
Orienting Fully Dynamic Graphs
with Worst-Case Time Bounds⋆

Tsvi Kopelowitz1⋆⋆, Robert Krauthgamer2 ⋆ ⋆ ⋆, Ely Porat3, and
Shay Solomon4†

1 University of Michigan, kopelot@gmail.com
2 Weizmann Institute of Science, robert.krauthgamer@weizmann.ac.il

3 Bar-Ilan University, porately@cs.biu.ac.il
4 Weizmann Institute of Science, shay.solomon@weizmann.ac.il

Abstract. In edge orientations, the goal is usually to orient (direct) the
edges of an undirected network (modeled by a graph) such that all out-
degrees are bounded. When the network is fully dynamic, i.e., admits
edge insertions and deletions, we wish to maintain such an orientation
while keeping a tab on the update time. Low out-degree orientations
turned out to be a surprisingly useful tool for managing networks.

Brodal and Fagerberg (1999) initiated the study of the edge orientation
problem in terms of the graph’s arboricity, which is very natural in this
context. Their solution achieves a constant out-degree and a logarithmic
amortized update time for all graphs with constant arboricity, which
include all planar and excluded-minor graphs. It remained an open ques-
tion – first proposed by Brodal and Fagerberg, later by Erickson and
others – to obtain similar bounds with worst-case update time.

We address this 15 year old question by providing a simple algorithm with
worst-case bounds that nearly match the previous amortized bounds.
Our algorithm is based on a new approach of maintaining a combina-
torial invariant, and achieves a logarithmic out-degree with logarithmic
worst-case update times. This result has applications to various dynamic
network problems such as maintaining a maximal matching, where we
obtain logarithmic worst-case update time compared to a similar amor-
tized update time of Neiman and Solomon (2013).

1 Introduction

A very useful algorithmic tool for managing networks is to orient (direct) the
edges while providing a guaranteed upper bound on the out-degree of every
vertex. Formally, an orientation of an undirected graph G = (V,E) is called a
c-orientation if every vertex has out-degree at most c ≥ 1.

⋆ A full version appears at http://arxiv.org/abs/1312.1382
⋆⋆ This work is supported by NSF grants CCF-1217338 and CNS-1318294

⋆ ⋆ ⋆ Work supported in part by a US-Israel BSF grant #2010418, an Israel Science Foun-
dation grant #897/13, and by the Citi Foundation.

† This work is supported by the Koshland Center for basic Research.

http://arxiv.org/abs/1312.1382

There are many examples where orientations are used in the design, main-
tenance and manipulation of networks, including both static and dynamic net-
works, and both centralized algorithms and distributed ones. One exciting ex-
ample of the power of graph orientations can be seen in the seminal paper intro-
ducing “color-coding” [1], where orientations are used to develop more efficient
algorithms for finding simple cycles and paths. Another fundamental example
is in data structures for quickly answering adjacency queries [2,3,4], where a c-
orientation of a (dynamic) graph G is used to answer adjacency queries in O(c)
time using only linear space. These techniques [2,3,4] were further generalized
to answer short-path queries [5]. Additional examples for the algorithmic use of
low-degree orientations include load balancing [6], maximal matchings [7], count-
ing subgraphs in sparse graphs [8], prize-collecting TSPs and Steiner Trees [9],
reporting all maximal independent sets [10], answering dominance queries [10],
subgraph listing problems (listing triangles and 4-cliques) in planar graphs [2],
and computing the girth [5].

Efficient Data Communication. The efficiency of network communication can
often be improved significantly by assigning one endpoint of every edge as “re-
sponsible” for all data transfers occurring on that edge. Such a responsibility
assignment can be naturally obtained by orienting the graph’s edges and letting
each vertex be responsible only for its outgoing edges. Consider, for example,
the task of computing some aggregate function of dynamic data that resides
locally at a vertex and its neighbors – can this task be carried out without scan-
ning all the neighbors of that vertex? Given a c-orientation, whenever the local
data in a vertex u changes, u updates all its outgoing neighbors (neighbors of
u through edges oriented out of u). In contrast, u need not update any of its
(possibly many) incoming neighbors (neighbors of u through edges oriented into
u) about this change. When u wishes to compute the function, it only needs to
scan its outgoing neighbors in order to gather the full up-to-date data. Such re-
sponsibility assignment is particularly useful in dynamic networks, see [7] for an
example, and could be very effective also in many standard tasks in distributed,
self-stabilizing, peer-to-peer, or ad-hoc networks, such as reducing the message
complexity, or reducing local memory constraints (e.g., a router would only store
information about its c outgoing neighbors).

