
Spectral Hypergraph Sparsifiers of Nearly Linear Size∗

Michael Kapralov†
École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
michael.kapralov@epfl.ch

Robert Krauthgamer‡
Weizmann Institute of Science

Rehovot, Israel
robert.krauthgamer@weizmann.ac.il

Jakab Tardos§
École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
jakab.tardos@epfl.ch

Yuichi Yoshida¶
National Institute of Informatics

Tokyo, Japan
yyoshida@nii.ac.jp

Abstract—Graph sparsification has been stud-
ied extensively over the past two decades, culmi-
nating in spectral sparsifiers of optimal size (up
to constant factors). Spectral hypergraph spar-
sification is a natural analogue of this problem,
for which optimal bounds on the sparsifier size
are not known, mainly because the hypergraph
Laplacian is non-linear, and thus lacks the linear-
algebraic structure and tools that have been so
effective for graphs.
Our main contribution is the first algorithm

for constructing ε-spectral sparsifiers for hyper-
graphs with O∗(n) hyperedges, where O∗ sup-
presses (ε−1 logn)O(1) factors. This bound is inde-
pendent of the rank r (maximum cardinality of a
hyperedge), and is essentially best possible due
to a recent bit complexity lower bound of Ω(nr)
for hypergraph sparsification.
This result is obtained by introducing two new

tools. First, we give a new proof of spectral
concentration bounds for sparsifiers of graphs;
it avoids linear-algebraic methods, replacing
e.g. the usual application of the matrix Bern-
stein inequality and therefore applies to the (non-
linear) hypergraph setting. To achieve the re-
sult, we design a new sequence of hypergraph-
dependent ε-nets on the unit sphere in Rn. Sec-
ond, we extend the weight-assignment technique
of Chen, Khanna and Nagda [FOCS’20] to the
spectral sparsification setting. Surprisingly, the
number of spanning trees after the weight assign-
ment can serve as a potential function guiding the
reweighting process in the spectral setting.

Keywords-hypergraphs, sparsification, spectral

∗ A full version of this paper can be found at
arXiv:2106.02353
† Supported in part by ERC Starting Grant 759471.
‡ Work partially supported by ONR Award N00014-18-1-

2364, the Israel Science Foundation grant #1086/18, and a
Minerva Foundation grant.
§ Supported by ERC Starting Grant 759471.
¶ Supported in part by JSPS KAKENHI Grant Number

18H05291 and 20H05965.

I. Introduction
We study spectral sparsification of hypergraphs,

where the goal is to reduce the size of a hypergraph
while preserving its energy. Given a hypergraphH =
(V,E,w) with a weight function w : E → R+ over its
hyperedges, the energy of x ∈ RV (called a potential
vector) is defined as

QH(x) :=
∑
e∈E

w(e) · max
u,v∈e

(xu − xv)2
.

The problem of minimizing QH(x) over x ∈ RV
subject to certain constraints appears in many prob-
lems involving hypergraphs, including clustering [1],
semi-supervised learning [2, 3, 4] and link predic-
tion [5], from which we can see the relevance of
QH(x) in application domains. Note that when x ∈
RV is a characteristic vector 1S ∈ {0, 1}V of a vertex
subset S ⊂ V , the energy QH(1S) coincides with the
total weight of hyperedges cut by S, where we say
that a hyperedge e ∈ E is cut by S if e∩ S 6= ∅ and
e ∩ (V \ S) 6= ∅.
Since the number of hyperedges in a hypergraph

of n vertices can be Ω(2n), it is desirable to reduce
the number of hyperedges in the hypergraph while
(approximately) preserving the value of QH(x) for
every x ∈ RV , because this lets us speed up any
algorithm involving QH and reduce its memory us-
age by running it on the smaller hypergraph instead
of H itself. Soma and Yoshida [6] formalized this
concept as spectral sparsification for hypergraphs – a
natural generalization of the corresponding concept
introduced by the celebrated work of [7] for graphs.
Specifically, for 0 < ε < 1, we say that a hypergraph
H̃ is an ε-spectral-sparsifier of a hypergraph H if H̃
is a reweighted subgraph of H such that

∀x ∈ RV , Q
H̃

(x) ∈ (1± ε)QH(x).1 (1)

1a ∈ (1± ε)b is a shorthand for (1− ε)b ≤ a ≤ (1 + ε)b.

