph G as a weighted graph
(by merging parallel edges) in a fully dynamic setting. We call a contraction G′ of G complete, if it maps every

1Such a reinterpretation is natural and was used before in the context of KT-style contractions, e.g. [KK25].
2To recover the edges of a minimum cut we can maintain a list of the edges of G that are mapped to each edge of G′ and report

the edges corresponding to the minimum cut in G′.
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Figure 2.1: An illustration of the τ -star contraction procedure with τ = 2. (i) A random set of center vertices
R is sampled (indicated by red). (ii) Each non-center vertex in H = {v ∈ V \ R | dG(v) ≥ τ} chooses a random
neighbor in R (indicated by dashed edges); vertices not in H ∪ R are indicated by a striped pattern. (iii) The
corresponding edges are contracted (keeping parallel edges) to obtain a contracted graph G′.

edge of G to an edge in G′, and otherwise it is incomplete.3 Our contraction procedure only tracks edges that
are internal to the center vertices R, hence if a vertex v ∈ V \R is not contracted, then its incident edges are not
mapped in G′. Therefore, its contraction is complete only when all vertices in V \R are contracted. Fortunately,
this happens with high probability whenever δG ≥ τ by Theorem 2.2.

Lemma 2.3. There is a fully-dynamic randomized algorithm that, given as input a dynamic graph G and a
parameter τ > 0, maintains a (possibly incomplete) contraction G′ of G as a weighted graph. If δG ≥ τ then G′ is
complete and constitutes a τ -star contraction of G with high probability. The algorithm runs in amortized update
time polylog(n) and worst-case update time Õ(n) (regardless of δG). Furthermore, the algorithm updates at most
O(1) edges in G′ per edge update in G in expectation and Õ(n/τ) in the worst-case.

We prove this lemma in Section 3 and proceed now to show that it implies our two main theorems.

2.1 Proof of Theorem 1.1 We begin by showing how to maintain a maximal k-packing of forests in a
weighted graph under edge insertions and deletions. Note that since we interpret the contracted multigraph G′

as a weighted graph we need the packing to maintain edge weights.4

Lemma 2.4. There exists a fully dynamic algorithm that maintains a maximal k-packing of forests of a
dynamic weighted graph G = (V,E) on n vertices with update time Õ(k). The algorithm is randomized and
succeeds with high probability against an oblivious adversary.

To prove the lemma we follow the approach of [ADK+16], which requires the following result of [KKM13, GKKT15]
on maintaining a single spanning forest.

Theorem 2.5 ([KKM13, GKKT15]). There exists a fully dynamic algorithm that maintains a weighted
spanning forest T of a dynamic weighted graph G with n vertices, with worst-case update time O(log4 n). Every
edge insertion in G adds at most one edge to T . Every edge deletion in G removes at most one edge from T and
may additionally add one edge to T . The algorithm is randomized and succeeds with high probability against an
oblivious adversary.

Proof of Theorem 2.4. The algorithm maintains a collection of k spanning trees {Ti}ki=1, where each Ti is
spanning tree of the graph G \ ∪j<iTj , that is maintained using Theorem 2.5. To show that the update time is

Õ(k), examine some edge update e and level i. If the update is an insertion, then either e is added to Ti or the
update is propagated to level i + 1, and in both cases at most one change is propagated to level i + 1. If the
update is a deletion, then either e ̸∈ Ti and this update is propagated to level i+1, or e ∈ Ti and then removing it
might cause a single other edge e′ to be added to Ti from G \ Tj≤i. In this case e′ is from G \ Tj≤i, and therefore
we propagates a deletion of e′ to level i+ 1 (however, Ti+1 is oblivious to the deletion of e). Therefore, an edge
update in G causes at most O(1) changes to each Ti and the overall update time is Õ(k).

Proof of Theorem 1.1. It suffices to present an algorithm that returns a global minimum cut of G with
constant probability, and returns some larger cut otherwise (if the algorithm is only required to return the edge

3Notice that a incomplete contraction is not a contraction in the strict sense, since it does not map every edge of G to an edge in
G′.