Dynamic Graphs. Our focus here is on maintaining low out-degree orientations of
fully dynamic graphs on n fixed vertices, where edge updates (insertions and dele-
tions) take place over time. The goal is to develop efficient and simple algorithms
that guarantee that the maximum out-degree in the (dynamic) orientation of the
graph is small. In particular, we are interested in obtaining non-trivial update
times that hold (1) in the worst-case, and (2) deterministically. Notice that in
order for an update algorithm to be efficient, the number of edge re-orientations
(done when performing an edge update) must be small, as this number is clearly
a lower bound for the algorithm’s update time.

2

The out-degree bound achieved by our algorithms will be expressed in terms
of the sparsity of the graph, as measured by the arboricity of G (defined below),
which is a natural lower bound for the maximum out-degree of any orientation.

Arboricity. The arboricity of an undirected graph G = (V,E) is defined as

α(G) = maxU⊆V

⌈
|E(U)|
|U |−1

⌉
, where E(U) is the set of edges induced by U (which

we assume has size |U | ≥ 2). This is a concrete formalism for the notion of
everywhere-sparse graphs — every subgraph of G has arboricity at most α(G)
as well. Arboricity and its related sparseness measures of thickness, degeneracy
or density, which are all equal up to a constant factor, were studied extensively.
Most notable in this context is the family of graphs with constant arboricity,
which includes all excluded-minor graphs, and in particular planar graphs and
bounded-treewidth graphs.

A key property of bounded arboricity graphs that has been exploited in
various algorithmic applications is the following Nash-Williams Theorem.

Theorem 1 (Nash-Williams [11,12]). A graph G = (V,E) has arboricity
α(G) if and only if α(G) > 0 is the smallest number of sets E1, . . . , Eα(G) that
E can be partitioned into, such that each subgraph (V,Ei) is a forest.

This theorem implies that the edges of an undirected graph G = (V,E)
can be oriented such that the out-degree of each vertex is at most α(G). To see
this, consider the guaranteed partition E1, . . . , Eα(G). For each forest (V,Ei) and
each tree in that forest, designate one arbitrary vertex as the root of that tree,
and orient all edges towards that root. In each oriented forest the out-degree of
every vertex is at most 1, hence the union of the oriented forests has out-degree
bounded by α(G). There exists a polynomial-time algorithm that computes for
a (static) graph G the exact arboricity α(G) [13], and a linear-time algorithm
that computes a (2α(G)− 1)-orientation [14].

For every (static) graph G, the minimum-possible maximum out-degree is
closely related to α(G): the argument above provides an orientation with maxi-
mum out-degree at most α(G), but the maximum out-degree is also easily seen
to be at least α(G) − 1 (for every orientation).1 In other words, the arboricity
measure of sparsity is a natural baseline for low out-degree orientations.

1.1 Main Result

We obtain efficient algorithms for maintaining a low out-degree orientation of a
fully dynamic graph G such that the out-degree of each vertex is small and the
running time of all update operations is bounded in the worst-case. Specifically,
we present two algorithms. The first algorithm achieves (at any point in time)

1 To see this, let U ⊂ V be such that
⌈

|E(U)|
|U|−1

⌉
= α(G), hence |E(U)|

|U|−1
> α(G)− 1. For

every orientation, the maximum out-degree in G is at least the average out-degree
of vertices in U , which in turn is at least |E(U)|

|U| > |U|−1
|U| (α(G)− 1). The bound now

follows from both α(G) and the maximum out-degree being integers.

3

– a maximum out-degree ∆ ≤ infβ>1{β · α(G) + ⌈logβ n⌉}, and
– insertion and deletion update times O(∆2) and O(∆), respectively.

The second algorithm works with two parameters α̂ and β̂ > 1 both known
by the algorithm. The parameter α̂ is a set upper bound on α(G) while β̂ can
be chosen arbitrarily and only affects the complexities of the algorithm. This
algorithm achieves (at any point in time)

– a maximum out-degree ∆ ≤ β̂ · α̂+ ⌈logβ̂ n⌉, and
– insertion and deletion update times O(β̂ · α̂ ·∆) and O(∆), respectively.

