
Towards Tight Bounds for Spectral Sparsification of
Hypergraphs∗

Michael Kapralov
†

École Polytechnique Fédérale de Lausanne

Switzerland

michael.kapralov@epfl.ch

Robert Krauthgamer
‡

Weizmann Institute of Science

Israel

robert.krauthgamer@weizmann.ac.il

Jakab Tardos
§

École Polytechnique Fédérale de Lausanne

Switzerland

jakab.tardos@epfl.ch

Yuichi Yoshida
¶

National Institute of Informatics

Japan

yyoshida@nii.ac.jp

ABSTRACT
Cut and spectral sparsification of graphs have numerous applica-

tions, including e.g. speeding up algorithms for cuts and Laplacian

solvers. These powerful notions have recently been extended to hy-

pergraphs, which are much richer and may offer new applications.

However, the current bounds on the size of hypergraph sparsifiers

are not as tight as the corresponding bounds for graphs.

Our first result is a polynomial-time algorithm that, given a hy-

pergraph on 𝑛 vertices with maximum hyperedge size 𝑟 , outputs an

𝜖-spectral sparsifier with𝑂∗ (𝑛𝑟 ) hyperedges, where𝑂∗
suppresses

(𝜖−1 log𝑛)𝑂 (1)
factors. This size bound improves the two previous

bounds:𝑂∗ (𝑛3) [Soma and Yoshida, SODA’19] and𝑂∗ (𝑛𝑟3) [Bansal,
Svensson and Trevisan, FOCS’19]. Our main technical tool is a new

method for proving concentration of the nonlinear analogue of the

quadratic form of the Laplacians for hypergraph expanders.

We complement this with lower bounds on the bit complexity of

any compression scheme that (1 + 𝜖)-approximates all the cuts in a

given hypergraph, and hence also on the bit complexity of every

𝜖-cut/spectral sparsifier. These lower bounds are based on Ruzsa-

Szemerédi graphs, and a particular instantiation yields an Ω(𝑛𝑟 )
lower bound on the bit complexity even for fixed constant 𝜖 . In the

case of hypergraph cut sparsifiers, this is tight up to polylogarithmic

factors in 𝑛, due to recent result of [Chen, Khanna and Nagda,

FOCS’20]. For spectral sparsifiers it narrows the gap to 𝑂∗ (𝑟 ).
Finally, for directed hypergraphs, we present an algorithm that

computes an 𝜖-spectral sparsifier with 𝑂∗ (𝑛2𝑟3) hyperarcs, where
∗
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𝑟 is the maximum size of a hyperarc. For small 𝑟 , this improves over

𝑂∗ (𝑛3) known from [Soma and Yoshida, SODA’19], and is getting

close to the trivial lower bound of Ω(𝑛2) hyperarcs.
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1 INTRODUCTION
Sparsification is an algorithmic paradigm where a dense object is

replaced by a sparse one with similar features, which often leads

to significant improvements in efficiency of algorithms, including

running time, space complexity, and communication. We study

edge-sparsification of hypergraphs, which replaces a hypergraph

𝐺 = (𝑉 , 𝐸,𝑤) with a sparse hypergraph 𝐺 that has the same ver-

tex set 𝑉 and only a few hyperedges, often a reweighted subset

of 𝐸. This is a natural extension of edge-sparsification of ordinary

graphs, which includes key concepts such as cut sparsifiers, spec-

tral sparsifiers, and flow sparsifiers. These were studied extensively

from numerous angles, including various constructions, tight size

bounds, related variants, and practical applications. As this litera-

ture is too vast to cover here, we quickly recap the basics for graphs

before discussing hypergraphs, which are our focus here.

Graphs. Let 𝐺 = (𝑉 , 𝐸,𝑤) be an edge-weighted graph, where

𝑤 ∈ R𝐸+ . The energy of a vector 𝑥 ∈ R𝑉 in 𝐺 is defined as

𝑄𝐺 (𝑥) =
∑︁
𝑢𝑣∈𝐸

𝑤𝑢𝑣 (𝑥𝑢 − 𝑥𝑣)2,

and can also be written as 𝑥⊤𝐿𝐺𝑥 , where 𝐿𝐺 is the Laplacian matrix

of𝐺 . Spielman and Teng [32] introduced the notion of an 𝜖-spectral
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sparsifier of 𝐺 , which is a graph 𝐺 = (𝑉 , 𝐸,𝑤) that satisfies (for
0 ≤ 𝜖 ≤ 1/2)

∀𝑥 ∈ R𝑉 , 𝑄
𝐺
(𝑥) ∈ (1 ± 𝜖)𝑄𝐺 (𝑥). (1)

The size of a spectral sparsifier 𝐺 is |𝐸 |.
We say that an edge 𝑒 ∈ 𝐸 is cut by 𝑆 ⊆ 𝑉 if one endpoint of 𝑒

belongs to 𝑆 and another one belongs to 𝑉 \ 𝑆 . The total weight
of edges cut by 𝑆 is clearly 𝑄𝐺 (1𝑆 ), where 1𝑆 ∈ R𝑉 denotes the

characteristic vector of a set 𝑆 ⊆ 𝑉 .

A spectral sparsifier 𝐺 of a graph 𝐺 preserves many important

properties of 𝐺 : its cuts have approximately the same weight as

those in 𝐺 ; its Laplacian 𝐿
𝐺

approximates every eigenvalue of

𝐿𝐺 ; electrical flows in 𝐺 approximate those in 𝐺 . It is extremely

useful to have a spectral sparsifier with a small number of edges

because algorithms that involve these quantities can be applied on

the sparsifier 𝐺 instead of on 𝐺 , with only a small loss in accuracy.

A spectral sparsifier of size 𝑂 (𝑛/𝜖2) can be computed in almost

linear time [21], where 𝑛 is the number of vertices in 𝐺 .

Hypergraphs. A hypergraph is a natural extension of a graph,

which can represent relations between three or more entities, and

has proved useful to solve problems in practical areas such as

computer vision [16, 25], bioinformatics [19], and information re-

trieval [14]. Many of those problems, such as semi-supervised learn-

ing [15, 35, 39] and link prediction [36], involve the notion of energy

for hypergraphs, where the energy of a vector 𝑥 ∈ R𝑉 in an edge-

weighted hypergraph 𝐺 = (𝑉 , 𝐸,𝑤) is defined as

𝑄𝐺 (𝑥) =
∑︁
𝑒∈𝐸

𝑤𝑒 max

𝑢,𝑣∈𝑒
(𝑥𝑢 − 𝑥𝑣)2 . (2)

This definition matches the one for graphs when every hyperedge

in 𝐺 is of size two. As before, 𝑄𝐺 (1𝑆 ) gives the total weight of

hyperedges cut by 𝑆 , where we regard a hyperedge 𝑒 ∈ 𝐸 as cut if
𝑒 ∩ 𝑆 ≠ ∅ and 𝑒 ∩ (𝑉 \ 𝑆) ≠ ∅.

Spectral sparsification of hypergraphs was first defined by Soma

and Yoshida [29], as follows. Similarly to graphs, an 𝜖-spectral spar-
sifier of 𝐺 is a hypergraph 𝐺 = (𝑉 , 𝐸,𝑤) that satisfies (1). This is a
strictly stronger notion than that of the hypergraph cut sparsifier

which has been previously studied in [24] and [20].

Besides the applications mentioned above, spectral sparsifiers for

hypergraphs were used to show agnostic learnability of a certain

subclass of submodular functions [29].

Soma and Yoshida [29] showed that every hypergraph 𝐺 admits

an 𝜖-spectral sparsifier with 𝑂 (𝑛3/𝜖2) hyperedges,1 which is non-

trivial because a general hypergraph can have 2
𝑛 − 1 (non-empty)

hyperedges. Moreover, they provide an algorithm recovering this

sparsifier, that runs in close to linear time (in the input size). Later,

Bansal, Svensson and Trevisan [6] showed that every hypergraph

𝐺 admits a spectral sparsifier with 𝑂 (𝑛𝑟3/𝜖2) hyperedges, where 𝑟
is the maximum size of a hyperedge in 𝐺 . Note that this bound is

incomparable to [29] because 𝑟 could be as large as 𝑛.

1.1 Results
Spectral sparsification of undirected hypergraphs. Our first con-

tribution is an algorithm that constructs an 𝜖-spectral sparsifier of

1
Throughout, we write𝑂 ( ·) to suppress a factor of log

𝑂 (1) 𝑛.

Table 1: Bounds on the size of hypergraph sparsifiers

cut sparsification spectral sparsification reference

𝑂 (𝑛2/𝜖2) [24] implicitly

𝑂 (𝑛𝑟/𝜖2) [20]

𝑂 (𝑛3/𝜖2) [29]

𝑂 (𝑛𝑟3/𝜖2) [6]

𝑂 (𝑛/𝜖2) [10]

𝑂 (𝑛𝑟/𝜖𝑂 (1) ) Theorem 1.1

a hypergraph with only 𝑂 (𝑛𝑟/𝜖𝑂 (1) ) hyperedges, which improves

upon the previous constructions mentioned above. (See Table 1 for

known bounds for hypergraph sparsification.)

Theorem 1.1. Given an 𝑟 -uniform hypergraph𝐺 = (𝑉 , 𝐸,𝑤) and
1/𝑛 ≤ 𝜖 ≤ 1/2, one can compute in polynomial time with proba-
bility 1 − 𝑜 (1) an 𝜖-spectral sparsifier of 𝐺 with 𝑛𝑟 (𝜖−1 log𝑛)𝑂 (1)

hyperedges. The running time is 𝑂 (𝑚𝑟2) + 𝑛𝑂 (1) , where𝑚 = |𝐸 |.

To simplify notation, our entire technical analysis considers a

hypergraph 𝐺 = (𝑉 , 𝐸) that is unweighted (i.e., unit weight hyper-

edges), reserving the letter𝑤 for the edge weights in the sparsifier.

This is actually without loss of generality, see the full version of

the paper.

We stress that Theorem 1.1 in fact applies to hypergraphs with

maximum size of a hyperedge at most 𝑟 . Indeed, in our analysis

every hyperedge is a multiset of vertices, and therefore a hyperedge

with less than 𝑟 vertices can be trivially extended to a multiset of

exactly 𝑟 vertices by copying an arbitrary vertex, without changing

the energy (but it might affect vertex degrees).

Bit-complexity lower bound. To complement Theorem 1.1, we

consider lower bounds on the bit complexity of sparsifiers. Here,

we consider 𝜖-cut sparsifiers, which require that (1) holds only for

vectors of the form 𝑥 = 1𝑆 . This notion actually predates spectral

sparsification and was first defined by Benczúr and Karger [7]

for graphs, and by Kogan and Krauthgamer [20] for hypergraphs.

Obviously, lower bounds for cut sparsifiers directly imply the same

lower bounds also for spectral sparsifiers.

The second contribution of this work is a surprising connection

between a Ruzsa-Szemerédi (RS) graph [28], which is a well-studied

notion in extremal graph theory, and a lower bound on the bit

complexity of a hypergraph cut sparsifier. Here, an (ordinary) graph

is called a (𝑡, 𝑎)-RS graph if its edge set is the union of 𝑡 induced

matchings of size 𝑎. Then, we show the following.

Theorem 1.2. Suppose that there exists a (𝑡, 𝑎)-Ruzsa-Szemerédi
graph on 𝑛 vertices with 𝑎 ≥ 6000

√︁
𝑛 log𝑛. Assume also one can

compress unweighted (𝑡 + 1)-uniform hypergraphs 𝐺 = (𝑉 , 𝐸) on
2𝑛 vertices into 𝑘 bits, from which 𝑄𝐺 (1𝑆 ) can be approximated for
every 𝑆 ⊆ 𝑉 within factor 1± 𝜖 , where 𝜖 = 𝑂 (𝑎/𝑛). Then, 𝑘 = Ω(𝑎𝑡).