We note that when H is an ordinary graph, this
definition matches that for graphs [7]. Soma and
Yoshida [6] showed that every hypergraph H admits
an ε-spectral-sparsifier with Õ(n3/ε2) hyperedges,2
and gave a polynomial-time algorithm for construct-
ing such sparsifiers. Since then the number of hyper-
edges needed has been reduced to Õ(nr3/ε2) [8], and
recently to Õ(nr/εO(1)) [9], where r is the maximum
size of a hyperedge in the input hypergraph H
(called the rank of H).
The natural question whether every hypergraph

admits a spectral sparsifier with Õ(n) hyperedges
(for fixed ε) has proved to be challenging. On the
one hand, it is well-known that a hypergraph is
a strictly richer object than an ordinary graph
(hyperedges cannot be “simulated” by edges, even
approximately), and in all previous results and tech-
niques, this extra complication introduced an extra
factor of at least r. On the other hand, an exciting
recent result [10] has achieved sparsifiers with Õ(n)
hyperedges, if one is only interested in preserving the
hypergraph cut function, i.e., satisfying (1) only for
all characteristic vectors x = 1S where S ⊆ V . Nev-
ertheless, the spectral version of this question has
remained open, primarily due to the non-linearity
of the hypergraph Laplacian and the lack of linear-
algebraic tools that have been so effective for graphs.
We settle this question by showing that a nearly

linear number of hyperedges suffices.

Theorem 1. For every hypergraph with n vertices
and every 1/n ≤ ε ≤ 1/2, there exists an ε-spectral-
sparsifier with O(nε−4 log3 n) hyperedges. Moreover,
one can construct such a sparsifier in time Õ(mr +
poly (n)), where m is the number of hyperedges and
r is the maximum size of a hyperedge in H.

We note that the bit complexity of our sparsifier
is tight up to a polylogarithmic factor for a large
range of r due to the lower bound of [9]. The proof
of Theorem 1 can be found in the full version of the
paper.

A. Additional Related Work
Recall that we call H̃ = (V, Ẽ, w̃) an ε-cut sparsi-

fier of H = (V,E,w) if every cut weight is preserved
to within a factor of 1 ± ε. This definition matches
the one for ordinary graphs introduced by Benczúr
and Karger [11], who showed that every graph has an
ε-cut-sparsifier with O(n logn/ε2) edges, where n is
the number of vertices. For hypergraphs, Kogan and
Krauthgamer [12] gave the first construction of non-
trivial cut sparsifiers, which uses O(n(r+ logn)/ε2)

2Throughout, Õ(·) suppresses a factor of logO(1) n.

hyperedges, where r is the maximum size of a
hyperedge. They also mentioned that the results
of Newman and Rabinovich [13] implicitly give an
ε-cut sparsifier with O(n2/ε2) hyperedges. Chen,
Khanna, and Nagda [10] improved this bound to
O(n logn/ε2), which is almost tight because one
needs Ω(n/ε2) edges even for ordinary graphs [14,
15].

Spielman and Teng [7] introduced the notion
of a spectral sparsifier for ordinary graphs and
showed that every graph on n vertices admits an ε-
spectral sparsifier with O(n logO(1) n/ε2) edges. This
bound was later improved to O(n/ε2) [16], which is
tight [14, 15]. The literature on graph sparsification
is too vast to cover here, including [7, 17, 16, 18, 19,
20] and many other constructions, and we refer the
reader to the surveys [21, 22].

For an ordinary graph G = (V,E,w), the Lapla-
cian of G is the matrix LG = DG − AG, where
DG ∈ RV×V is the diagonal (weighted) degree
matrix and AG ∈ RV×V is the adjacency matrix
of G. Then, the energy QG, defined in (1), can be
written also as

QG(x) = x>LGx.