Notice that the first algorithm does not need to know α(G) (hence its bounds
change with time together with the graph G), while the second algorithm as-
sumes knowledge of an upper bound on α(G). On the other hand, the second

algorithm has faster insertion time, because in the worst-case β̂ · α̂ ·∆ < ∆2.
All our algorithms are deterministic, and they change the orientation of at

most ∆+1 edges per edge update. Perhaps most importantly, they are relatively
simple (especially the first one) to describe and to analyze, which is a great virtue
for potential implementation, and also for further extensions and refinements.
We should nevertheless point out that the apparent simplicity relies heavily on a
fine selection of an effective combinatorial invariant; finding such invariants can
be very tricky, and it constitutes the main technical challenge in this work.

Notice that in our second algorithm if α̂ is constant we can set β̂ = 2 and all of
our bounds translate to O(log n). In other words, for fully dynamic graphs with a
constant upper bound on the arboricity we can maintain an O(log n)-orientation
with O(log n) worst-case update time. Previous work, which is discussed next,
only obtained efficient amortized update time bounds, in contrast to our bounds
which are all in the worst-case. Our results address an open question raised by
Brodal and Fagerberg [3] and restated by Erickson [15], of obtaining good worst-
case bounds (although the ultimate goal is obviously worst-case time O(1) for
all updates, if that is at all possible).

1.2 Comparison with Previous Work

The dynamic setting in our context was pioneered by Brodal and Fagerberg [3],
who showed that it is possible to maintain a 4α̂-orientation of a fully dynamic
graphG whose arboricity is always at most α̂. They proved that their algorithm is
O(1)-competitive against the number of re-orientations made by any algorithm,
regardless of that algorithm’s actual running time. They then provided a specific
strategy for re-orienting edges which shows that, for α̂ = O(1), their algorithm’s
insertion time is amortized O(1) while the deletion time is amortized O(log n).
Kowalik [4] showed that a different analysis of Brodal and Fagerberg’s algorithm
achieves insertion update time that is amortized O(log n) and the deletion time
that is worst-case O(1). Kowalik further showed it is possible to support inser-
tions in amortized O(1) time and deletions in worst-case O(1) time by using an
O(log n)-orientation. These algorithms have been used as black-box components
in several applications of dynamic graphs. Recently Gupta et.al. [16] showed that

4

if only insertions are allowed then an amortized 2 edge reorientations suffice for
maintaining a maximum out-degree of O(α(G)).

Algorithms with amortized runtime bounds may be insufficient for many real-
time applications where infrequent costly operations might cause congestion in
the system at critical times. Exploring the boundaries between amortized and
worst-case bounds is also important from a theoretical point of view, and has
received a lot of research attention. The algorithms of Brodal and Fagerberg [3]
and Kowalik [4] both incur a linear worst-case update time, on which we show
an exponential improvement. As mentioned above, our results address an open
question raised by Brodal and Fagerberg [3] and restated by Erickson in [15].

1.3 Our Techniques

The algorithm of Brodal and Fagerberg [3] is very elegant, but it is not clear if it
can be deamortized as it is inherently amortized. The key technical idea we in-
troduce is to maintain a combinatorial invariant, which is very simple in its basic
form: for every vertex u ∈ V , at least (roughly) α̂ outgoing edges are directed
towards vertices with almost as large out-degree, namely at least dout(u) − 1
(where dout(u) is the out-degree of u). Such edges are called valid edges. We
prove in Section 2 that this combinatorial invariant immediately implies the
claimed upper bound on ∆.

An overview of the algorithms that we use for, say, insertion, is as follows.
When a new edge (u, v) is added, we first orient it, say, from u to v guaranteeing
that the edge is valid. We now check if the invariant holds, but the only culprit
is u, whose out-degree has increased. If we know which of the edges leaving u
are the “special” valid edges needed to maintain the invariant, we scan them to
see if any of them are no longer valid (as a result of the insertion), and if there
is such an edge we flip its orientation, and continue recursively with the other
endpoint of the flipped edge. This process indeed works, but it causes difficulty
during an edge deletion — when one of the α̂ special valid edges leaving u is
deleted, a replacement may not even exist.