4One can simulate changing the weight of an edge by deleting it and inserting it with the new weight.
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connectivity then it only returns the value of this cut). Running O(log n) independent copies of the algorithm and
taking the minimum cut found yields a global minimum cut with high probability. The desired algorithm works as
follows. Begin by running in parallel r = O(log n) instances of the τ -star contraction algorithm of Theorem 2.3 to
obtain contracted graphs {G′

i = (V ′
i , E

′
i)}

r
i=1, where the i-th instance uses τ = 2i. Furthermore, for each instance

G′
i maintain a maximal 2i+1-forest packing {T i

j}
2i+1

j=1
of the contracted graph G′

i using Theorem 2.4.5 In parallel,

track the minimum degree δG of the input graph G.

Let i∗ be the maximal such that δG ≥ 2i
∗
, and let H = (V ′

i∗ ,∪2
i∗+1

j=1 T i∗

j ) be the graph obtained by taking the

union of the maximal 2i
∗+1-forest packing of G′

i∗ . The algorithm then finds a minimum cut of H using an offline
algorithm for weighted graphs in time Õ(n) and, returns the minimum between the edge connectivity found and
δG (and the associated cut). The correctness guarantee follows from Theorem 2.2 and since the contraction is
complete by Theorem 2.3 (and hence G′

i is a 2i-star contraction of G) whenever δG ≥ τ .
To analyze the time complexity, notice that maintaining each τ -star-contraction instance takes worst-case

time Õ(n) per update by Theorem 2.3. To analyze the time complexity of maintaining a maximal 2i+1-forest
packing, notice that each edge update in G updates at most Õ(n/2i) edges in G′

i by Theorem 2.3. Each update
in G′

i then takes Õ(2i+1) time to update the maximal 2i+1-forest packing by Theorem 2.4, hence the total time
per edge update in G is Õ(n). Observe that the number of edges in each 2i+1-forest packing is at most Õ(n),
since each forest has O(|V ′

i |) = Õ(n/2i) edges and the packing has 2i+1 forests, and hence a minimum cut can be
found in time Õ(n). Finally, observe that tracking the minimum degree δG in G can be done using a heap data
structure with worst-case update time O(logn) per edge update. This concludes the proof of Theorem 1.1.

2.2 Proof of Theorem 1.2 At a high level, the proof of Theorem 1.2 is similar to that of Theorem 1.1.
Again the algorithm maintains in parallel r = O(logn) instances of the τ -star contraction algorithm of
Theorem 2.3, where the i-th instance G′

i uses τ = 2i. However, instead of maintaining a maximal 2i+1-forest
packing of G′

i, the algorithm solves the edge-connectivity problem on G′
i directly.

Notice that using Theorem 2.3, the worst-case time per update in G is Õ(n), which is larger than Õ(n2/δ2G)
when δG = ω(n1/2). To circumvent this, we de-amortize Theorem 2.3; instead of processing immediately all
dG(v) edges incident to v when its chosen center vertex changes, the contraction procedure places these edges in
a queue and processes Õ(n/δG) of them after each update in G. This ensures that the worst-case time complexity
per update in G is Õ(n/δG). However, now the contraction G′ may be incomplete even when δG ≥ τ , if the
queue of the contraction procedure is non-empty. Fortunately, we can show that the probability that the queue is
non-empty at any given moment in time is O(1/ log2 n) as stated next and proven in Section 3. Notice that the
contraction procedure always knows whether its contraction is complete, by checking whether its queue is empty
and if δG ≥ τ , hence the algorithm can easily ignore incomplete instances.

Lemma 2.6. There is a fully-dynamic randomized algorithm that, given as input a dynamic graph G and a
parameter τ > 0, returns a (possibly incomplete) contraction G′ of G as a weighted graph. The algorithm runs
in amortized update time polylog(n) and worst-case time Õ(n) (regardless of δG). Finally, if δG ≥ τ then G′ is
complete and constitutes a τ -star contraction of G with probability 1−O(1/ log2 n).

Proof of Theorem 1.2. Again it suffices to show an algorithm that succeeds with constant probability and
returns a larger cut otherwise. The algorithm is as follows. Begin by running r = O(log n) independent instances
of the τ -star contraction algorithm of Theorem 2.6 to obtain contracted graphs {G′

i}
r
i=1, where the i-th instance

uses τ = 2i. In parallel, track the minimum degree δG of the input graph G. Let i∗ be the maximal such that
δG ≥ 2i

∗
.