For a hypergraph H = (V,E,w), it is known that
we can define a (multi-valued) Laplacian operator
LH : RV → 2RV , so that

QH(x) = x>y

for every x ∈ RV and y ∈ LH(x) [23, 24, 25] (hence
we can write QH(x) also as x>LH(x) without am-
biguity). Although the Laplacian operator LH is no
longer a linear operator, its mathematical property
has been actively investigated [26, 27, 28] through
the theory of monotone operators and evolution
equations [29, 30].

Yoshida [31] proposed a Laplacian operator for di-
rected graphs and used it to study structures of real-
world networks. The Laplacian operators for graphs,
hypergraphs, and directed graphs mentioned above
were later unified and generalized as Laplacian op-
erator for submodular transformations/submodular
hypergraphs [32, 25].

II. Preliminaries
In this paper, we deal with spectral sparsification

of hypergraphs. For the sake of generality, we con-
sider weighted hypergraphs denoted H = (V,E,w),
where V is the vertex set of size n, E is the hy-
peredge set of size m, and w : E → R+ is the set
of hyperedge weights. We will also, however, deal
with ordinary graphs, that is graphs where each edge
contains two vertices exactly. In order to distinguish

clearly between graphs and hypergraphs, we will
typically denote graphs as G = (V, F, z), where V
is the vertex set, F is the edge set, and z : F → R+
is the set of edge weights. In general we will use f
and g to denote ordinary edges, while reserving e to
denote hyperedges.
For simplicity all graphs and hypergraphs we con-

sider in this paper will be connected.

A. Spectral Graph Theory
Definition II.1. The Laplacian of a weighted graph
G = (V, F, z) is defined as the matrix LG ∈ RV×V
such that

(LG)uv =


d(u) if u = v,
−z(u, v) if (u, v) ∈ F ,
0 otherwise.

Here d(u) denotes the weighted degree of u, that is
the sum of all weights of incident edges. Thus LG
is a positive semidefinite matrix, and its quadratic
form can be written as

x>LGx =
∑

(u,v)∈F

z(u, v) · (xu − xv)2.

The spectral sparsifier of G is defined as a
reweighted subgraph which closely approximates the
quadratic form of the Laplacian on every possible
vector.

Definition II.2. Let G = (V, F, z) be a weighted
ordinary graph. Let G̃ = (V, F̃ , z̃) be a reweighted
subgraph of G, defined by z̃ : F → R+, where F̃ =
{f ∈ F | z̃(f) > 0}. For ε > 0, G̃ is an ε-spectral
sparsifier of G if for every x ∈ RV

x>L
G̃
x ∈ (1± ε) · x>LGx.

The quadratic form of the graph Laplacian from
Definition II.1 can be generalized to hypergraphs.
Although this generalization is highly non-linear,
we still refer to it as the “quadratic form” of the
hypergraph.

Definition II.3. The quadratic form (or sometimes
energy) of a hypergraph H = (V,E,w) is defined on
the input vector x ∈ RV as

QH(x) =
∑
e∈E

w(e) · max
u,v∈e

(xu − xv)2.

Consequently, we may also define the concept of
spectral sparsification in hypergraphs, analogously
to Definition II.2:

Definition II.4. Let H = (V,E,w) be a weighted
hypergraph. Let H̃ = (V, Ẽ, w̃) be a reweighted
subgraph of H, defined by w̃ : E → R+, where

Ẽ = {e ∈ E | w̃(e) > 0}. For ε > 0, H̃ is an ε-
spectral sparsifier of H if for every x ∈ RV

Q
H̃

(x) ∈ (1± ε) ·QH(x).

B. Effective Resistance
Definition II.5. Let G = (V, F, z) be a weighted
ordinary graph. The effective resistance of a pair of
vertices (u, v) is defined as

RG(u, v) = (χu − χv)>L+
G(χu − χv).

Here χu ∈ RV is the vector with all zeros, and a
single 1 at the coordinate corresponding to u. L+

G is
the Moore-Penrose pseudo-inverse of LG, which is
positive semidefinite.
We may write R(u, v) in cases where G is clear

from context.