Here, our expedition splits into two different parts. We first show an ex-
tremely simple (but less efficient) algorithm that maintains a stronger invariant
in which for every vertex u ∈ V , all of its out-going edges are valid. This ap-
proach immediately gives the claimed upper bound on ∆, with update time
roughly O((logn

log log n)
2) for graphs with constant arboricity.

In the second part we refine the invariant using another idea of spectrum-
validity, which roughly speaking uses the following invariant: for every vertex

u ∈ V and for every 1 ≤ i ≤ deg(u)
α̂ , at least i ·α̂ of its outgoing edges are directed

towards vertices with degree at least dout(u)− i. This invariant is stronger than
the first invariant (which seemed algorithmically challenging) and weaker than
the second invariant (whose bounds were less efficient than desired as it needed
to guarantee validness for all edges). Furthermore, maintaining this invariant
is more involved algorithmically, and one interesting aspect of our algorithm is
that during an insertion process, it does not scan the roughly α̂ neighbors with
degree at least dout(u)−1, as one would expect, but rather some other neighbors

5

picked in a careful manner. Ultimately, this methodology yields the improved
time bounds claim in Section 1.1.

1.4 Selected Applications

We only mention two applications here by stating their theorems for graphs with
arboricity bounded by a constant. We discuss these applications and some other
ones with more detail in the full version.

Theorem 2 (Maximal matching in fully dynamic graphs). Let G =
(V,E) be an undirected fully dynamic graph with arboricity bounded by a con-
stant. Then one can deterministically maintain a maximal matching of G such
that the worst-case time per edge update is O(log n).

Theorem 3 (Adjacency queries in fully dynamic graphs). Let G = (V,E)
be an undirected fully dynamic graph with arboricity bounded by a constant.
Then one can deterministically answer adjacency queries on G in O(log log log n)
worst-case time where the deterministic worst-case time per edge update is O(log n·
log log log n).

1.5 Preliminaries

An orientation of the undirected edges of G assigns a direction to every edge e ∈
E, thereby turning G into a digraph. We will use the notation u → v to indicate
that the edge e = (u, v) is oriented from u to v. Given such an orientation, let
N+(u) := {v ∈ V : u → v} denote the set of outgoing neighbors of u, i.e., the
vertices connected to u via an edge leaving it, and let dout(u) := |N+(u)| denote
the number of outgoing edges of u in this orientation, i.e., the out-degree of u.
Similarly, let N−(u) := {v ∈ V : v → u} denote the set of incoming neighbors
of u, and let din(u) := |N−(u)|. Finally, we denote by ∆ := maxv∈V dout(v) the
maximum out-degree of a vertex in the graph (under the given orientation).

Our algorithms will make use of the following heap-like data structure (the
proof is left for the full version).

Lemma 1. Let X be a dynamic set, where each element xi ∈ X has a key ki ∈ N
that may change with time, and designate a fixed element x0 ∈ X to be the center
of X (although its key k0 may change with time). Then there is a data structure
that maintains X using O(|X|+ k0) words of space, and supports the following
operations with O(1) worst-case time bound (unless specified otherwise):
– ReportMax(X): return a pointer to an element from X with maximum key.
– Increment(X,x): given a pointer to x ∈ X \ {x0}, increment the key of x.
– Decrement(X,x): given a pointer to x ∈ X \ {x0}, decrement the key of x.
– Insert(X,xi, ki): insert a new element xi with key ki ≤ k0 + 1 into X.
– Delete(X,x): given a pointer to an element x ∈ X \ {x0}, remove x from X.
– IncrementCenter(X): increment k0 in O(k0) worst-case time.
– DecrementCenter(X): decrement k0 (unless k0 = 1) in O(k0) worst-case

time.

6

For each vertex w ∈ V , consider the (dynamic) set Xw that contains w and
all its incoming neighbors, where the key of each element in X is given by its
out-degree. The center element of Xw will be w itself. Each vertex w will have
its own data structure (using Lemma 1) for maintaining Xw. In what follows,
we denote this data structure by Hw, and use it to find an incoming neighbor of
w with out-degree at least dout(w) + 2 (if one exists) in O(1) time.

Lemma 2. The total space used to store the data structures Hw for all w ∈ V
is O(n + m) words, where m stands for the number of edges in the (current)
graph.