If the contraction G′
i∗ is incomplete, then fail (or return an arbitrary cut). Otherwise, find a minimum

cut using an offline algorithm for edge connectivity in weighted graphs in time Õ(n2/δ2G). Finally, return the
minimum between the edge connectivity of G′

i∗ and the minimum degree δG (and the associated cut). Notice that
by Theorem 2.6 if G′

i∗ is a 2i
∗
-star contraction, the edge connectivity of G′

i∗ is equal to the edge connectivity of
G with constant probability. Furthermore, G′

i∗ is complete (and hence a τ -star contraction) with probability at
least 1 − O(1/ log2 n) by Theorem 2.6. Therefore, using a union bound over the two events the algorithm finds
the edge connectivity with constant probability.

To analyze the time complexity, notice that maintaining a single τ -star contraction instance using Theorem 2.6

5An additional factor 2 in the size of the packing is needed since δG/τ ∈ [1, 2).
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takes amortized time polylog(n) and worst-case time Õ(n/δG) per edge update in G. Maintaining the minimum
degree δG in G can be done using a heap data structure with worst-case update time O(logn) per edge update.
Therefore, the time per edge update in G is Õ(n/δG). Finally, the query time is determined by the edge-
connectivity computation in G′

i∗ which takes Õ(n2/22i
∗
) = Õ(n2/δ2G) time.

3 Dynamic Star Contraction In this section we present a fully dynamic algorithm that maintains a τ -
star contraction of the graph G, proving Theorems 2.3 and 2.6. The algorithm for both results is the same, except
for minor changes in the edge-update procedure which we detail in the proof of Theorem 2.6, and presented in
Algorithm 1. To maintain the τ -star contraction, we use a stable dynamic uniform sampler. The construction of
this sampler uses standard techniques and is described in Theorem 3.2, whose proof is provided in Subsection 3.2.

Definition 3.1 (Stable Dynamic Uniform Sampling). Given a dynamic set of elements (undergoing inser-
tions and deletions) denoted St at time t, a stable uniform dynamic sampler maintains a sample xt ∈ St (or
reports ∅ if St = ∅) such that:

1. At every time t, each x ∈ St is sampled with probability exactly 1/|St|.

2. The probability that the sampled element changes after an update is at most 1/|St|.

Lemma 3.2. There exists a data structure for stable dynamic uniform sampling that uses O(logn) update time
per operation under an oblivious adversary. The data structure is randomized and succeeds with high probability.

Throughout this section denote each edge update by the pair {(u, v), s}, where s ∈ {±1} indicates whether
the edge (u, v) is inserted or deleted. Note that Algorithm 1 excludes from G′ all the vertices in V \ R that are
not contracted to any vertex in R. The proof of Theorem 2.3 follows immediately from the following two lemmas,
which prove the correctness and time complexity of Algorithm 1 respectively.

Algorithm 3.1 Dynamic Star Contraction

1: Input: An unweighted multigraph G = (V,E), parameter τ > 0
2: Output: A contracted graph G′

3: procedure Dynamic-Star-Contraction(G, τ)
4: R← sample every v ∈ V with probability p = 800 logn/τ
5: for each v ∈ V \R let Rv ← initialize stable uniform dynamic sampler ▷ the vertex r ∈ R to which v is

contracted
6: for each v ∈ R let Rv ← v ▷ by convention, since v ∈ R is never contracted
7: G′ ← (R, ∅)
8: for each edge update {(u, v), s} do
9: if s = 1 then E ← E ∪ {(u, v)} else E ← E \ {(u, v)}

10: if Rv, Ru are both not null then w(Ru, Rv)← w(Ru, Rv) + s
11: if u, v ∈ R or u, v ̸∈ R then continue
12: if u ̸∈ R then swap u, v ▷ |{u, v} ∩R| = 1 by line 11
13: add/remove u to/from Rv ▷ update the stable uniform dynamic sampler for v
14: if Rv has changed then
15: Rold

v ← old Rv, R
new
v ← new Rv

16: for each w ∈ R do
17: Evw ← {x ∈ V \R | (v, x) ∈ E,Rx = w}
18: if Rold

v is not null then w(Rold
v , w)← w(Rold

v , w)− |Evw|
19: if Rnew

v is not null then w(Rnew
v , w)← w(Rnew

v , w) + |Evw|

Lemma 3.3 (Correctness). Whenever δG ≥ τ , the output of Algorithm 1 with parameter τ is a complete
contraction and constitutes a τ -star contraction of a given dynamic graph G.