We will often use the notation RG(f) = RG(u, v)
where f = (u, v) is an edge. It is important to note,
however, that effective resistance is a function of
the vertex pair, not the edge, and does not depend
directly on the weight of f .

We now state several well-known and useful facts
about effective resistance.

Fact II.6. The effective resistance of an edge (u, v)
is alternatively defined as

RG(u, v) = max
x∈RV

(xu − xv)2

x>Lx
.

Fact II.7. Effective resistance constitutes a metric
on V .

Fact II.8. For any weighted graph G = (V, F, z)
and any edge f ∈ F we have z(f) ·RG(f) ≤ 1, with
equality if and only if f is a bridge.

Fact II.9. For any weighted graph G = (V, F, z) we
have ∑

f∈F

z(f) ·RG(f) = n− 1.

C. Chernoff Bound
Theorem II.10 (Chernoff bound, see for exam-
ple [33]). Let Z1, Z2, . . . , Zk be independent random
variables in the range [0, a]. Furthermore, let

∑
Zi =

Z and let µ ≥ E(Z). Then for any δ ∈ (0, 1),

P (|Z − E(Z)| ≥ δµ) ≤ 2 exp
(
−δ

2µ

3a

)
.

III. Technical Overview
A. Analyzing Ordinary Graphs

The sparsification of ordinary graphs is a highly
studied topic, with several techniques proposed for
the construction of spectral sparsifiers throughout
the years [7, 17, 16, 18, 19, 20]. However, the

analysis of spectral sparsifiers always relies heavily
on the linear nature of the graph Laplacian, e.g.,
using matrix concentration results such as matrix
Bernstein [34] or the work of [35]. This presents a
significant problem when attempting to generalize
these techniques to the highly non-linear setting
of hypergraph spectral sparsification. Indeed, all
previous results lose at least a factor of r due to
this obstacle. We therefore dedicate the entirety of
our first technical section (Section IV) to presenting
a new proof of the existence of nearly linear spectral
sparsifiers for ordinary graphs. We use the algorithm
from [17], which constructs a sparsifier G̃ by sam-
pling each edge with probability proportional to its
effective resistance. However, our proof avoids using
matrix concentration inequalities, and instead relies
on a more direct chaining technique for proving the
concentration of x>L

G̃
x around its expectation, i.e.

x>LGx, for all x simultaneously. To our knowledge,
this is the first nearly-optimal direct analysis of
spectral sparsification through effective resistance
sampling. It will also be the basis of our main result,
as we adapt it to the hypergraph setting in the full
version of the paper.
More formally, for an input graph G = (V, F, z),

we define G̃ as the result of sampling each edge f
of G independently with probability p(f) ≈ z(f) ·
RG(f), and setting its weight to z̃(f) = z(f)/p(f).
Our aim is then to prove

x>L
G̃
x ≈ x>LGx (2)

simultaneously for all x ∈ RV . For simplicity we
assume that x>LGx = 1. Equation (2) is in fact
the concentration of a random variable around its
expectation, and so we can use Chernoff bound to
prove it for any specific x. Our plan is then to use a
combination of Chernoff and union bounds to prove
it for all possible x. Since x can take any value in RV
we must discretize it to some ε-net while retaining
a good approximation to its quadratic form, i.e.
x>LGx.
Let us take a closer look at the application of

Chernoff bound to Equation (2): x>L
G̃
x is the

sum of the independent random variables z̃(u, v) ·
(xu − xv)2 for (u, v) ∈ F ; hence, by Theorem II.10,
the strength of the bound depends crucially on
the upper bound a on values that each random
individual random variable can possibly attain. The
maximum value of z̃(u, v) · (xu − xv)2 is attained
when (u, v) is sampled in G̃, in which case it is
≈ (xu − xv)2/RG(u, v). Thus

P
(
x>L

G̃
x 6≈ x>LGx

)

/ exp
(
− 1

max(u,v)∈F (xu − xv)2/RG(u, v)

)
.