Proof. By Lemma 1, for each w ∈ V the space usage is at most O(1 + din(w) +
dout(w)). Summing over all vertices w ∈ V , the total space is

∑
w∈V O(1 +

din(w) + dout(w)) = O(n+m). ⊓⊔

2 Invariants for Bounding the Largest Out-degree

We assume throughout that the dynamic graph G has, at all times, arboricity
α(G) bounded by some parameter α̂, i.e., α(G) ≤ α̂. Let β̂ > 1 be a parameter
that may possibly depend on n and α̂ (it will be chosen later to optimize our

bounds), and define γ := β̂ · α̂.
An edge (u, v) ∈ E oriented such that u → v is called valid if dout(u) ≤

dout(v) + 1, and is called violated otherwise. The following condition provides
control (upper bound) on ∆, as proved in Theorem 4. We refer to it as an
invariant, because we shall maintain the orientation so that the condition is
satisfied at all times.

Invariant 3 For each vertex w, at least min{dout(w), γ} outgoing edges of w
are valid.

Theorem 4. If Invariant 3 holds, then ∆ ≤ β̂ · α̂+ ⌈logβ̂ n⌉.

Proof. Assume Invariant 3 holds, and suppose for contradiction there is a “source”
vertex s ∈ V satisfying dout(s) > γ+⌈logβ̂ n⌉. Now consider the set Vi of vertices
reachable from s by directed paths of length at most i that use only valid edges.
Observe that for every 1 ≤ i ≤ ⌈logβ̂ n⌉ and every vertex w ∈ Vi,

dout(w) ≥ dout(s)− i > γ + ⌈logβ̂ n⌉ − i ≥ γ,

implying that at least γ outgoing edges of w are valid.
We next prove by induction on i that |Vi| > β̂i for all 1 ≤ i ≤ ⌈logβ̂ n⌉.

For the base case i = 1, notice that s has at least γ valid outgoing edges and
all of the corresponding outgoing neighbors of s belong to V1. Furthermore, s
belongs to V1 as well. Thus |V1| ≥ γ + 1 > γ ≥ β̂. For the inductive step,

suppose |Vi−1| > β̂i−1; observe that the total number of valid outgoing edges
from vertices in Vi−1 is at least γ|Vi−1|, and furthermore all these edges are
incident only to vertices in Vi. Since the graph’s arboricity is α(G) ≤ α̂, we can

bound |Vi| − 1 ≥ γ|Vi−1|/α(G) ≥ β̂|Vi−1| > β̂i, as claimed.
We conclude that |V⌈logβ̂ n⌉| > β̂⌈logβ̂ n⌉ ≥ n, yielding a contradiction. ⊓⊔

7

Invariant 3 provides a relatively weak guarantee as if dout(w) > γ, then we
know only that γ outgoing edges of w are valid, and have no guarantee on the
out-degree of the other dout(w)− γ outgoing neighbors of w. Consequently, it is
nontrivial to maintain Invariant 3 efficiently, and in particular, if one of the γ
valid edges (outgoing from w) is deleted, the invariant might become violated,
and it is unclear how to restore it efficiently. We thus need another invariant,
namely, a stronger condition (so that a similar theorem still applies) that is also
easy to maintain. The next invariant is a natural candidate, as it is simple to
maintain (with reasonable efficiency).

Invariant 4 All edges in G are valid.

Theorem 5. If Invariant 4 holds, then ∆ ≤ infβ>1 β · α(G) + ⌈logβ n⌉.

The proof of Theorem 5 is similar to the proof of Theorem 4 and is left for
the full version.

We first present in Section 3 a very simple algorithm that maintains In-
variant 4 with update times O(∆2) and O(∆) for insertion and deletion (of
an edge), respectively. This algorithm provides a strong basis for a more so-
phisticated algorithm, developed in Section 4, which maintains an intermediate
invariant (stronger than Invariant 3 but weaker than Invariant 4) with update
times O(γ ·∆) and O(∆) for insertion and deletion, respectively.

3 Worst-case Algorithm

We consider an infinite sequence of graphs G0, G1, . . . on a fixed vertex set V ,
where each graph Gi = (V,Ei) is obtained from the previous graph Gi−1 by
either adding or deleting a single edge. For simplicity, we assume that G0 has
no edges. Denote by αi = α(Gi) the arboricity of Gi. We will maintain Invari-
ant 4 while edges are inserted and deleted into and from the graph, which by
Theorem 5 implies that the maximum out-degree ∆i in the orientation of Gi is
bounded by O(infβ>1{β · αi + logβ n}).