For example, by instantiating Theorem 1.2with the (𝑛Ω (1/log log𝑛) ,
𝑛/3 − 𝑜 (𝑛))-Ruzsa-Szemerédi graphs known due to Fischer et al.

[13], we deduce that Ω(𝑛𝑟 ) bits are necessary to encode all the cut

values of an arbitrary 𝑟 -uniform hypergraphwith 𝑟 = 𝑛𝑂 (1/log log𝑛)
,

even within a fixed constant ratio 1 + 𝜖 .
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This lower bound is in fact near-tight. Indeed, Chen, Khanna,

and Nagda [10] showed very recently that every hypergraph 𝐺

admits an 𝜖-cut sparsifier with 𝑂 (𝑛 log𝑛/𝜖2) hyperedges, which
are actually sampled from𝐺 . Applying this construction with fixed

𝜖 and 𝑟 = 𝑛𝑂 (1/log log𝑛)
yields a sparsifier of 𝐺 with 𝑂 (𝑛 log𝑛)

hyperedges; encoding a hyperedge (including its weight, which

is bounded by 𝑛𝑟 ) takes at most 𝑂 (𝑟 log𝑛) bits, and thus one can

encode all the cuts of 𝐺 using 𝑂 (𝑛𝑟 log2 𝑛) bits. It follows that our
lower bound is optimal up to a lower order factor𝑂 (log2 𝑛). Instan-
tiating our lower bound with the original construction of Ruzsa

and Szemerédi [28], we can rule out the possibility of compressing

the cut structure of a hypergraph with 𝑛 vertices and maximum

hyperedge size 𝑟 with significantly less than 𝑛𝑟 space, and a poly-

nomial scaling in the error (that is with 𝑛𝑟1−Ω (1)𝜀−𝑂 (1)
space), for

any 𝑟 . See the full version of the paper for more details.

In fact, our space lower bound for hypergraphs far exceeds the

𝑂 (𝑛 log𝑛/𝜖2) bits that suffices to approximately represent all the

cuts of an (ordinary) graph by simply storing a cut sparsifier. We

thus obtain the first provable separation between the bit complexity

of approximating all the cuts of a graph vs. of a hypergraph.

Spectral sparsification of directed hypergraphs. We also consider

spectral sparsification of directed hypergraphs. Here, a hyperarc

𝑒 consists of two disjoint sets, called the head ℎ(𝑒) ⊆ 𝑉 and the

tail 𝑡 (𝑒) ⊆ 𝑉 , and the size of the hyperarc is |𝑡 (𝑒) | + |ℎ(𝑒) |. A
directed hypergraph 𝐺 = (𝑉 , 𝐸) then consists of a vertex set 𝑉

and a hyperarc set 𝐸. For an edge-weighted directed hypergraph

𝐺 = (𝑉 , 𝐸,𝑤) and a vector 𝑥 ∈ R𝑉 , the energy of 𝑥 in 𝐺 is defined

as

𝑄𝐺 (𝑥) =
∑︁
𝑒∈𝐸

𝑤𝑒 max

𝑢∈𝑡 (𝑒),𝑣∈ℎ (𝑒)
(𝑥𝑢 − 𝑥𝑣)2+, (3)

where (𝑎)+ = max{𝑎, 0}. Again, it is defined so that 𝑄𝐺 (1𝑆 ) is the
total weight of hyperarcs that are cut by 𝑆 , where a hyperarc 𝑒 is

cut if 𝑡 (𝑒) ∩ 𝑆 ≠ ∅ and ℎ(𝑒) ∩ (𝑉 \ 𝑆) ≠ ∅.
It is not difficult to see that a spectral sparsifier might require

(in the worst-case) at least Ω(𝑛2) hyperarcs, even for an ordinary

directed graph. Indeed, consider a balanced bipartite clique directed

from one side of the bipartition towards the other. Here, every arc

is the unique arc crossing some particular directed cut, and hence a

sparsifier must keep all the Ω(𝑛2) arcs (see also [11, 18]). However,

Soma and Yoshida [29] showed that every directed hypergraph

admits an 𝜖-spectral sparsifier with𝑂 (𝑛3/𝜖2) hyperarcs. We tighten

this gap by showing that 𝑂 (𝑛2/𝜖2) hyperarcs are sufficient when

every hyperarc is of constant size.

Theorem 1.3. Given a directed hypergraph𝐺 = (𝑉 , 𝐸) with max-
imum hyperarc size at most 𝑟 such that 11𝑟 ≤

√
𝜖𝑛, and a value

𝜖 ≤ 1/2, one can compute in polynomial time with probability 1−𝑜 (1)
an 𝜖-spectral sparsifier of 𝐺 with 𝑂 (𝑛2𝑟3 log2 𝑛/𝜖2) hyperarcs.

We note that Theorem 1.3 is stated under the assumption 11𝑟 ≤√
𝜖𝑛, which is useful for our analysis for technical reasons. For larger

values of 𝑟 the result of [29] gives a better bound on the number of

hyperedges in the sparsifier, and therefore this assumption is not

restrictive.

1.2 Related Work
The first construction of cut sparsifiers for hypergraphs was given

by Kogan and Krauthgamer [20] and uses𝑂 (𝑛(𝑟 + log𝑛)/𝜖2) hyper-
edges. They also mention that an upper bound of 𝑂 (𝑛2 log𝑛/𝜖2)
hyperedges follows implicitly from the results of Newman and Ra-

binovich [24]. Very recently (and independent of our work), Chen,

Khanna, and Nagda [10] improved this bound to 𝑂 (𝑛 log𝑛/𝜖2) hy-
peredges, which is near-optimal because the current lower bound

is Ω(𝑛/𝜖2) edges, and actually holds for (ordinary) graphs [4, 8].

Louis [23] (later merged with Chan et al. [9]) initiated the spec-

tral theory for hypergraphs, in which the Laplacian operator 𝐿 :

R𝑉 → R𝑉 of a hypergraph is defined so that its “quadratic form”

𝑥𝐿(𝑥) coincides with the energy (2). As opposed to the graph case,

here the Laplacian operator is merely piecewise linear, and hence

computing its eigenvalues/vectors is hard. He showed that𝑂 (log 𝑟 )-
approximation is possible, and that obtaining a better approxi-

mation ratio is NP-hard assuming the Small-Set Expansion (SSE)

hypothesis [26]. He further showed a Cheeger inequality for hy-

pergraphs, which implies that, given a vector 𝑥 ∈ R𝑉 with a small

energy, one can efficiently find a set 𝑆 ⊆ 𝑉 of small expansion,

which roughly means that the number of hyperedges cut by 𝑆 is

small relative to the number of hyperedges incident to vertices in 𝑆

(see Section 2 for details). Since then, several other algorithms for

finding sets of small expansion have been proposed [17, 33].

Yoshida [37] proposed another piecewise linear Laplacian for

directed graphs and used it to study structures of real-world net-

works. Generalizing the Laplacians for hypergraphs and directed

graphs, Laplacian 𝐿 for directed hypergraphs was proposed [22, 38],

whose quadratic form 𝑥⊤𝐿(𝑥) coincides with (3).

1.3 Discussion
An obvious open question is the existence of a spectral sparsifier

with 𝑂 (𝑛) hyperedges. As we will see in Section 3, our overall

strategy to construct a spectral sparsifier is decomposing the input

hypergraph into good expanders (in a non-trivial way) and then

sparsifying each expander. Here a good expander is a hypergraph
with the maximum possible expansion up to a constant factor (see

Section 2.1 for the details). However, we do not even know whether

we can spectrally sparsify hypergraph expanders with 𝑂 (𝑛) hy-
peredges. To see the difficulty, note that a graph expander has

expansion Θ(1) whereas an 𝑟 -uniform hypergraph expander has

expansion Θ(1/𝑟 ). Let 𝑥 ∈ R𝑉 be a vector with

∑
𝑣∈𝑉 𝑥2𝑣𝑑 (𝑣) = 1,

where 𝑑 (𝑣) is the degree of a vertex 𝑣 ∈ 𝑉 . Then by the Cheeger

inequality for hypergraphs (Theorem 2.3), the energy of 𝑥 in a

graph expander is Ω(1) whereas that in an 𝑟 -uniform hypergraph

expander is merely Ω(1/𝑟 ). Hence preserving the latter energy is

seemingly a harder problem.

2 PRELIMINARIES
In the paper, we will often need to deal with additive or multiplica-

tive errors of various approximations. For simplicity of notation we

use𝐴 = 𝐴±𝛿 to denote𝐴−𝛿 ≤ 𝐴 ≤ 𝐴+𝛿 , and we use𝐴 = (1±𝜖)𝐴
to denote (1 − 𝜖)𝐴 ≤ 𝐴 ≤ (1 + 𝜖)𝐴.
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2.1 Hypergraph and Expansion
A hypergraph 𝐺 = (𝑉 , 𝐸) on a vertex set 𝑉 is usually defined

so that 𝐸 is a set of hyperedges, each of which is an arbitrary

(non-empty) subset of 𝑉 (as opposed to ordinary graphs, where

it is a subset of size two). In a slight departure from the norm,

we allow the hyperedges in 𝐸 to be multisets instead. That is, a

hyperedge may contain certain vertices multiple times. This may

be thought of as a generalization of the use of self-loops in ordinary

graphs, which can be considered as multisets containing a single

vertex with multiplicity two — and thus having size two. This

slight change in the definition allows us to consider 𝑟 -uniform

hypergraphs throughout the paper without loss of generality, which

makes the analysis much simpler. We call a hypergraph 𝑟 -uniform
if all of its hyperedges have size 𝑟 .

Let us denote the multiplicity of a vertex 𝑣 ∈ 𝑉 in 𝑒 ∈ 𝐸 by 𝜇𝑒 (𝑣).
Then the size of 𝑒 is

∑
𝑣∈𝑉 𝜇𝑒 (𝑣) (as is normal for multisets). The

degree of a vertex 𝑣 is 𝑑 (𝑣) = ∑
𝑒∈𝐸 𝜇𝑒 (𝑣).

Furthermore, we also allow hyperedges in 𝐸 to appear with

multiplicity, i.e., parallel edges. This means that 𝐸 itself is a multiset.

We call a hypergraph that has neither multiset edges nor multiple

instances of the same edge a simple hypergraph.
For a hypergraph𝐺 = (𝑉 , 𝐸) and a set 𝑆 ⊆ 𝑉 , let 𝐸 (𝑆) ⊆ 𝐸 be the

multiset of hyperedges 𝑒 ∈ 𝐸 such that every vertex in 𝑒 belongs to

𝑆 . Then, let 𝐺 [𝑆] = (𝑆, 𝐸 (𝑆)) denote the subgraph of 𝐺 induced by

𝑆 .

Let 𝐺 = (𝑉 , 𝐸) be a hypergraph and 𝑆 ⊆ 𝑉 be a vertex set.

The volume of 𝑆 , denoted by vol(𝑆), is ∑
𝑣∈𝑆 𝑑 (𝑣). We say that a

hyperedge 𝑒 ∈ 𝐸 is cut by 𝑆 if 𝑒 ∩ 𝑆 ≠ ∅ and 𝑒 ∩ (𝑉 \ 𝑆) ≠ ∅. In this

context, we often call a pair (𝑆,𝑉 \ 𝑆) a cut. Let 𝐸 (𝑆,𝑉 \ 𝑆) denote
the set of hyperedges cut by 𝑆 . Then, the expansion of 𝑆 (or a cut

(𝑆,𝑉 \ 𝑆)) is

Φ(𝑆) = |𝐸 (𝑆,𝑉 \ 𝑆) |
min {vol(𝑆), vol(𝑉 \ 𝑆)} .

The expansion of a hypergraph𝐺 = (𝑉 , 𝐸) is defined to be Φ(𝐺) :=
min𝑆⊆𝑉 Φ(𝑆). ForΦ ≥ 0, we say that𝐺 is aΦ-expander ifΦ(𝐺) ≥ Φ.