This upper bound can be as bad as exp(−Õ(1)) and
is far too crude for our purposes—no sufficiently
sparse rounding scheme (i.e., discretization) exists
for x. We turn to the technique of chaining—the use
of progressively finer and finer rounding schemes.

As seen above, the strength of our Chernoff
bound depends primarily on the quantity (xu −
xv)2/RG(u, v) for each edge (u, v), which we call the
“power” of the edge. Therefore, it makes sense to
partition the edges of G into a logarithmic number
of classes based on their power, that is Fi contains
edges (u, v) for which (xu − xv)2 ≈ 2−i · RG(u, v).
When focusing only on the subgraphs G(Fi) induced
by Fi, we get the more fine-tuned Chernoff bound

P
(
x>L

G̃(Fi)x 6≈ x
>LG(Fi)x

)
/ exp

(
− 1

max(u,v)∈Fi
(xu − xv)2/RG(u, v)

)
/ exp

(
−2i

)
.

We thus have the task of proposing a rounding
scheme ϕi : RV → RV specially for each class Fi
such that
• the image of ϕi is a finite set of size at most
≈ exp

(
2i
)
,

• the rounding approximately preserves the quan-
tity (xu − xv)2 for (u, v) ∈ Fi.

To gain more intuition on what such a rounding
scheme must look like, we draw inspiration from the
idea of resistive embedding from [17]. We map the
edges in Fi, as well as our potential vector x, into
vectors in Rn in such a way that all the relevant
quantities arise as norms or scalar products:

(u, v) 7→ au,v = L
+/2
G (χu − χv)∥∥∥L+/2
G (χu − χv)

∥∥∥ ,
x 7→ yx = L

1/2
G x.

Notice that both au,v and yx are normalized (since
x>LGx=1). Furthermore, the crucial quantity, the
power of the edge (u, v) arises as the square of a
scalar product:

〈au,v, yx〉2 = (x>(χu − χv))2

(χu − χv)>L+
G(χu − χv)

= (xu − xv)2

RG(u, v) .

Thus we are interested in rounding yx in a way
that preserves 〈au,v, yx〉2 up to small multiplicative
error in all cases where it was ≈ 2−i to begin with.

Thus, it suffices to guarantee an additive error of
at most / 2−i in our rounding scheme. This is the
known problem of “compression of approximate in-
ner products” and has been previously studied; [36]
guarantees a rounding scheme whose image is of size
at most ≈ exp

(
2i
)
. This can be translated into a

rounding scheme for x ∈ RV , with the same image-
size, exactly as desired (see Lemma IV.2).
With the desired rounding scheme in hand, we

can now use a combination of Chernoff and union
bounds to prove that for all x simultaneously

x>L
G̃(Fi)x ≈ x

>LG(Fi)x.

Summing this over all edge-classes gives us Equa-
tion 2.
For the detailed proof, which is considerably more

complicated than the above sketch, see the proof of
Theorem IV.1 in Section IV.

B. Extension to Hypergraphs
To adapt the previous argument to the hyper-

graph setting, we use the idea of balanced weight
assignments from [10]. Essentially, we construct an
ordinary graph G = (V, F, z) to accompany our
input hypergraph H = (V,E,w) by replacing each
hyperedge e with a clique Fe over the vertices in e.
However, unlike in some previous works on hyper-
graph sparsification, the clique Fe is not assigned
weights uniformly, but instead the weight is carefully
distributed among the edges. Intuitively, all the
weight is shifted onto the most “important” edges.
In the case of [10], the measure of importance was
“strength”, a quantity relevant to cut sparsification,
while in our case it is effective resistance.
More formally, a weighting assignment z of the

cliques is considered γ-balanced if for all e ∈ E
•
∑
f∈Fe

z(f) = w(e),
• and

γ · min
g∈Fe: z(g)>0

RG(g) ≥ max
f∈Fe

RG(f).