For the rest of this section we fix i and consider a graph Gi obtained from a
graph Gi−1 satisfying Invariant 4 by either adding or deleting edge e = (u, v).

3.1 Insertions

Suppose that edge (u, v) is added to Gi−1 thereby obtaining Gi. We begin by
orienting the edge from the endpoint with lower out-degree to the endpoint with
larger out-degree (breaking a tie in an arbitrary manner). So without loss of
generality we now have u → v. Notice that the only edges that may be violated
now are edges outgoing from u, as dout(u) is the only out-degree that has been
incremented. Furthermore, if some edge u → v′ is violated now, then removing
this edge will guarantee that there are no violated edges. However, the resulting
graph would be missing the edge (u, v′) just removed. So we recursively insert the
edge (u, v′), but orient it in the opposite direction (i.e., v′ → u). This means that
we have actually flipped the orientation of (u, v′), reverting dout(u) to its value

8

before the entire insertion process took place. This recursive process continues
until all edges of the graph are valid. Moreover, at any given time there is at
most one “missing” edge, and the graph obtained at the end of the process has
no missing edges. Our choice to remove a violated edge outgoing from u (if such
an edge exists) guarantees that the number of recursive steps is at most ∆, as
we will show later. This insertion process is described in Algorithm 1.

Algorithm 1 Recursive-Insertion(G, (u, v))

/* Assume without loss of generality dout(u) ≤ dout(v) */

1: add (u, v) to G with orientation u → v
2: Insert(Xv, u, dout(u)− 1) /* this key will be incremented in line 10 if needed */
3: for v′ ∈ N+(u) do
4: if dout(u) > dout(v

′) + 1 then
5: remove (u, v′) from G /* now edge (u, v′) is missing */
6: Delete(Xv′ , u)
7: Recursive-Insertion(G, (v′, u)) /* recursively insert (u, v′), but oriented v′ → u

*/
8: return
9: for v′ ∈ N+(u) do
10: Increment(Xv′ , u)
11: IncrementCenter(Xu)

We remark that although in line 1 the out-degree of u is incremented by 1,
we do not update the new key of u in the appropriate structures (i.e., Hu and
Hv′ for all v′ ∈ N+(u)), because if the condition in line 4 succeeds for some
v′ ∈ N+(u), the out-degree of u will return to its original value, and we want
to save the cost of incrementing and then decrementing the key for u in all
structures. However, if that condition fails for all v′, we will perform the update
in lines 9–11.

Correctness and Runtime Analysis The following lemmas, provide the correct-
ness and runtime analysis of the insertion process. Due to space constraints, the
proofs are omitted here and appear in the full version. Notice that the proofs
mostly follow from the discussion above.

Lemma 5. At the end of the execution of Recursive-Insertion on an input graph
which has an orientation satisfying Invariant 4, Invariant 4 holds for the result-
ing graph and orientation.

Lemma 6. The total number of recursive calls (and hence re-orientations) of
Recursive-Insertion due to an insertion into G is at most ∆ + 1, and the total
runtime is bounded by O(∆2).

3.2 Deletions

Suppose that edge (u, v) is deleted from Gi−1 thereby obtaining Gi. Assume
without loss of generality that in the orientation of Gi−1 we had u → v. We

9

begin by removing (u, v) from our data structure. Notice that the only edges
that may be violated now are edges incoming into u. Furthermore, if there is
an edge v′ → u that is violated now, then adding to the graph another copy of
(u, v′) (producing a multi-graph) that is oriented in the opposite direction (i.e.,
u → v′) will guarantee that there are no violated edges. However, the resulting
multi-graph has an extra edge that should be deleted. So we now recursively
delete the original copy of edge (u, v′) (not the copy that was just added, oriented
u → v′, which we keep). This means that we have actually flipped the orientation
of (u, v′), reverting dout(u) to its value before the entire deletion process took
place. This recursive process will continue until all edges of the graph are valid.
Moreover, there is at most one duplicated edge at any given time, and the graph
obtained at the end of the process has no duplicated edges. Our choice to add
a copy of a violated edge incoming to u (if such an edge exists) guarantees that
the number of recursive steps is at most ∆.