2.2 Spectral Hypergraph Theory
We briefly review spectral theory for hypergraphs. See, e.g., [9, 38]

for more details.

Definition 2.1. Let 𝐺 = (𝑉 , 𝐸) be a hypergraph and 𝑥 ∈ R𝑉 be a
vector. The energy of a hyperedge 𝑒 ∈ 𝐸 with respect to 𝑥 is defined
as 𝑄𝑥 (𝑒) = max𝑎,𝑏∈𝑒 (𝑥𝑎 − 𝑥𝑏 )2, and the energy of a subset of hy-
peredges 𝐸 ′ ⊆ 𝐸 is 𝑄𝑥 (𝐸 ′) =

∑
𝑒∈𝐸′ 𝑄𝑥 (𝑒), respectively. Finally, the

entire energy of 𝑥 is defined as the energy of all hyperedges combined,
that is, 𝑄 (𝑥) = 𝑄𝑥 (𝐸). If the underlying hypergraph 𝐺 is unclear
from context, we specify by writing 𝑄𝐺 (𝑥).

Definition 2.2. Let 𝐺 = (𝑉 , 𝐸) be a hypergraph and 𝜖 > 0. 𝐺 =

(𝑉 , 𝐸,𝑤) is a weighted subgraph of𝐺 if𝑤 is a vector in R𝐸+ , mapping
each hyperedge 𝑒 ∈ 𝐸 to a non-negative value, and 𝐸 denotes {𝑒 ∈ 𝐸 |
𝑤𝑒 > 0}. Such a weighted subgraph is called an 𝜖-spectral sparsifier
if for any vector 𝑥 ∈ R𝑉 , 𝑄 (𝑥) = (1 ± 𝜖) · 𝑄 (𝑥), where 𝑄 denotes
energy with respect to the graph 𝐺 , that is

𝑄 (𝑥) =
∑︁
𝑒∈𝐸

𝑤𝑒 ·𝑄𝑥 (𝑒).

The size of such a sparsifier is |𝐸 |.

Given a hypergraph 𝐺 = (𝑉 , 𝐸) and a vector 𝑥 ∈ R𝑉 , we can
define an ordinary graph𝐺𝑥 = (𝑉 , 𝐸𝑥 ) so that the energy of 𝑥 on𝐺

and that on𝐺𝑥 are equal. Specifically, we define 𝐸𝑥 as the multiset

𝐸𝑥 =

{(
argmax

𝑎∈𝑒
𝑥𝑎, argmin

𝑏∈𝑒
𝑥𝑏

) ����� 𝑒 ∈ 𝐸

}
,

where ties are broken arbitrarily.

The following Cheeger’s inequality is a cornerstone of spectral

hypergraph theory. Although a similar theorem has been proven

in [9, Theorem 6.1], we include the proof in Appendix A for com-

pleteness because we do not knowwhether their proof goes through

when we allow for multiset hyperedges.

Theorem 2.3 (Hypergraph Cheeger’s ineqality). Let 𝐺 =

(𝑉 , 𝐸) be an 𝑟 -uniform hypergraph with expansion at least Φ ≤ 2/𝑟 .
Then for any vector 𝑥 ∈ R𝑉 with

∑
𝑣∈𝑉 𝑥𝑣𝑑 (𝑣) = 0, we have

𝑄 (𝑥) ≥ 𝑟Φ2

32

∑︁
𝑣∈𝑉

𝑥2𝑣𝑑 (𝑣) .

Remark 2.4. In fact, for simple hypergraphs the requirement Φ ≤
2/𝑟 is unnecessary and the statements holds in full generality. In
our setting, this requirement is crucial, as non-simple 𝑟 -uniform hy-
pergraphs may have expansion 𝜔 (1/𝑟 ), in which case the statement
clearly does not hold.

3 TECHNICAL OVERVIEW
In this section we briefly outline the techniques used in the proofs

of our main results.

3.1 Spectral Sparsification of Expanders
We begin by constructing spectral sparsifiers for “good” hypergraph

expanders, where we call a hypergraph a good expander if it has

expansion at least Ω̃(1/𝑟 ). Even in this restricted case, no result

better than 𝑂 (𝑛𝑟3/𝜖2) [6] was known previously. Our plan will

then be to partition general input hypergraphs into a series of good

expanders. The expansion Ω̃(1/𝑟 ) is in some sense the best we

can hope for. In fact, 𝑟 -unifrom simple hypergraphs cannot have

an expansion better than Θ(1/𝑟 ) and consequently no expander

decomposition algorithm can guarantee expansion more than that.

To construct our spectral sparsifier for a good expander, we

apply importance sampling to the input hypergraph. We sample

each hyperedge 𝑒 independently with some probability 𝑝𝑒 and scale

it up with weight 1/𝑝𝑒 if sampled. This guarantees that E(𝐺) = 𝐺

and so for any vector 𝑥 ∈ R𝑉 we have E𝑄 (𝑥) = 𝑄 (𝑥), where
𝑄 denotes the energy with respect to the sparsifier. In our case,

𝑝𝑒 is inversely proportional to min𝑣∈𝑒 𝑑 (𝑣), and then the expected

number of sampled hyperedges is proportional to𝑛 — simply charge

each hyperedge 𝑒 to a vertex 𝑣 ∈ 𝑒 of minimum degree, then each

vertex is in charge of 𝑂 (1) sampled hyperedges in expectation. It

remains to prove that the random quantity 𝑄 (𝑥) concentrates well
around its expectation for all vectors 𝑥 simultaneously.

So far this is a known technique: similar approaches to construct-

ing spectral sparsifiers in ordinary graphs have appeared in many

works, starting from [30, 31]. However, all of these rely on con-

centration inequalities for linear functions of independent random
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variables related to the matrix Bernstein inequality – see, e.g., [34]
2
.

Unfortunately, the energy of a hypergraph is not a linear transfor-

mation and such tools cannot be applied to it. Two recent works

on spectral sparsification of hypergraphs developed methods for

circumventing this problem, namely [29] and [6]. The former uses a

rather crude union bound plus Chernoff bound argument, and loses

a factor of 𝑛 in the size of the sparsifier, both for undirected and

directed hypergraphs. The latter, namely the recent work of [6] uses

Talagrand’s comparison inequality and generic chaining to compare

the hypergraph sampling process to effective resistance sampling

of [30], and loses a factor of 𝑟3 in the size of the sparsifier. In this

work we derive a simultaneous concentration inequality for 𝑄 (𝑥)
for all 𝑥 ∈ R𝑉 from more basic principles, and obtain a sparsifier

with ≈ 𝑛𝑟 hyperedges as a result – a bound that is seemingly best

that can be obtained through the expander decomposition route.

Note that for a single, fixed vector 𝑥 ∈ R𝑉 , the concentration
inequality 𝑄 (𝑥) = (1 ± 𝜖)𝑄 (𝑥) holds with high probability by the

Chernoff bound (Theorem A.1). Our broad strategy will be to prove

concentration over individual choices of 𝑥 , and combine these re-

sults through a union bound. An obvious issue is that 𝑥 is a continu-

ous variable, making a direct union bound infeasible. We therefore

have to discretize it, rounding each 𝑥 to some 𝑥 from a finite net.

Our plan then becomes to prove the chain of approximations

𝑄 (𝑥) � 𝑄 (𝑥) � 𝑄 (𝑥) � 𝑄 (𝑥),

where the second approximation (𝑄 (𝑥) � 𝑄 (𝑥)) utilizes the idea
above of a Chernoff bound for each 𝑥 plus a union bound over the

net.

This turns out to be too simplistic, and the analysis requires a

more technical discretization of 𝑥 . Recall that the energy of the

whole hypergraph can be written as a sum of the energies of the

individual hyperedges:

𝑄 (𝑥) =
∑︁
𝑒∈𝐸

𝑄𝑥 (𝑒).

We categorize hyperedges based on a carefully chosen metric

max𝑣∈𝑒 𝑥2𝑣 ·min𝑣∈𝑒 𝑑 (𝑣), which we will call the hyperedge’s power.
If a hyperedge’s power is approximately 2

−𝑖
, then it resides in the 𝑖th

category 𝐸𝑖 (see Section 4.2). We have in total a logarithmic number

of categories. This categorization is important, because the power

of a hyperedge turns out to be closely related to the strength of the

Chernoff bound applicable to it, as well as to the required accuracy

of the approximation 𝑥 . That is, some cruder approximation 𝑥 may

be sufficient to guarantee 𝑄𝑥 (𝐸1) � 𝑄𝑥 (𝐸1), but it might not be

able to guarantee the same for a later category. Conversely, the

Chernoff bound is stronger (i.e., the failure probability is smaller)

at larger values of 𝑖 . Thus, for each 𝑖 we discretize 𝑥 into a different

vector 𝑥 (𝑖) (rather than the same 𝑥 ) and we prove individually for

each 𝑖 that

𝑄𝑥 (𝐸𝑖 ) � 𝑄𝑥 (𝑖 ) (𝐸𝑖 ) � 𝑄𝑥 (𝑖 ) (𝐸𝑖 ) � 𝑄𝑥 (𝐸𝑖 ) .

2
More precisely, the proof of the necessary concentration properties in [31] heavily

relies on linearity of the graph Laplacian (specifically, the proof proceeded by bounding

the trace of a high power of a corresponding matrix using combinatorial methods),

and the analysis of [30] relies on a concentration inequality for linear functions of

independent random variables due to Rudelson and Vershynin [27]. Both of these

proofs can also be reproduced using the matrix Bernstein inequality.

Here, “�” necessarily covers both multiplicative and additive
errors. Indeed, we have no guarantee on the sizes of these cate-

gories. Some 𝐸𝑖 could contain only a single hyperedge, in which

case a simple Chernoff bound would yield no concentration what-

soever. This is where we utilize the additive-multiplicative version

(Theorem A.2). Since we have Θ(log𝑛) categories to sum over, we

naturally allow additive error Θ(𝜖𝑄 (𝑥)/log𝑛).
Note that 𝑥 (𝑖) is a discretization of 𝑥 specialized to preserve

the energies of hyperedges in 𝐸𝑖 . Intuitively, the energy of such a

hyperedge 𝑒 is dictated by the largest value of 𝑥2𝑣 within it. This

value necessarily belongs to a vertex satisfying 𝑥2𝑣𝑑 (𝑣) ⪆ 2
−𝑖
. Thus,

it should be enough for our rounding to preserve the 𝑥-values of

vertices that satisfy this. To this end, we round the 𝑥-values of

vertices with 𝑥2𝑣𝑑 (𝑣) ⪆ 2
−𝑖 carefully — by an inverse polynomial

amount in 𝑛. However, we round the 𝑥-values of all other vertices

to 0 — which is obviously a crude (non-careful) rounding. Thus, if

there are only 𝑘𝑖 vertices we have to be careful about, the number

of possible settings of 𝑥 (𝑖) becomes ≈ exp(𝑘𝑖 ).
Recall the formula of the additive-multiplicative Chernoff bound

from Theorem A.2. In our case, the allowable multiplicative error is

always ≈ 1+𝜖 , while the allowable additive error is always ≈ 𝜖𝑄 (𝑥).
The only quantity that varies from level to level is the range of the

random variables involved. If a specific hyperedge is sampled, it is

scaled up by 1/𝑝𝑒 ≈ min𝑣∈𝑒 𝑑 (𝑣), and the energy of this weighted

hyperedge can be upper bounded by ≈ max𝑣∈𝑒 𝑥2𝑣 ·min𝑣∈𝑒 𝑑 (𝑣) —
exactly the power of the hyperedge. Thus, at level 𝑖 , the additive-

multiplicative Chernoff bound guarantees a failure probability of

≈ exp(−2𝑖𝑄 (𝑥)). (Here we omit the 𝜖 terms, along with others, for

simplicity.)