In words, all but the zero-weight edges of Fe have
approximately the same effective resistance. This
allows hyperedge e to inherit this effective-resistance
value as its importance when sampling hyperedges.
Our task is now to prove the existence of balanced
weight assignments for all hypergraphs, and then to
adapt the proof of Section IV.

Finding balanced weight assignments.: In [10],
balanced weight assignments are constructed
through the following intuitive process: Find a pair
of edges violating the second constraint, that is
f, g ∈ Fe where z(g) 6= 0 and f has significantly
higher importance than g. Then shift weight from g

to f ; this alleviates the constraint violation either
because the importances of g and f become more
similar, or simply because the weight of g decreases
to 0. We call this resolving the imbalance of f and
g. [10] strings together such steps, carefully ordered
and discretized, to eventually produce a balanced
weight assignment of the input hypergraph.

However, their analysis relies heavily on a cer-
tain lemma about how “strength” (their measure
of edge importance) behaves under weight updates.
Lemma 6 of [10] states that altering the weight of an
edge f , will not affect edges of significantly greater
“strength” than f . This is not the case for effective
resistances. It is easy to construct scenarios to the
contrary; even ones in which altering the weight of
edges of low resistance can increase the maximum
effective resistance in the graph.

Thus the analysis of [10] does not extend to
our setting. Instead we use a potential function
argument to say that we make irreversible progress
whenever we resolve the imbalance of two edges f
and g. Our choice of potential function is surprising,
and is one of the main technical contributions of this
paper. We define the spanning tree potential (or ST-
potential) of a connected weighted ordinary graph
G = (V, F, z), denoted Ψ(G). For edge weights that
equal 1 uniformly (that is for unweighted graphs)
it is simply the logarithm of the number of distinct
spanning trees in G. In weighted graphs it is gener-
alized to

Ψ(G) = log

∑
T∈T

∏
f∈T

z(f)

 ,

where T denotes the set of all spanning trees in G.
Due to the relationship between spanning tree sam-
pling and effective resistances (see for example [37])
we can prove a crucial update formula for Ψ(G): if
an edge f has its weight changed by λ ∈ R, the
ST-potential increases by log(1 + λ · R(f)). Since
whenever we resolve the imbalance of a pair of edges,
we shift weight from the edge of lower effective
resistance to that of higher effective resistance, this
allows us to argue that the ST-potential always
increases throughout the process, which eventually
terminates in a balanced weight assignment (see the
full version of the paper for more details).

This proves the existence of balanced weight as-
signments, which suffices to show the existence of
nearly linear size spectral sparsifiers for all hyper-
graphs. However, to improve running time (from
exponential to polynomial in the input size), we
introduce the novel concept of approximate balanced
weight assignments, by slightly relaxing the defini-

tion. These are still sufficient to aid in constructing
spectral sparsifiers, and are faster to construct using
an alternate algorithm.
For more details on the ST-potential, as well as

the construction of balanced weight assignments see
the full version of the paper.

Using balanced weight assignments to construct
hypergraph spectral sparsifiers.: Given a hypergraph
H = (V,E,w) and its balanced weight assignment
G = (V, F, z) we assign importance to each hy-
peredge proportionally to the maximum effective
resistance in Fe (the clique corresponding to e).
Thus we perform importance sampling, which sam-
ples each hyperedge independently with probability
p(e) ≈ w(e) ·maxf∈Fe RG(f).
The broad strokes of the hypergraph proof in

Section 6 of the full paper proceed very similarly to
those of the proof for ordinary graphs in Section IV.
However, numerous details need to be figured out in
order to bridge the gap between the two settings. It
is interesting to note that our rounding scheme is
exactly the same as in Section IV, to the point of
even being defined in terms of G, not H. (Indeed
it is impossible to define such a rounding scheme
directly in terms of H; Lemma IV.2 relies heavily on
the linear nature of the ordinary graph Laplacian.)
Nevertheless, we manage to extend the approxima-
tion guarantee of the rounding scheme from edges
to hyperedges.
For the detailed analysis of hypergraph spectral

sparsification through effective resistance-based im-
portance sampling, see the full version of the paper.