Due to space limitations, more details and correctness of the deletion process
are described in the full version. Overall, we prove the following theorem.

Theorem 6. There exists a deterministic algorithm for maintaining an orien-
tation of a fully dynamic graph on n vertices while supporting the following:
– The maximum out-degree is ∆ ≤ infβ>1{β · α(G) + logβ n},
– The worst-case time to execute an edge insertion is O(∆2),
– The worst-case time to execute an edge deletion is O(∆), and
– The worst-case number of orientations performed per update is ∆+ 1.

4 A More Efficient Algorithm

In this section we present a more efficient, though more involved, algorithm that
improves the insertion update time from O(∆2) to O(γ ·∆), without increasing

any of the other measures, at the cost of setting α̂ and β̂ in advance.

An Intermediate Invariant: So far we have introduced two invariants. On one
extreme, the stronger Invariant 4 guarantees that all edges are valid, and this
led to our simple algorithm in Section 3. On the other extreme, the weaker
Invariant 3 only guarantees that γ outgoing edges of each vertex are valid. On
an intuitive level, the benefit of having the weaker Invariant 3 being maintained
comes into play during the insertion process of edge (u, v) that is oriented as
u → v, where instead of scanning all of the outgoing edges of u looking for
a violated edge, it is enough to scan only γ edges. If such a guarantee could
be made to work, the insertion update time would be reduced to O(γ · ∆).
However, it is unclear how to efficiently maintain Invariant 3 as deletions take
place. Specifically, when one of the γ outgoing valid edges of a vertex is deleted,
it is possible that there is no other valid outgoing edge to replace it.

Our strategy is not to maintain Invariant 3 directly, but rather to define
and maintain an intermediate invariant (see Invariant 7), which is stronger than
Invariant 3 but still weak enough so that we only need to scan γ outgoing edges
of u during the insertion process. The additional strength of the intermediate

10

invariant will assist us in efficiently supporting deletions. Before stating the
invariant, we define the following. For any i ≥ 1, an edge (u, v) oriented as u → v
is called i-valid if dout(v) ≥ dout(u) − i; if it is not i-valid then it is i-violated.
We also say that a vertex w is spectrum-valid if the set Ew of its outgoing edges

can be partitioned into q = qw = ⌈ |Ew|
γ ⌉ sets E1

w, · · · , Eq
w such that for each

1 ≤ i ≤ q, the following holds: (1) |Ei
w| = γ (except for the residue set Eq

w which
contains the remaining |Ew| − (q − 1) · γ edges, i.e., |Eq

w| = |Ew| − (q − 1) · γ),
and (2) all edges in Ei

w are i-valid. If a vertex is not spectrum-valid then it is
spectrum-violated.

Invariant 7 Each vertex w is spectrum-valid.

We will call E1
w (Eq

w) the first (last) set of edges for w. To give some intuition
as to why Invariant 7 helps us support deletions efficiently, notice that once an
edge (u, v) that is oriented as u → v is deleted and needs to be replaced, it will
either be replaced by a flip of some violated incoming edge (which will become
valid after the flip), or it can be replaced by one of the edges from E2

u, as these
edges were previously 2-valid, and after the deletion they are all 1-valid. We
emphasize already here that during the insertion process we do not scan the γ
edges of the first set (i.e., those that are guaranteed to be 1-valid prior to the
insertion), but rather scan the γ (in fact, γ−1) edges of the last set (and possibly
of the set before last) that are only guaranteed to be q-valid.

In order to facilitate the use of Invariant 7, each vertex w will maintain its
outgoing edges in a doubly linked list Lw. We say that Lw is valid if for every
1 ≤ i ≤ q, the edges between location γ · (i− 1)+1 and location (γ · i) in the list
are all i-valid. These locations for a given i are called the i-block of Lw. So, in
a valid Lw the first location must be 1-valid and belongs to the 1-block, the last
location must be q-valid and belongs to the q-block, etc. Note that for i = q the
number of locations (i.e., |Ew| − (q− 1) · γ) may be smaller than γ. If Lw is not
valid then it is violated.

We now provide an overview of the more efficient algorithms for insertion and
deletion. Due to space limitations, the full details are given in the full version.