Finally, we want to equate the terms in the exponents of the

Chernoff bound with the enumeration of 𝑥 (𝑖) ’s, so as to bound the

total failure probability. We use hypergraph Cheeger (Theorem 2.3)

to relate 𝑘𝑖 to 𝑄 (𝑥). Suppose that 𝑥 is normalized in the sense that∑
𝑣∈𝑉 𝑥2𝑣𝑑 (𝑣) = 1. This immediately gives that 𝑘𝑖 ≤ 2

𝑖
by defini-

tion. On the other hand, we can finally use our assumption that

the input hypergraph 𝐺 was a good expander, since hypergraph

Cheeger gives us that 𝑄 (𝑥) ⪆ 1/𝑟 . This makes the error proba-

bility for individual 𝑥 (𝑖) ’s ≈ exp(−2𝑖/𝑟 ) (from Chernoff bounds),

while the enumeration of all 𝑥 (𝑖) becomes ≈ exp(2𝑖 ). To bridge

this gap, we must sacrifice a factor 𝑟 in the sampling ratio 𝑝𝑒 , and

correspondingly in the size of the output sparsifier (see proof of

Claim 4.7).

The formal proof is far more involved, and can be found in

Section 4.

3.2 General Spectral Sparsification of
Hypergraphs

Having constructed spectral sparsifiers for good expanders, we

move our attention to arbitrary input hypergraphs. We decompose

the vertex set of the input hypergraph 𝐺 = (𝑉 , 𝐸) into clusters of
good expansion, while being careful not to cut too many hyper-

edges between the clusters. We adapt well-known techniques to the

setting of hypergraphs, and is detailed for completeness in the full

version of the paper. As is common for expander decompositions,

we partition𝑉 into clusters𝐶1, . . . ,𝐶𝑘 such that the internal expan-

sion of each cluster (along with its induced hyperedges) is at least
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Ω̃(1/𝑟 ) while cutting only a constant fraction of the hyperedges

between the clusters.

In ordinary graphs, this would immediately yield the desired

result: We could simply decompose 𝐺 into expanders and sparsify

these, then repeat this process on the discarded hyperedges. Since

the number of hyperedges decreases by a constant factor at each

level, this process terminates after 𝑂 (log𝑛) levels of expander de-
composition; each vertex only participates in 𝑂 (log𝑛) expanders,
and thus the size bound of the overall sparsifier only suffers a

logarithmic factor compared to the sparsifiers of expanders. For

hypergraphs, this is not the case. Even simple, 𝑟 -uniform hyper-

graphs may have up to nearly 𝑛𝑟 hyperedges. This means that such

a decomposition process could require 𝑟 log𝑛 levels to terminate,

introducing another factor 𝑟 in the size of the sparsifier.

To combat this problem, we contract clusters into individual su-

pernodes after sparsifying them (see the full version of the paper).

This allows us to simply bound the number of clusters a single

vertex can participate in, and consequently the size of the output

sparsifier. However, proving the correctness of this more compli-

cated algorithm introduces new challenges.

We denote the contracted version of the input hypergraph 𝐺 by

𝐺/≈, where 𝑢 ≈ 𝑣 if the two vertices 𝑢 and 𝑣 have been contracted

into the same supernode. We can equate between the hyperedges

of 𝐺 and those of 𝐺/≈ using the natural bijection between them

(this means that a hyperedge 𝑒 in𝐺 refers also to the corresponding

hyperedge in 𝐺/≈, and vice versa). Note that this operation can

produce multiple parallel hyperdges, as well as vertices appearing
within the same hyperedge with multiplicity, even if these phenom-

ena were not allowed in the input hypergraph. It is important to

note that our expander sparsification algorithm from Section 4

works equally well in this setting. Furthermore, by allowing hy-

peredges to contain vetices with multiplicity higher than 1, we

may continue to work with 𝑟 -uniform hypergraphs throughout

this process of repeatedly contracting vertices. This technicality is

crucial, since our expander decomposition algorithm is designed

for this setting, and does not work when hyperedges have different

sizes (by more than a constant factor).

The main technical contribution of this section is to show that a

sparsifier computed after contraction still sufficiently approximates

the energy of the input hypergraph before contraction. Here we take
a simplified example: Suppose we wish sparsify a cluster 𝐶 ⊂ 𝑉

and subsequently contract it into a supernode 𝑣𝐶 . At a later level

we might wish to sparsify some other cluster𝐶 ′
that contains 𝑣𝐶 as

one of its vertices (see Figure 1). The result is a (weighted) subset

of hyperedges that well-approximates the spectral structure of 𝐶 ′
,

but will this still be the case when we un-contract 𝑣𝐶?

Denote the hyperedges of 𝐶 ′
by 𝐸 ′, and let their sparsifier be 𝐸 ′

(which is a weighted subset of 𝐸 ′). Being a sparsifier with respect

to the contracted hypergraph can be viewed as being a sparsifier

on the original hypergraph only when 𝑥 ∈ R𝑉 is uniform, i.e., takes
the same value, on all verices of 𝐶 , as in this case we can simply

assign that same value to 𝑣𝐶 , and the energy of the original and

contracted hypergraphs will be the same. Unfortunately, we have

to deal with general vectors 𝑥 ∈ R𝑉 , so we quantify how far 𝑥

is from satisfing that uniformity requirement. We consider the

maximum discrepancy between the 𝑥-values of 𝐶 , defined as 𝛿 =

max𝑢,𝑣∈𝐶 |𝑥𝑢 − 𝑥𝑣 |. We show that the additive error introduced

by taking 𝐸 ′ as a sparsifier to 𝐸 ′ in the original hypergraph – as

opposed to the contracted hypergraph where it is guaranteed to be

a good sparsifier – is proportional to 𝛿2 per hyperedge (see the full

version of the paper).

We handle this additive error by arguing that it is dwarfed by

energy of 𝑥 with respect to 𝐶 . On the one hand, we introduce 𝛿2

error per hyperedge of𝐶 ′
for a total of at most ≈ 𝛿2𝑑 ′𝑛, where 𝑑 ′ is

the typical degree in𝐶 ′
. On the other hand, we know that the range

of 𝑥 within 𝐶 is 𝛿 , so by hypergraph Cheeger (Theorem 2.3) the

energy of 𝐶 is at least ≈ 𝛿2𝑑/𝑟 , where 𝑑 is the typical degree in 𝐶 .

(Here we assume that there are no outlier vertices with extremely

low degree, which can be guaranteed by a slight adaptation of

the expander decomposition subroutine.) Recall that the number

of hyperedges — and therefore the typical degree — decreases by

a constant factor per level. If we can simply guarantee that the

sparsifiaction of 𝐶 precedes the sparsification of 𝐶 ′
by at least

Ω(log𝑛) levels, then 𝑑 will dwarf 𝑑 ′ by an arbitrarily large 𝑛Θ(1)

factor. We accomplish this by simply waiting Ω(log𝑛) levels to
contract a cluster after sparsifying it.

The formal proof is far more involved, but relies on the same

concept of charging additive errors to previous clusters, until we

ultimately achieve the desired overall error of 𝜖𝑄 (𝑥). The details
appear in the full version of the paper.

3.3 Lower Bounds
Themost commonmethod for approximating the Laplacian of a (hy-

per)graph is to take a weighted subset of the original (hyper)edges.

While asympotically optimal for graphs [4, 8], this method has

obvious limitations as a data structure: it is not hard to come up

with an example where Ω(𝑛) hyperedges are required even for the

sparsifier to be connected, and if the input hypergraph is 𝑟 -uniform,

this translates into Ω(𝑛𝑟 log𝑛) bit complexity, a linear loss in the

arity 𝑟 of the hypergraph. It is therefore natural to ask whether

there are more efficient ways of storing a spectral approximation

to a hypergraph. As concrete example, we could permit the inclu-

sion of hyperedges not in the original hypergraph – could this or

another scheme lead to a data structure that can approximate the

spectral structure of a hypergraph using 𝑂 (𝑛) space, avoiding a

dependence on 𝑟?

We study this question in full generality:

Is it possible to compress a hypergraph into a 𝑜 (𝑛 · 𝑟 ) size data
structure that can approximate the energy 𝑄𝐺 (𝑥) (defined

in (2)) simultaneously for all 𝑥 ∈ R𝑉 ?

We show a space lower bound of Ω(𝑛𝑟 ) for sparsifying a hyper-

graph on 𝑛 vertices with maximum hyperedge-size 𝑟3. In fact, our

lower bound applies even to the weaker notion of cut sparsification

(where one only wants to approximate 𝑄𝐺 (𝑥) for all 𝑥 ∈ {0, 1}𝑉 ),
and is tight by the recent result of [10], who gave a sampling-based

cut sparsification algorithm that produces hypergraph sparsifiers

with 𝑂 (𝑛 log𝑂 (1) 𝑛) hyperedge. In what follows we give an outline

of our lower bound.

3
With some limits on the range of 𝑟 . For more formal statements of our results see the

full version of the paper.
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cluster 𝐶

after contraction of𝐶

=⇒

contracted cluster 𝐶

cluster 𝐶 ′

supernode 𝑣𝐶

Figure 1: Illustration of the contraction process. Vertices inside 𝐶 are contracted into a single supernode 𝑣𝐶 . This is then
contained in a later cluster 𝐶 ′.

We start by formally defining the data structure for approximat-

ing the cut structure of a hypergraph that we prove a lower bound

for. A hypergraph cut sparsification scheme (HCSS) is an algorithm

for compressing the cut structure of a hypergraph such that queries

on the size of cuts can be answered within a small multiplicative

error:

Definition 3.1. Let ℌ(𝑛, 𝑟 ) be the set of hypergraphs on a vertex set
[𝑛] with each hyperedge having size at most 𝑟 . A pair of functions
Sparsify : ℌ(𝑛, 𝑟 ) → {0, 1}𝑘 and Cut : {0, 1}𝑘 × 2

[𝑛] → N is said
to be an (𝑛, 𝑟, 𝑘, 𝜀)-HCSS if for all inputs 𝐺 = (𝑉 , 𝐸) ∈ ℌ(𝑛, 𝑟 ) the
following holds.

• For every query 𝑆 ∈ 2
[𝑛] ,

���Cut(Sparsify(𝐺), 𝑆) − |𝐸 (𝑆, 𝑆) |
��� ≤

𝜀 · |𝐸 (𝑆, 𝑆) |.
To argue a lower bound on the space requirement (parameter 𝑘

above), we use a reduction to string compression. It is known that

{0, 1}-strings of length ℓ cannot be significantly compressed to a

small space data structure that allows even extremely crude additive

approximations to subset sum queries — see, e.g., the LP decoding

paper of [12] (here we only need a lower bound for computationally

unbounded adversaries), or the full version of this paper.Wemanage

to encode a {0, 1}-string of length ℓ into the cut structure of a

hypergraph 𝐻 with fewer hyperedges than ℓ — a testament to the

higher complexity of hypergraph cut structures, as opposed to the

cut structures of ordinary graphs.

Our string encoding construction utilizes Ruzsa-Szemerédi graphs.