Proof. We begin by showing that if every edge of G is mapped to an edge in G′, then the output is a τ -star
contraction. Notice that the vertices in R are sampled uniformly at random with probability p = 800 logn/τ .
By the properties of the stable uniform dynamic sampling, we have that for every vertex v ∈ V \ R, the vertex
Rv is sampled uniformly at random from the neighbors of v in R. Therefore, once every edge of G is mapped to
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an edge in G′, the output is a τ -star contraction. We now show that the output of the algorithm is complete.
Whenever τ ≥ δG by Theorem 2.2, we have that every vertex v ∈ V \ R is contracted with high probability. In
addition, notice that once every vertex v ∈ V \R is contracted, all edges of G have been mapped to edges in G′.
Therefore the output of the algorithm is complete.

Lemma 3.4 (Time Complexity). Given an unweighted graph G = (V,E) on n vertices, Algorithm 1 with
parameter τ requires amortized time Õ(1) (and worst case time Õ(n)) per edge. Furthermore, in expectation the
algorithm updates at most O(1) edges in G′ per edge update in G and in the worst-case it updates Õ(n/τ) edges
in G′ per edge update in G.

3.1 Amortized Time Complexity The proof of Theorem 3.4 relies on the following claim.

Claim 3.5. For each edge update {(u, v), s}, with probability at least 1−800 logn/max {dG(v), τ} both Rv, Ru

remain the unchanged.

Proof of Claim 3.5. To bound the probability Rv changes, we may assume without loss of generality that
v ̸∈ R (since if u, v ∈ R then Rv, Ru do not change). Notice that under this assumption, Ru does not change,
since v ̸∈ R and so Ru is not updated. Observe that Rv can change only if u ∈ R, hence

(3.1) Pr [Rv changes] = Pr [u ∈ R] · Pr [Rv changes | u ∈ R] = p · Pr [Rv changes | u ∈ R] ,

where the last equality is since R is obtained by sampling each vertex independently with probability p =
800 logn/τ . Hence the probability that Rv changes is at most 800 logn/τ . We now show a stronger bound
on the probability that Rv changes when dG(v) ≥ τ . Notice that Pr [Rv changes | u ∈ R] = 1/dR(v) by
Theorem 3.2, where dR(v) is the number of neighbors of v in R. To bound dR(v), notice that ER [dR(v) | u ∈ R] ≥
ER [dR(v) ∈ R] = pdG(v), where the inequality is since conditioning on the event that u ∈ R increases the expected
number of neighbors of v in R and the equality is since R is sampled uniformly at random from V . Therefore, by
Chernoff’s bound (Theorem A.1),

Pr [dR(v) ≤ pdG(v)/2] ≤ 2 exp

(
−pdG(v)

12

)
≤ 2 exp

(
−800 logn

12

)
≤ n−10,

where the second inequality is from dG(v) ≥ τ . Hence, with probability at least 1 − n−10 we have that
dR(v) ≥ pdG(v)/2. Plugging this back into Equation (1),

Pr [Rv changes] = Pr [u ∈ R] · Pr [Rv changes | u ∈ R] ≤ p ·
(

2

pdG(v)
+ n−10

)
≤ 800 logn

dG(v)
.

Therefore, the probability that both Rv, Ru remain unchanged is at least 1−800 log n/max {dG(v), τ}, as claimed.

Proof of Theorem 3.4. Observe that if Rv, Ru do not change, then updating the weight of the edge (Ru, Rv)
in line 10 takes O(1) time and updating the samplers for u, v in line 13 takes O(logn) time by Theorem 3.2. They
cannot both change since that implies that both u, v ̸∈ R, so assume exactly one of them changes and without loss
of generality it is Rv. In this case, in line 16 the algorithm updates in G′ the weight of all edges corresponding to
edges incident to v in G.

To minimize the number of times we update the edges of G′, we go over all edges incident to v in G to
find the size of the sets Evw, for every w ∈ R.6 This requires O(dG(v)) time, since we need to iterate over all
edges incident to v. Then, we update the weights of the edges (Rold

v , w) and (Rnew
v , w) in G′ in O(1) time for

every w ∈ R, which requires O(min {|R|, dG(v)}) ≤ O(dG(v)) time overall, since at most dG(v) sets Euw can be
non-empty. Therefore, by Claim 3.5, the expected time spent on this operation is O(logn). In the worst case
each update requires at most O(dG(v)) time, which is O(n) per edge.