Insertions: Suppose that edge (u, v) is added to Gi−1 thereby obtaining Gi. The
process of inserting the new edge is performed as in Section 3 with the following
modifications. Instead of scanning all outgoing edges of u in order to find a
violated edge, we only scan the last γ−1 edges in Lu; if there are less than γ−1
edges then we scan them all. If one of these edges, say (u, v′), is violated then we
remove (u, v′) from the graph, replace (u, v′) with (u, v) in Lu, and recursively
insert (u, v′) with the flipped orientation (just like in Section 3). If all of these
edges are valid, we move them together with the new edge (u, v) to front of Lu.

Deletions: Suppose that edge (u, v) is deleted from Gi−1 thereby obtaining Gi.
The process of deleting the edge is performed as in Section 3 with the following
modifications. If an edge incoming into u, say (u, v′), is violated and is flipped
(just like in Section 3), then we replace (u, v) with (u, v′) in Lu and continue
recursively to delete the original copy of (u, v′). If all incoming edges of u are
valid, we remove (u, v) from Lu.

11

Theorem 7. There exists a deterministic algorithm for maintaining an orien-
tation of a fully dynamic graph on n vertices that has arboricity at most α̂ (at
all times), while supporting the following:

– The maximum out-degree is ∆ ≤ β̂ · α̂+ logβ̂ n,

– The worst-case time to execute an edge insertion is O(β̂ · α̂ ·∆),
– The worst-case time to execute an edge deletion is O(∆), and
– The worst-case number of orientations performed per update is ∆+ 1.

Acknowledgments. The fourth-named author is grateful to Ofer Neiman for
helpful discussions.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4) (1995) 844–856
2. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and com-

paction of adjacency matrices. Theor. Comput. Sci. 86(2) (1991) 243–266
3. Brodal, G.S., Fagerberg, R.: Dynamic representation of sparse graphs. In: Algo-

rithms and Data Structures, 6th International Workshop, WADS. (1999) 342–351
4. Kowalik, L.: Adjacency queries in dynamic sparse graphs. Inf. Process. Lett.

102(5) (2007) 191–195
5. Kowalik, L., Kurowski, M.: Oracles for bounded-length shortest paths in planar

graphs. ACM Transactions on Algorithms 2(3) (2006) 335–363
6. Cain, J.A., Sanders, P., Wormald, N.: The random graph threshold for k-

orientiability and a fast algorithm for optimal multiple-choice allocation. In: 18th
Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM (2007) 469–476

7. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic max-
imal matching. In: Proc. of 45th STOC. (2013) 745–754

8. Dvorak, Z., Tuma, V.: A dynamic data structure for counting subgraphs in sparse
graphs. In: Proc. of 13th WADS. (2013) 304–315

9. Eisenstat, D., Klein, P.N., Mathieu, C.: An efficient polynomial-time approxima-
tion scheme for steiner forest in planar graphs. In: Proc. of SODA. (2012) 626–638

10. Eppstein, D.: All maximal independent sets and dynamic dominance for sparse
graphs. ACM Transactions on Algorithms 5(4) (2009)

11. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees in finite graphs. Journal of
the London Mathematical Society 36(1) (1961) 445–450

12. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. Journal of
the London Mathematical Society 39(1) (1964) 12

13. Gabow, H.N., Westermann, H.H.: Forests, frames, and games: Algorithms for
matroid sums and applications. Algorithmica 7(5&6) (1992) 465–497

14. Arikati, S.R., Maheshwari, A., Zaroliagis, C.D.: Efficient computation of implicit
representations of sparse graphs. Discrete Appl. Math. 78(1-3) (1997) 1–16

15. Erickson, J. http://www.cs.uiuc.edu/~jeffe/teaching/datastructures/2006/
problems/Bill-arboricity.pdf (2006) Retrieved November 2013.

16. Gupta, A., Kumar, A., Stein, C.: Maintaining assignments online: Matching,
scheduling, and flows. In Chekuri, C., ed.: SODA, SIAM (2014) 468–479

12

http://www.cs.uiuc.edu/~jeffe/teaching/datastructures/2006/problems/Bill-arboricity.pdf
http://www.cs.uiuc.edu/~jeffe/teaching/datastructures/2006/problems/Bill-arboricity.pdf