These are (ordinary) graphs whose edge-sets are the union of in-
duced matchings. Our construction works generally on any Ruzsa-

Szemerédi graphs and as a result we get several lower bounds in

various parameter regimes (values of the hyperedge arity 𝑟 and

the precision parameter 𝜖) based on the specific Ruzsa-Szemerédi

graph constructions we choose to utilize. In particular, for the set-

ting where 𝑟 = 𝑛𝑂 (1/log log𝑛)
we are able to conclude that any

hypergraph cut sparsification scheme requires Ω(𝑟𝑛) bits of space

even for constant 𝜖 , matching the upper bound of [10] to within

logarithmic factors. For larger 𝑟 we get a lower bound of 𝑛1−𝑜 (1)𝑟
bits of space for 𝜖 = 𝑛−𝑜 (1) . The latter in particular rules out the pos-
sibility of an 𝜖-sparsifier that can be described with asymptotically

fewer than (𝜖−1)𝑂 (1)𝑛𝑟 bits of space.
Herewe briefly describe howwe encode strings into hypergraphs

generated from Ruzsa-Szemerédi graphs. Let𝐺 be a bipartite Ruzsa-

Szemerédi-graph (with bipartition 𝑃 ∪𝑄) composed of 𝑡 induced

matchings of size 𝑎 each. We can then use the 𝑎 · 𝑡 edges of the
graph to encode a string 𝑠 of length ℓ = 𝑎𝑡 : simply order the edges

of 𝐺 and remove any edges corresponding to 0 coordinates in 𝑠 ,

while keeping edges corresponding to 1’s. This graph — which we

call 𝐺𝑠 — already encodes 𝑠 when taken as a whole. However, its

cut structure is not sufficient for decoding it. For that we need to

turn 𝐺𝑠 into a hypergraph 𝐻𝑠 as follows: For each vertex 𝑢 on one

side of the bipartition, say 𝑃 , we combine all edges adjacent on 𝑢

into one hyperedge containing {𝑢} ∪ Γ(𝑢). This means that each

hyperedge will have only a single vertex in 𝑃 , but many vertices in

𝑄 (see Figure 2).

To decode the original string 𝑠 from the cut structure of 𝐻 , we

must be able to answer subset sum queries 𝑞 ⊆ [𝑎𝑡], that is return
how many 1-coordinates 𝑠 has, restricted to 𝑞. (For more details

see the full version of the paper.) To do this, consider each induced

matching one at a time and decode 𝑠 restricted to the corresponding

coordinates. We measure the size of a carefully chosen cut in 𝐻𝑠 .

Consider Figure 2: We restrict our view to a single matching 𝑀𝑗

supported on 𝑃 𝑗 and𝑄 𝑗 in the two sides of the bipartition. Suppose

for simplicity that 𝑞 is entirely contained in this matching, and we

are interested in the Hamming-weight of 𝑠 restricted to a subset of

coordinates 𝑞. To create our cut, in the top half of the hypergraph

(𝑃 ), we take the endpoints of edges corresponding to 𝑞 – we call

this set 𝐴. In the bottom half (𝑄), we take everything except for 𝑄 𝑗 .

The cut, which we call 𝑆 , is depicted in red in Figure 2.
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𝑃

𝑄

𝑃 𝑗

𝑄 𝑗

𝐴

hyperedges of type 1

hyperedges of type 2

hyperedges of type 3

matching𝑀𝑗

Figure 2: Illustration of the decoding process. One side of the cut 𝑆 is depicted in orange.

Informally, the crux of the decoding is the observation that the

number of hyperedges crossing from𝐴 to𝑄 𝑗 is exactly the quantity

we want to approximate. Indeed, consider a coordinate in 𝑞. If it

has value 1 in 𝑠 , the corresponding hyperedge crosses from 𝐴 to

𝑄 𝑗 , thus crossing the cut 𝑆 . If however this coordinate is 0 in 𝑠 , the

corresponding hyperedge does not cross to 𝑄 𝑗 , thus not crossing

the cut. These types of hyperedges are denoted by 1 in Figure 2.

Unfortunately, there are more hyperedges crossing 𝑆 , adding

noise to our measurement of 𝑠 . One might hope to prove that the

noise is small, i.e., can be attributed to measurement error, but this

is not the case. Instead, we show that while this noise is not small,

it is predictable enough to subtract accurately without knowing 𝑠 .

Hyperedges denoted 2 in Figure 2 cross from 𝑃 𝑗 \𝐴 to𝑄 \𝑄 𝑗 . Here

we observe that nearly all hyperedges from 𝑃 𝑗 \𝐴 do in fact cross

the cut, for almost all choices of 𝑠 . Hyperedges denoted 3 in Figure 2

cross from 𝑃 \ 𝑃 𝑗 to 𝑄 \𝑄 𝑗 . Here we cannot say much about the

quantity of such hyperedges crossing the cut. However, we observe

that this quantity does not depend on 𝑞, and therefore we can

use Chernoff bounds (Theorem A.1) to prove that it concentrates

around its expectation with high probability over 𝑠 . This allows us
to predict and subtract the noise caused by type 3 hyperedges, for

whatever instance of Ruzsa-Szemerédi-graph we use .

Ultimately, we show that efficient cut sparsification for such

hypergraphs would result in an equally efficient compression of

{0, 1}-strings, which implies our lower bounds. For more details

see the full version of the paper.

3.4 Directed Spectral Sparsification of
Hypergraphs

In the full version of the paper, we also apply our discretization

technique from Section 4 to the spectral sparsification of directed

hypergraphs. As a testiment to the versitility of this technique, we

are able to produce an 𝑂 (𝑛2𝑟3 log2 𝑛/𝜖2)-sized 𝜖-spectral sparsifier.

This is a factor 𝑛 better than the previous state of the art by [29],

and nearly optimal in the setting where 𝑟 is constant.

The broad arc of the proof is very similar to that of Section 4:

We construct our sparsifier using importance sampling. We then

divide the set of hyperarcs into a logarithmic number of categories,

𝐸𝑖 . For each category separately, we show using discretization that

the energy of the proposed sparsifier approximates the energy of

the input hypergraph with respect to all 𝑥 ∈ R𝑉 simultaneously

with high probability.

However, the details of each of these steps differ from their

corresponding step in Section 4. Here we mention only a few key

differences. Instead of looking at degrees or expansion, we define

a novel quantity characterizing each hyperarc we call its overlap.
Intuitively, this denotes the highest density of an induced subgraph

in which the paericular hyperarc resides. We then sample each

hyperarc with probability inverse proportional to its overlap. We

show that this produces a sufficiently small sparsifier with high

probability .

Perhaps the most crucial departure from Section 4 occurs during

the discretization step when proving 𝑄𝑥 (𝐸𝑖 ) = 𝑄𝑥 (𝐸𝑖 ). Instead of

discretizing the vector 𝑥 ∈ R𝑉 , we discretize the derived vector of

energies on the hyperarcs, that is 𝑄𝑥 ∈ R𝐸 . So for each 𝑥 and 𝑖 we

define a vector 𝑄
(𝑖)
𝑥 — from a finite set of possibilities — such that,

informally

𝑄𝑥 (𝐸𝑖 ) � 𝑄
(𝑖)
𝑥 (𝐸𝑖 ) � 𝑄

(𝑖)
𝑥 (𝐸𝑖 ) � 𝑄𝑥 (𝐸𝑖 ).

This additional trick is necessary; we do not know of a way to make

the discretization argument work by rounding 𝑥 itself.

For more details on the construction of directed hypergraph

sparsifiers and their analysis see the full version of the paper.
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4 SPECTRAL SPARSIFICATION OF
EXPANDERS

In this section, we prove the following.

Theorem 4.1. There is an algorithm that, given a parameter 𝑛,
given 100/𝑛 ≤ 𝜖 ≤ 1/2 and an 𝑟 -uniform hypergraph 𝐺 = (𝑉 , 𝐸)
with |𝑉 | ≤ 𝑛 and expansion at least 350

√︁
(log𝑛)/(𝜖𝑟𝑛) ≤ Φ ≤ 2/𝑟 ,

outputs an 𝜖-spectral sparsifier of𝐺 with𝑂 ( |𝑉 |·( 1𝜖 log𝑛)𝑂 (1)/(Φ2𝑟 ))
hyperedges with probability 1 −𝑂 ((log𝑛)/𝑛2) in 𝑂 (𝑟 |𝐸 |) time.

Remark 4.2. Note that 𝑛 here does not denote the size of 𝑉 but an
arbitrary parameter larger than that. 𝑛 serves only as an indirect
error parameter, as the failure probability of the algorithm is allowed
to be 1 −𝑂 ((log𝑛)/𝑛2). The reason for this notation is that later on,
we apply Theorem 4.1 to subgraphs of the input hypergraph. In this
context,𝑛 will denote the the size of the input hypergraph, whereas |𝑉 |
will denote the (potentially much smaller) size of the cluster within
it, to be sparsified. Note that the size of the sparsifier scales linearly
in the size of the cluster, but only logarithmically in the size of the
input hypergraph. The latter is because the desired failure probability
is always defined in terms of 𝑛.

For more details on this, see the full version of the paper.

Remark 4.3. The guarantee of Theorem 4.1 translates to |𝐸 | =

𝑂 ( |𝑉 |𝑟 ) when Φ(𝐺) = Ω(1/𝑟 ), i.e., when 𝐺 is a nearly-optimal ex-
pander.

We show our construction of the sparsifier in Section 4.1 and dis-

cuss its correctness in Section 4.2, where some proofs are deferred

to Section 4.3.

The following lemma is useful throughout this section.

Lemma 4.4. For any hypergraph 𝐺 = (𝑉 , 𝐸), we have∑︁
𝑒∈𝐸

1

min𝑣∈𝑒 𝑑 (𝑣)
≤ |𝑉 |.

Proof. Consider each hyperedge 𝑒 ∈ 𝐸 to be directed towards

its vertex with the lowest degree, i.e., argmin𝑣∈𝑒 𝑑 (𝑣), breaking ties
arbitrarily. Each vertex 𝑣 ∈ 𝑉 has atmost𝑑 (𝑣) incoming hyperedges,

and each such hyperedge contributes to the above sum by 1/𝑑 (𝑣).
Hence the total contribution of all the incoming hyperedges to 𝑣 is

at most 1. It follows that the overall summation is at most |𝑉 |. □

4.1 Construction
The construction of𝐺 is quite simple. Sample each hyperedge 𝑒 ∈ 𝐸

with probability 𝑝𝑒 = min

(
𝜆

min𝑣∈𝑒 𝑑 (𝑣) , 1
)
for

𝜆 = (𝜖−1 log𝑛)𝑂 (1)/(Φ2𝑟 ) . (4)

Each sampled hyperedge 𝑒 is given weight 𝑤𝑒 = 1/𝑝𝑒 , and for

every non-sampled hyperedge 𝑒 define𝑤𝑒 = 0. Let 𝐺 contain the

sampled hyperedges, i.e., 𝐸 = {𝑒 ∈ 𝐸 | 𝑤𝑒 > 0}. Notice that each
random variable𝑤𝑒 has expectation E[𝑤𝑒 ] = 1, and thus informally

E[𝐺] = 𝐺 .

Clearly we can compute the output in time𝑂 (𝑟 |𝐸 |). Also, we can
bound the size of the sparsifier with high probability as follows.

Lemma 4.5. We have

P[|𝐸 | ≥ 2𝜆 |𝑉 |] ≤ 𝑂 (1/𝑛2),

when |𝐸 | = Ω(log𝑛).

Proof. First, we have

E[|𝐸 |] ≤
∑︁
𝑒∈𝐸

𝑝𝑒 ≤ 𝜆
∑︁
𝑒∈𝐸

1

min𝑣∈𝑒 𝑑 (𝑣)
≤ 𝜆 |𝑉 |,

where the last inequality is due to Lemma 4.4. Noting that |𝐸 |
is a sum of independent indicator random variables, the claimed

inequality is a direct consequence of the Chernoff bound (Theo-

rem A.1). □

4.2 Correctness
Let us now consider the spectral properties of 𝐺 . We must prove

that with high probability

∀𝑥 ∈ R𝑉 , 𝑄 (𝑥) = (1 ± 𝜖) ·𝑄 (𝑥) . (5)

We stress that this gives an error bound that holds for all 𝑥 simulta-
neously.Wemay assumewithout loss of generality that

∑
𝑣∈𝑉 𝑥𝑣𝑑 (𝑣)

= 0 and

∑
𝑣∈𝑉 𝑥2𝑣𝑑 (𝑣) = 1, because Equation (5) is invariant under

translation and scaling of 𝑥 . Let the set of such centered and normal-

ized vectors be R𝑉 . This guarantees that every non-isolated vertex

𝑣 has 𝑥2𝑣 ≤ 1/𝑑 (𝑣) ≤ 1, and by Theorem 2.3 we get 𝑄 (𝑥) ≥ 𝑟Φ2

32
.