To bound the number of changed edges in G′, notice that if Rv does not change then at most one edge is
updated in G′. Otherwise, the number of edges updated in G′ is at most max 2dG(v), Õ(n/τ), since each vertex
in G′ has at most Õ(n/τ) neighbors by the size of R. Combining the above with Claim 3.5 we find that the

6Observe that it is simpler to iterate over all the edges incident to v in G and update the weights of the edges in G′ during each

iteration. However, this creates dG(v) edge updates in G′ which then takes O(dG(v)n/δG) = ω(n) time (if dG(v) > δG) to update
the tree packing in G′. In contrast, our approach only updates the edges of G′ at most Õ(n/τ) times per update in G.
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expected number of edges updated in G′ per edge update in G is O(1). By the same bound presented above, the
worst-case number of edges whose weight is updated in line 16 per edge update in G is Õ(n/τ).

3.2 From Amortized to Worst-Case Time Complexity via Incremental Rebuilding In this
section we prove Theorem 2.6, bounding the worst-case time complexity of Algorithm 1 with (n log4 n/δG(v))-
incremental rebuilding. Notice that the incremental rebuilding completes the update of the star contraction G′

after δG/ log
4 n edge updates in G. Therefore, the probability that the queue of the algorithm is not empty (and

hence the contraction is incomplete) at any given time t is bounded by the probability that some vertex changes
its representative Rv in the last δG/ log

3 n edge updates. The following lemma shows that this probability is
O(1/ log2 n) whenever δG ≥ log4 n. Otherwise, if δG < log4 n, then the algorithm finishes processing its queue
after a single edge update since n log4 n/δG ≥ n, and its output is complete (as long as δG ≥ τ).

Claim 3.6. If at a given time t, the minimum degree of G is δ > log4 n, then given a subsequent sequence
of updates of length N := O(δ/ log3 n) the probability that at least one vertex v ∈ V changes its center vertex Rv

during the sequence is at most O(1/ log2 n).

Proof. Note that the minimum degree of G after the sequence of updates is at least (1−o(1)) ·δ ≥ δ/2. Let Ii
be the indicator for the event that there exists v ∈ V \R such that Rv changes during the i-th edge update. Notice
that E [Ii] ≤ 800 log n/(δ/2) by Claim 3.5 and that δG ≥ δ/2 throughout the sequence of updates. Therefore,

E
[∑N

i=1 Ii

]
≤ 1600N log n/max {δ/2, τ} ≤ O(1/ log2 n). To conclude, by Markov’s inequality we have that

Pr

[
N∑
i=1

Ii ≥ 1

]
≤

E
[∑N

i=1 Ii

]
1

≤ O

(
1

log2 n

)
.

3.3 Stable Dynamic Uniform Sampling In this section we prove Theorem 3.2, it is based on a standard
techniques (see e.g. [Lub86, BDM02, BNR02, DLT07]) and we include it for completeness.

Proof of Theorem 3.2. As each element comes, assign it a priority by uniformly sampling an integer in [1, n10],
if at any time two elements have the same priority, the algorithm fails. Then, maintain a heap of all the items
in the sequence, ordered by their priority. When an element is deleted, remove it from the heap. The minimum
element of the heap is the sampled item. It is known that a dynamic heap can be maintained in O(log n) worst-case
time per operation, where n is the number of elements in the heap.

We now prove the two properties of the sampling. Notice that the minimum priority element is distributed
uniformly, and hence each element has a probability of 1/|St| to be sampled at time t. To show the stability,
notice that under a deletion the probability that the element deleted is the minimum element is 1/|St|. If we are
given an insertion, notice that again by symmetry we have that the probability that the new element is sampled
is 1/|St|. Therefore, we obtain the desired properties of the sampling. Finally, notice that the algorithm fails with
probability at most n−10.
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A Concentration Inequalities

Theorem A.1. Let X1, . . . , Xm ∈ [0, a] be independent random variables. For any δ ∈ [0, 1] and µ ≥
E [

∑m
i=1 Xi], we have

P

[∣∣∣∣∣
m∑
i=1

Xi − E

[
m∑
i=1

Xi

]∣∣∣∣∣ ≥ δµ

]
≤ 2 exp

(
−δ2µ

3a

)
.
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