Now fix one such vector 𝑥 ∈ R𝑉 , and use it to partition the

hyperedge multiset 𝐸 into 𝑂 (log𝑛) subsets as follows. For each
𝑖 = 1, . . . , 𝑖∗, where 𝑖∗ = ⌈2 log𝑛⌉, let

𝐸𝑖 =

{
𝑒 ∈ 𝐸 | max

𝑣∈𝑒
𝑥2𝑣 ·min

𝑣∈𝑒
𝑑 (𝑣) ∈ (2−𝑖 , 2−𝑖+1]

}
,

and let

𝐸∗ = 𝐸 \
𝑖∗⋃
𝑖=1

𝐸𝑖 =

{
𝑒 ∈ 𝐸 | max

𝑣∈𝑒
𝑥2𝑣 ·min

𝑣∈𝑒
𝑑 (𝑣) ≤ 2

−𝑖∗
}
.

To justify the second equality in the equation above, note that∑
𝑣∈𝑉 𝑥2𝑣𝑑 (𝑣) = 1 implies 𝑥 (𝑣)2 ≤ 1/𝑑 (𝑣), and therefore for every

𝑒 ∈ 𝐸

max

𝑣∈𝑒
𝑥2𝑣 ·min

𝑣∈𝑒
𝑑 (𝑣) ≤ max

𝑣∈𝑒
1/𝑑 (𝑣) ·min

𝑣∈𝑒
𝑑 (𝑣) = 1.

Informally, we would like to show that with high probability, for

all 𝑥 and all 𝑖 we have 𝑄𝑥 (𝐸𝑖 ) � 𝑄𝑥 (𝐸𝑖 ). Note that the multisets 𝐸𝑖
and 𝐸∗ are dependent on 𝑥 , but we omit this from the notation for

better readability. Our plan is to define another vector 𝑥 (𝑖) ∈ R𝑉
by rounding the coordinates of 𝑥 , that preserves 𝑄 (𝐸𝑖 ) up to small

multiplicative and additive error. Using this rounded vector, we will

then show

𝑄𝑥 (𝐸𝑖 ) � 𝑄𝑥 (𝑖 ) (𝐸𝑖 ) � 𝑄𝑥 (𝑖 ) (𝐸𝑖 ) � 𝑄𝑥 (𝐸𝑖 ),

and similarly also 𝑄𝑥 (𝐸∗) � 𝑄𝑥 (𝐸∗).
Formally, for each 𝑣 ∈ 𝑉 define 𝑥

(𝑖)
𝑣 as follows:

• If 𝑥2𝑣𝑑 (𝑣) ≥ 𝜖22−𝑖/2500, then round 𝑥𝑣 to the nearest integer

multiple of 1/(𝑛2
√︁
𝑑 (𝑣)).

• If 𝑥2𝑣𝑑 (𝑣) < 𝜖22−𝑖/2500, then round 𝑥𝑣 to 0.

We implement the above plan using the following four claims.

First, we show that for every scale 𝑖 the energy of 𝐸𝑖 with respect

to the rounded vector 𝑥 (𝑖) is quite close to the energy of 𝐸𝑖 with

respect to the original vector 𝑥 :
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Claim 4.6. For all 𝑥 ∈ R𝑉 and all 𝑖 = 1, . . . , 𝑖∗,

𝑄𝑥 (𝑖 ) (𝐸𝑖 ) =
(
1 ± 𝜖

10

)
𝑄𝑥 (𝐸𝑖 ) ±

20

𝑛
.

Next, we show that for every scale 𝑖 our sampling process pre-

serves energy of 𝐸𝑖 on rounded version of all 𝑥 simultaneously:

Claim 4.7. For all 𝑖 = 1, . . . , 𝑖∗,

P

[
∀𝑥 ∈ R𝑉 , 𝑄𝑥 (𝑖 ) (𝐸𝑖 ) =

(
1 ± 𝜖

10

)
𝑄𝑥 (𝑖 ) (𝐸𝑖 ) ±

𝜖𝑄 (𝑥)
10 log𝑛

]
≥ 1 − 1

𝑛2
.

We then relate the energy of the sampled 𝐸𝑖 on rounded versions

of 𝑥 to the corresponding energy on original 𝑥 :

Claim 4.8. For all 𝑖 = 1, . . . , 𝑖∗,

P

[
∀𝑥 ∈ R𝑉 , 𝑄𝑥 (𝑖 ) (𝐸𝑖 ) =

(
1 ± 𝜖

10

)
𝑄𝑥 (𝐸𝑖 ) ±

60

𝑛

]
≥ 1 − 1

𝑛2
.

Finally we bound the error introduced on the hyperedges of 𝐸∗.

Claim 4.9.

P

[
∀𝑥 ∈ R𝑉 , 𝑄𝑥 (𝐸∗) = 𝑄𝑥 (𝐸∗) ±

12

𝑛

]
≥ 1 − 1

𝑛2
.

Before proving these claims, which we do in the next section, let

us show how to use them to show the correctness of the sparsifier.

Lemma 4.10. The hypergraph𝐺 is an 𝜖-spectral sparsifier of𝐺 with
probability 1 −𝑂 ((log𝑛)/𝑛2).

Proof. Assume henceforth that the events in Claims 4.7, 4.8,

and 4.9 all hold simultaneously for every 𝑖 — we know that this

happens with probability 1 − 𝑂 (log𝑛/𝑛2) — and let us compare

𝑄𝑥 (𝐸𝑖 ) with 𝑄𝑥 (𝐸𝑖 ) for each 𝑖 . If the above claims had no additive

error, we could conclude that𝑄𝑥 (𝐸𝑖 ) = (1±4𝜖/10)𝑄𝑥 (𝐸𝑖 ). Similarly,

if they had nomultiplicative error, we could conclude that |𝑄𝑥 (𝐸𝑖 )−
𝑄𝑥 (𝐸𝑖 ) | ≤ 80

𝑛 + 𝜖𝑄 (𝑥)
10 log𝑛

; we could then use the assumed lower bound

on Φ to bound
80

𝑛 ≤ 𝜖𝑄 (𝑥)
10 log𝑛

, and sum up these additive errors

over all 𝑖 = 1, . . . , 𝑖∗ to a total that is bounded by
4

10
𝜖𝑄 (𝑥). These

arguments extend easily also to 𝐸∗.
For the formal calculation, consider first one direction,

𝑄𝑥 (𝐸𝑖 )

≤
(
1 − 𝜖

10

)−1 [
60

𝑛
+𝑄𝑥 (𝑖 ) (𝐸𝑖 )

]
≤

(
1 − 𝜖

10

)−1 [
60

𝑛
+ 𝜖𝑄 (𝑥)
10 log𝑛

+
(
1 + 𝜖

10

)
𝑄𝑥 (𝑖 ) (𝐸𝑖 )

]
≤

(
1 − 𝜖

10

)−1 [
60

𝑛
+ 𝜖𝑄 (𝑥)
10 log𝑛

+
(
1 + 𝜖

10

) [
20

𝑛
+

(
1 + 𝜖

10

)
𝑄𝑥 (𝐸𝑖 )

] ]
≤ 120

𝑛
+ 2𝜖𝑄 (𝑥)
10 log𝑛

+
(
1 + 4𝜖

10

)
𝑄𝑥 (𝐸𝑖 ).

Here the second line follows by Claim 4.8, the third line follows

by Claim 4.7, the fourth line follows by Claim 4.6, and the last line

follows since 𝜖 ≤ 1/2. Now sum this over all 𝑖 and combine it with

the bound from Claim 4.9 on the error introduced by 𝐸∗, to get

𝑄 (𝑥) = 𝑄𝑥 (𝐸∗) +
𝑖∗∑︁
𝑖=1

𝑄𝑥 (𝐸𝑖 )

≤
[
𝑄𝑥 (𝐸∗) +

12

𝑛

]
+ 𝑖∗

[
120

𝑛
+ 2𝜖𝑄 (𝑥)
10 log𝑛

]
+

(
1 + 4𝜖

10

) 𝑖∗∑︁
𝑖=1

𝑄𝑥 (𝐸𝑖 )

≤ 250 log𝑛

𝑛
+ 5𝜖𝑄 (𝑥)

10

+
(
1 + 4𝜖

10

)
𝑄 (𝑥)

≤ (1 + 𝜖)𝑄 (𝑥) .

The last inequality follows from 𝑄 (𝑥) ≥ Φ2𝑟/32 (by Theorem 2.3),

and the theorem’s assumption that Φ ≥ 350

√︁
(log𝑛)/(𝜖𝑟𝑛).

The other direction, 𝑄 (𝑥) ≥ (1 − 𝜖)𝑄 (𝑥), follows similarly. □

Theorem 4.1 then follows by Lemmas 4.5 and 4.10 and a union

bound.

4.3 Proofs of Claims 4.6, 4.7, 4.8, and 4.9
We begin by presenting a preliminary lemma about the effects of

approximating 𝑥 on a general quadratic form, which will be useful

in proving the four claims.

Lemma 4.11. Let 𝐺 = (𝑉 , 𝐸) be a hypergraph and let 𝑥, 𝑥 be two
vectors in R𝑉 such that |𝑥𝑣 − 𝑥𝑣 | ≤ 𝛿 on every coordinate 𝑣 ∈ 𝑉 for
some 𝛿 ≥ 0. Then for any 𝑒 ∈ 𝐸,��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑒)

�� ≤ 4𝛿

(√︁
𝑄𝑥 (𝑒) + 𝛿

)
.

Proof. Given 𝑒 ∈ 𝐸, we begin by finding two vertices 𝑢∗, 𝑣∗ ∈ 𝑒

such that��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑒)
�� ≤ ��(𝑥𝑢∗ − 𝑥𝑣∗ )2 − (𝑥𝑢∗ − 𝑥𝑣∗ )2

��.
It is indeed possible to find such vertices. If 𝑄𝑥 (𝑒) ≥ 𝑄𝑥 (𝑒), set
𝑢∗, 𝑣∗ such that 𝑄𝑥 (𝑒) = (𝑥𝑢∗ − 𝑥𝑣∗ )2, and we get��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑒)

�� = 𝑄𝑥 (𝑒) −𝑄𝑥 (𝑒) ≤ (𝑥𝑢∗ − 𝑥𝑣∗ )2 − (𝑥𝑢∗ − 𝑥𝑣∗ )2,

since 𝑄𝑥 (𝑒) ≥ (𝑥𝑢 − 𝑥𝑣)2 for every 𝑢, 𝑣 ∈ 𝑒 , and in particular

𝑄𝑥 (𝑒) ≥ (𝑥𝑢∗ − 𝑥𝑣∗ )2. Otherwise, i.e., 𝑄𝑥 > 𝑄𝑥 (𝑒), similarly set

𝑢∗, 𝑣∗ such that 𝑄𝑥 (𝑒) = (𝑥𝑢∗ − 𝑥𝑣∗ )2.
Using these 𝑢∗, 𝑣∗, we have��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑒)

�� ≤ ��(𝑥𝑢∗ − 𝑥𝑣∗ )2 − (𝑥𝑢∗ − 𝑥𝑣∗ )2
��

= |𝑥𝑢∗ + 𝑥𝑢∗ − 𝑥𝑣∗ − 𝑥𝑣∗ | · |𝑥𝑢∗ − 𝑥𝑢∗ − 𝑥𝑣∗ + 𝑥𝑣∗ |
Let us now bound each of these two factors. The second one is

clearly bounded by 2𝛿 by the lemma’s assumption. To bound the

first term, we use that𝑄𝑥 (𝑒) = max𝑢,𝑣∈𝑒 (𝑥𝑢 − 𝑥𝑣)2 ≥ (𝑥𝑢∗ − 𝑥𝑣∗ )2,
and therefore

|𝑥𝑢∗ + 𝑥𝑢∗ − 𝑥𝑣∗ − 𝑥𝑣∗ | ≤ 2|𝑥𝑢∗ − 𝑥𝑣∗ | + |𝑥𝑢∗ − 𝑥𝑢∗ | + |𝑥𝑣∗ − 𝑥𝑣∗ |

≤ 2

√︁
𝑄𝑥 (𝑒) + 2𝛿.

Putting these two bounds together, we obtain the result of the

lemma. □

The following claim examines the effects of rounding from 𝑥 to

𝑥 (𝑖) (from the previous section) on a single hyperedge of 𝐸𝑖 . This

is the main technical claim that allows as to then easily prove both

Claims 4.6 and 4.8.

Claim 4.12. For all 𝑥 ∈ R𝑉 , all 𝑖 = 1, . . . , 𝑖∗, and every hyperedge
𝑒 ∈ 𝐸𝑖 ,

𝑄𝑥 (𝑖 ) (𝑒) =
(
1 ± 𝜖

10

)
𝑄𝑥 (𝑒) ±

20

𝑛2min𝑣∈𝑒 𝑑 (𝑣)
.
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Proof. We examine the difference

��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑖 ) (𝑒)
��
. Recall that

𝑥
(𝑖)
𝑣 is either rounded to the nearest multiple of 1/(𝑛2

√︁
𝑑 (𝑣)) or

rounded to zero. We consider two cases:

(1) No vertex in 𝑒 is rounded to zero.

(2) At least one vertex in 𝑒 is rounded to zero.

For simplicity, denote 𝑥+ = max𝑣∈𝑒 |𝑥𝑣 | and 𝑑− = min𝑣∈𝑒 𝑑 (𝑣).
Recall that by definition of 𝐸𝑖 ,

𝑥2+𝑑− ∈
(
2
−𝑖 , 2−𝑖+1

]
. (6)

In the first case, the value of 𝑥 on every vertex 𝑣 ∈ 𝑒 changes by

at most 1/(𝑛2
√︁
𝑑 (𝑣)) ≤ 1/(𝑛2

√
𝑑−). Thus, we can apply Lemma 4.11

with 𝛿 = 1/(𝑛2
√
𝑑−) to get��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑖 ) (𝑒)

�� ≤ 4

𝑛2
√
𝑑−

·
(√︁

𝑄𝑥 (𝑒) +
1

𝑛2
√
𝑑−

)
.

We can use (6) to bound 𝑄𝑥 (𝑒) ≤ 4𝑥2+ ≤ 4 · 21−𝑖/𝑑− ≤ 4/𝑑−.
Substituting this in, we get��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑖 ) (𝑒)

�� ≤ 4

𝑛2
√
𝑑−

·
(

2

√
𝑑−

+ 1

𝑛2
√
𝑑−

)
≤ 20

𝑛2𝑑−
.

In the second case, the value of 𝑥 on a vertex in 𝑒 can still

change by at most 1/(𝑛2
√
𝑑−) by rounding to a non-zero value.

It can additionally be rounded to a zero, as long as 𝑥2𝑣𝑑 (𝑣) <

𝜖22−𝑖/2500, which amounts to additive error per coordinate of at

most |𝑥𝑣 | < 𝜖/
√︁
2500 · 2𝑖𝑑 (𝑣) ≤ 𝜖/

√︁
2500 · 2𝑖𝑑−. Therefore we can

apply Lemma 4.11 with 𝛿 = 𝜖/
√︁
2500 · 2𝑖𝑑− ≥ 1/(𝑛2

√
𝑑−), which

gives us that��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑖 ) (𝑒)
�� ≤ 4𝜖√︁

2500 · 2𝑖𝑑−
·
(√︁

𝑄𝑥 (𝑒) +
𝜖√︁

2500 · 2𝑖𝑑−

)
.

This timewe use a lower bound on𝑄𝑥 (𝑒). Recall that we assumed

that at least one vertex in 𝑒 is rounded to zero. Let one such vertex

be 𝑣0. This means that 𝑥2𝑣0𝑑 (𝑣0) ≤ 𝜖22−𝑖/2500, but at the same time

𝑥2+𝑑 (𝑣0) ≥ 𝑥2+𝑑− ≥ 2
−𝑖
. Using these two facts, we get our lower

bound √︁
𝑄𝑥 (𝑒) ≥ 𝑥+ − |𝑥𝑣0 | ≥ 𝑥+ − 𝜖𝑥+/50 ≥ 49

50

√︁
2
𝑖𝑑−

.

Substituting this in, we get��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑖 ) (𝑒)
�� ≤ 4𝜖

√︁
𝑄𝑥 (𝑒)
49

·
(√︁

𝑄𝑥 (𝑒) +
𝜖
√︁
𝑄𝑥 (𝑒)
49

)
≤ 4𝜖𝑄𝑥 (𝑒)

49

·
(
1 + 𝜖

49

)
≤ 𝜖

10

𝑄𝑥 (𝑒) .

In conclusion, in the first case we get the claimed additive error,

while in the second case we get the claimed multiplicative error. □

We are now ready to proceed to proving Claims 4.6 and 4.8.

Claim 4.6. For all 𝑥 ∈ R𝑉 and all 𝑖 = 1, . . . , 𝑖∗,

𝑄𝑥 (𝑖 ) (𝐸𝑖 ) =
(
1 ± 𝜖

10

)
𝑄𝑥 (𝐸𝑖 ) ±

20

𝑛
.

Proof. We can bound��𝑄𝑥 (𝐸𝑖 ) −𝑄𝑥 (𝑖 ) (𝐸𝑖 )
�� ≤ ∑︁

𝑒∈𝐸𝑖

��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑖 ) (𝑒)
��

≤
∑︁
𝑒∈𝐸𝑖

[
𝜖

10

𝑄𝑥 (𝑒) +
20

𝑛2min𝑣∈𝑒 𝑑 (𝑣)

]
≤ 𝜖

10

𝑄𝑥 (𝐸𝑖 ) +
20

𝑛2

∑︁
𝑒∈𝐸

1

min𝑣∈𝑒 𝑑 (𝑣)

≤ 𝜖

10

𝑄𝑥 (𝐸𝑖 ) +
20

𝑛

by Lemma 4.4 and 𝑛 ≥ |𝑉 |, as claimed. The second line follows by

Claim 4.12. □

Claim 4.8. For all 𝑖 = 1, . . . , 𝑖∗,

P

[
∀𝑥 ∈ R𝑉 , 𝑄𝑥 (𝑖 ) (𝐸𝑖 ) =

(
1 ± 𝜖

10

)
𝑄𝑥 (𝐸𝑖 ) ±

60

𝑛

]
≥ 1 − 1

𝑛2
.

Proof. Similarly to the previous proof, we first bound��𝑄𝑥 (𝐸𝑖 ) −𝑄𝑥 (𝑖 ) (𝐸𝑖 )
�� ≤ ∑︁

𝑒∈𝐸𝑖

��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑖 ) (𝑒)
��.

Recall that 𝑄𝑥 (𝑒) = 𝑤𝑒𝑄𝑥 (𝑒) where𝑤𝑒 is a random variable (inde-

pendent from all others) that takes value 1/𝑝𝑒 with probability 𝑝𝑒 ,

and value 0 otherwise. Similarly, 𝑄𝑥 (𝑖 ) (𝑒) = 𝑤𝑒𝑄𝑥 (𝑖 ) (𝑒). Applying
this along with Claim 4.12, we get��𝑄𝑥 (𝐸𝑖 ) −𝑄𝑥 (𝑖 ) (𝐸𝑖 )

�� ≤ ∑︁
𝑒∈𝐸𝑖

𝑤𝑒

��𝑄𝑥 (𝑒) −𝑄𝑥 (𝑖 ) (𝑒)
��

≤
∑︁
𝑒∈𝐸𝑖

[
𝜖

10

𝑤𝑒𝑄𝑥 (𝑒) +𝑤𝑒 ·
20

𝑛2min𝑐∈𝑒 𝑑 (𝑣)

]
=

𝜖

10

𝑄𝑥 (𝑒) +
∑︁
𝑒∈𝐸𝑖

20𝑤𝑒

𝑛2min𝑣∈𝑒 𝑑 (𝑣)
.

Note that in the sum here the term corresponding to 𝑒 is zero unless

𝑒 is sampled to 𝐸, in which case 𝑤𝑒 = 1/𝑝𝑒 ≤ 1 + min𝑣∈𝑒 𝑑 (𝑣)/𝜆.
(Recall 𝜆 from equation 4.) Using also Lemmas 4.4 and 4.5, and the

fact that 𝑛 ≥ |𝑉 |, we have that with high probability∑︁
𝑒∈𝐸𝑖

20𝑤𝑒

𝑛2min𝑣∈𝑒 𝑑 (𝑣)
≤

∑︁
𝑒∈𝐸𝑖

20

𝑛2min𝑣∈𝑒 𝑑 (𝑣)
+

∑︁
𝑒∈𝐸

20

𝜆𝑛2

≤
∑︁
𝑒∈𝐸𝑖

20

𝑛2min𝑣∈𝑒 𝑑 (𝑣)
+ |𝐸 | · 20

𝜆𝑛2

≤ 60

𝑛
. □

Claim 4.9.

P

[
∀𝑥 ∈ R𝑉 , 𝑄𝑥 (𝐸∗) = 𝑄𝑥 (𝐸∗) ±

12

𝑛

]
≥ 1 − 1

𝑛2
.

Proof. Note that

|𝑄𝑥 (𝐸∗) −𝑄𝑥 (𝐸∗) | ≤ 𝑄𝑥 (𝐸∗) +𝑄𝑥 (𝐸∗)

=
∑︁
𝑒∈𝐸∗

max

𝑢,𝑣∈𝑒
(𝑥𝑢 − 𝑥𝑣)2 +

∑︁
𝑒∈𝐸∗

𝑤𝑒 · max

𝑢,𝑣∈𝑒
(𝑥𝑢 − 𝑥𝑣)2 .
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Now, we bound each term using that max𝑣∈𝑒 𝑥2𝑣 · min𝑣∈𝑒 𝑑 (𝑣) ≤
1/𝑛2 by definition of 𝐸∗. For the first term, we use Lemma 4.4,∑︁
𝑒∈𝐸∗

max

𝑢,𝑣∈𝑒
(𝑥𝑢 − 𝑥𝑣)2 ≤ 4

∑︁
𝑒∈𝐸∗

max

𝑣∈𝑒
𝑥2𝑣 ≤ 4

∑︁
𝑒∈𝐸∗

1

𝑛2min𝑣∈𝑒 𝑑 (𝑣)
≤ 4

𝑛
.

For the second term, we have by Lemma 4.5, and the fact that

𝑛 ≥ |𝑉 |, that with high probability,∑︁
𝑒∈𝐸∗

𝑤𝑒 · max

𝑢,𝑣∈𝑒
(𝑥𝑢 − 𝑥𝑣)2 ≤ 4

∑︁
𝑒∈𝐸∗

𝑤𝑒 ·max

𝑣∈𝑒
𝑥2𝑣

≤ 4

∑︁
𝑒∈𝐸∗

𝑤𝑒

𝑛2min𝑣∈𝑒 𝑑 (𝑣)

≤ 4|𝐸 | · 1

𝜆𝑛2

≤ 8

𝑛
. □

Finally, we prove the technical crux of the theorem, Claim 4.7.

Claim 4.7. For all 𝑖 = 1, . . . , 𝑖∗,

P

[
∀𝑥 ∈ R𝑉 , 𝑄𝑥 (𝑖 ) (𝐸𝑖 ) =

(
1 ± 𝜖

10

)
𝑄𝑥 (𝑖 ) (𝐸𝑖 ) ±

𝜖𝑄 (𝑥)
10 log𝑛

]
≥ 1 − 1

𝑛2
.

Proof. We shall prove the stronger claim

P

[
∀𝑥 ∈ R𝑉 , 𝑄𝑥 (𝑖 ) (𝐸𝑖 ) =

(
1 ± 𝜖

10

)
𝑄𝑥 (𝑖 ) (𝐸𝑖 ) ±

𝜖𝑟Φ2/32
10 log𝑛

]
≥ 1− 1

𝑛2
.

This is indeed stronger, since for all 𝑥 ∈ R𝑉 , we know that 𝑄 (𝑥) ≥
𝑟Φ2/32 by the Hypergraph Cheeger inequality (Theorem 2.3). This

allows us to argue that the probabilistic claim depends on 𝑥 only

through 𝑥 (𝑖) and 𝐸𝑖 . These are discrete which will allow for the

use of union bound later on. We will first prove a deviation bound

for a single instance of (𝑥 (𝑖) , 𝐸𝑖 ) using an additive-multiplicative

Chernoff bound, and then extend it to hold for all instances simul-

taneously using a union bound.

Fix 𝑖 , 𝑥 (𝑖) , and 𝐸𝑖 . Notice that 𝑄𝑥 (𝑖 ) (𝐸𝑖 ) =
∑
𝑒∈𝐸𝑖 𝑤𝑒 · max𝑎,𝑏∈𝑒

(𝑥 (𝑖)𝑎 − 𝑥
(𝑖)
𝑏

)2 is a sum of independent random variables whose

expectation is 𝑄𝑥 (𝑖 ) (𝐸𝑖 ). Let us bound the maximum range of one

summand, for some 𝑒 ∈ 𝐸𝑖 . If 𝑝𝑒 = 1 the range is 0, and otherwise

the range is bounded by

𝑤𝑒 · max

𝑎,𝑏∈𝑒

(
𝑥
(𝑖)
𝑎 − 𝑥

(𝑖)
𝑏

)
2

≤ max

𝑎,𝑏∈𝑒

2(𝑥2𝑎 + 𝑥2
𝑏
)

𝑝𝑒

≤ 4

𝜆
max

𝑣∈𝑒
𝑥2𝑣 ·min

𝑣∈𝑒
𝑑 (𝑣)

≤ 2
−𝑖+3

𝜆
.

We can thus apply Theorem A.2 and get

P

[
|𝑄𝑥 (𝑖 ) (𝐸𝑖 ) −𝑄𝑥 (𝑖 ) (𝐸𝑖 ) | ≥

𝜖

10

𝑄𝑥 (𝑖 ) (𝐸𝑖 ) +
𝜖𝑟Φ2/32
10 log𝑛

]
≤ 2 exp

(
−𝜖/10 · (𝜖𝑟Φ

2/32)/(10 log𝑛)
3 · 2−𝑖+3/𝜆

)
= 2 exp

(
− 𝜆2𝑖𝜖2𝑟Φ2

32 · 2400 log𝑛

)
.

Now we wish to extend this high-probability bound to hold

simultaneously for all possible 𝑥 (𝑖) and 𝐸𝑖 . How many possible

settings of (𝑥 (𝑖) , 𝐸𝑖 ) are there? Each non-zero coordinate 𝑣 of 𝑥 (𝑖)

has 𝑥2𝑣𝑑 (𝑣) ≥ 𝜖22−𝑖/2500, so there are at most 2500 · 2𝑖/𝜖2 such
coordinates. Furthermore, each such coordinate 𝑥

(𝑖)
𝑣 is an integer

multiple of 1/(𝑛2
√︁
𝑑 (𝑣)) in the range [−1/

√︁
𝑑 (𝑣), 1/

√︁
𝑑 (𝑣)], so there

are only 2𝑛2 possibilities per non-zero coordinate. Thus, the total

number of vectors 𝑥 (𝑖) is at most(
|𝑉 |

2500 · 2𝑖/𝜖2

)
· (2𝑛2)2500·2

𝑖/𝜖2 ≤ (2𝑛3)2500·2
𝑖/𝜖2

We still need to enumerate the number of possible hyperedge mul-

tisets 𝐸𝑖 given 𝑥 (𝑖) . To know whether some hyperedge 𝑒 ∈ 𝐸 is in

𝐸𝑖 , we must know whether the value of max𝑣∈𝑒 𝑥2𝑣 min𝑣∈𝑒 𝑑 (𝑣) is
in (2−𝑖 , 2−𝑖+1]. Unfortunately, this depends on max𝑣∈𝑒 𝑥2𝑣 , which is

not determined by 𝑥 (𝑖) , due to the rounding error between 𝑥 and

𝑥 (𝑖) . Let 𝐷 = {𝑑 (𝑣) | 𝑣 ∈ 𝑉 } be the set of all degrees in𝐺 . It suffices

to know for each 𝑣 corresponding to a non-zero coordinate of 𝑥 (𝑖)

the two values

min{𝑑 ∈ 𝐷 | 𝑥2𝑣𝑑 > 2
−𝑖 } and max{𝑑 ∈ 𝐷 | 𝑥2𝑣𝑑 ≤ 2

−𝑖+1}.

Indeed, we need not worry about zero coordinates of 𝑥 (𝑖) , i.e., ver-
tices 𝑣 with 𝑥2𝑣𝑑 (𝑣) < 𝜖22−𝑖/2500, as these cannot attain max𝑢∈𝑒 𝑥2𝑢
for a hyperedge 𝑒 ∈ 𝐸𝑖 . Thus, the total number of possible multisets

𝐸𝑖 given 𝑥 (𝑖) is at most ( |𝑉 |2)2500·2𝑖/𝜖2 ≤ (𝑛2)2500·2𝑖/𝜖2 .
We are now ready to apply a union bound,

P

[
∀𝑥, |𝑄𝑥 (𝑖 ) (𝐸𝑖 ) −𝑄𝑥 (𝑖 ) (𝐸𝑖 ) | ≤

𝜖

10

𝑄𝑥 (𝑖 ) (𝐸𝑖 ) +
𝜖 (𝑟Φ2/32)
10 log𝑛

]
≤

(
𝑛2 · (2𝑛3)

)
2500·2𝑖/𝜖2

· 2 exp
(
− 𝜆2𝑖𝜖2𝑟Φ2

32 · 2400 log𝑛

)
≤ 2 exp

(
15000 · 2𝑖 log𝑛

𝜖2
− 𝜆2𝑖𝜖2𝑟Φ2

32 · 2400 log𝑛

)
≤ 1

𝑛2
,

where the last inequality holds as long as 𝜆 ≥ 24·108·log2 𝑛/(𝜖4Φ2𝑟 ),
which is indeed how we set 𝜆. □
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A TECHNICAL LEMMAS
A.1 Concentration Inequalities
The following concentration bound is standard.

Theorem A.1 (Chernoff bound, see e.g. [3]). Let 𝑋1, . . . , 𝑋𝑛
be independent random variables in the range [0, 𝑎]. Let ∑𝑛

𝑖=1 𝑋𝑖 = 𝑆 .
Then for any 𝛿 ∈ [0, 1] and 𝜇 ≥ E𝑆 ,

P[|𝑆 − E𝑆 | ≥ 𝛿𝜇] ≤ 2 exp

(
−𝛿

2𝜇

3𝑎

)
.

The following slight variation, allowing for both multiplicative

and additive error, will be the most convenient for our purposes

throughout the paper.

Theorem A.2 (Additive-multiplicative Chernoff bounds

[5]). Let 𝑋1, . . . 𝑋𝑛 be independent random variables in the range
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[0, 𝑎]. Let ∑𝑛
𝑖=1 𝑋𝑖 = 𝑆 . Then for all 𝛿 ∈ [0, 1] and 𝛼 > 0,

P[|𝑆 − E𝑆 | ≥ 𝛿E𝑆 + 𝛼] ≤ 2 exp

(
−𝛿𝛼
3𝑎

)
.

A.2 Proof of Hypergraph Cheeger’s Inequality
Proof of Theorem 2.3: Recall that

∑
𝑣∈𝑉 𝑥𝑣𝑑 (𝑣) = 0. Suppose

for contradiction that there exists a vector 𝑥 ∈ R𝑉 such that

𝑄 (𝑥) < 𝑟Φ2

32

∑
𝑣∈𝑉 𝑥2𝑣𝑑 (𝑣). Let 𝑥 ∈ R𝑉 be such 𝑥 shifted such

that

∑
𝑣∈𝑉 𝑥𝑣𝑑𝑥 (𝑣) = 0, where 𝑑𝑥 (𝑣) denotes the degree of 𝑣 in

𝐺𝑥 = (𝑉 , 𝐸𝑥 ). Then, we have

𝑄 (𝑥) < 𝑟Φ2

32

∑︁
𝑣∈𝑉

𝑥2𝑣𝑑 (𝑣) ≤
𝑟Φ2

32

∑︁
𝑣∈𝑉

𝑥2𝑣𝑑 (𝑣) =
𝑟Φ2

32

∑︁
𝑒∈𝐸

∑︁
𝑣∈𝑒

𝑥2𝑣

≤ 𝑟2Φ2

32

∑︁
𝑒∈𝐸

max

𝑣∈𝑒
𝑥2𝑣 ≤ 𝑟2Φ2

32

∑︁
(𝑎,𝑏) ∈𝐸𝑥

(
𝑥2𝑎 + 𝑥2

𝑏

)
=
𝑟2Φ2

32

∑︁
𝑣∈𝑉

𝑥2𝑣𝑑𝑥 (𝑣),

The second inequality follows since 𝑥 is centered, that is∑
𝑣∈𝑉 𝑥𝑣𝑑 (𝑣) = 0.

This means, by Cheeger’s inequality for ordinary graphs [1, 2],

that there exists a vertex set 𝑆 of expansion
𝑟Φ
4

in 𝐺𝑥 . Moreover, 𝑆

can be chosen to be a sweep cut with respect to 𝑥 (regardless of the

degree vector) in the sense that 𝑆 is of the form {𝑣 ∈ 𝑉 | 𝑥𝑣 ≤ 𝜏}
or {𝑣 ∈ 𝑉 | 𝑥𝑣 ≥ 𝜏} for some 𝜏 ∈ R. Let 𝑆 ⊆ 𝑉 be the smaller side

of the cut (in volume). Let 𝜂 := |𝐸𝑥 (𝑆,𝑉 \ 𝑆) | and 𝜁 := |𝐸 (𝑆) |. Then,
we have

𝜂 ≤ 𝑟Φ

4

∑︁
𝑣∈𝑆

𝑑𝑥 (𝑣) =
𝑟Φ

4

(𝜂 + 2𝜁 ) .

Since Φ ≤ 2

𝑟 ,
𝑟Φ
4

≤ 1

2
and so 𝜁 ≥ 𝜂

𝑟Φ . Since 𝑆 is a sweep cut with

respect to 𝑥 , each edge of𝐺𝑥 crossing the cut (𝑆,𝑉 \𝑆) corresponds
to a distinct hyperedge of 𝐺 also crossing the cut, and each edge

of 𝐺𝑥 fully inside 𝑆 translates to a hyperedge of 𝐺 fully inside 𝑆 .

Therefore, the number of edges crossing the cut (𝑆,𝑉 \ 𝑆) in 𝐺

is still 𝜂 and

∑
𝑣∈𝑆 𝑑 (𝑣) > 𝑟𝜁 ≥ 𝜂

Φ . Similarly,

∑
𝑣∈𝑉 \𝑆 𝑑 (𝑣) >

𝜂

Φ .

Therefore, the expansion of the cut (𝑆,𝑉 \ 𝑆) in 𝐺 is less than Φ,
which is a contradiction. □
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