C. Speed-Up
Using the above results, we can put together a

polynomial time algorithm for spectral sparsification
of hypergraphs. Simply run our algorithm to pro-
duce an approximate balanced weight assignment,
and then use importance sampling. The bottleneck
of this procedure is constructing the weight as-
signment, which takes time O(m · poly (n)). (Given
the weight assignment, it is trivial to implement
importance sampling).
In the full version of the paper, we reduce this

to the nearly optimal Õ(mr + poly (n)). (Note that
O(mr) is the size of the input.) Our first step is
the common trick of using a faster sparsification
algorithm, but one which produces a larger output,
to preprocess the input hypergraph. We use the
algorithm of [8] which – with small modifications –
can be made to run in the desired Õ(mr+ poly (n))
time. The resulting hypergraph has only polynomi-
ally many hyperedges (in n); however, the aspect
ratio of edge weights (that is the ratio between the

largest and smallest edge weights) can naturally be
exponential in n.

Unfortunately, our basic algorithm for construc-
ing apporximate balanced weight assignments scales
linearly in the aspect ratio of edge weights, and so
we propose another algorithm for finding a balanced
weight assignment – one specifically designed for the
setting when the input graph is polynomially sparse,
but has exponential aspect ratio.

Suppose our input hypergraph, H = (V,E,w) has
edge weights in the range [1, exp(n)]. We then divide
hyperedges into weight categories such as Ei = {e ∈
E|w(e) ∈ [n10(i−1), n10i)}. We then bisect H into
two hypergraphs H1 and H2, where H1 contains all
hyperedges in odd numbered categories, and H2 all
those in even numbered categories. This results in
hyergraphs (H1 and H2) where hyperedges fall into
extremely well-separated categories; so extremely in
fact, that the weight of a hyperedge in a higher
category (for example e ∈ Ei ⊆ H1) has higher
weight than all hyperedges of all lower categories
combined, that is

w(e)�
∑

e′∈E<i∩H1

w(e′).

We use this property to independently find weight
assignments on H1 and H2. Informally, we go
through the categories of hyperedges, from heaviest
to lightest, resolving all instances of imbalance. We
never return to a category once we moved on, and we
prove that no amount of changes to the weight as-
signment of lower categories can disrupt the balance
of a higher category, due to the huge discrepency in
weights. For a more detailed and formal argument
see the full version of the paper.

IV. Warm-Up: Ordinary Graphs
We begin by reproving the famous theorem of

Spielman and Srivastava [17], which states that sam-
pling edges of a graph with probability proportional
to their effective resistance (and then reweighting
appropriately) results in a spectral sparsifier with
high probability. We prove a somewhat weaker ver-
sion of the theorem, where we oversample by an
O(ε−4 log3 n) factor, as opposed to the ε−2 logn
factor in the original. Another slight difference is
that our version samples every edge independently,
instead of sampling a predetermined number of
edges with replacement in [17]. More recent proofs
of the theorem of [17] that use the matrix Bernstein
inequality as opposed to [35] also use the same
distribution as ours.

Theorem IV.1 (A slightly weaker version of [17]).
Let G = (V, F, z) be a weighted ordinary graph with n

vertices and let 1/n ≤ ε ≤ 1/2. For every edge f ∈ F ,
let p(f) = min(1, λ · z(f) · RG(f)) for a sufficiently
large factor λ = Θ(ε−4 log3 n). Sample each edge
f ∈ F independently with probability p(f), and give
it weight z̃(f) = z(f)/p(f) if sampled. The resulting
graph, G̃ = (V, F̃ , z̃) is an ε-spectral sparsifier of G
with probability at least 1−O(logn/n).

The original proof of this theorem used a concen-
tration bound for matrices [35] (later simplified to
use the matrix Bernstein inequality) to prove that
x>L

G̃
x is close to its expectation simultaneously

for all x ∈ Rn, as required by Definition II.2. This
type of argument is difficult to adapt to hypergraph
sparsification, because the extension of quadratic
forms to hypergraphs is highly non-linear. We thus
present an alternative proof that uses more primitive
techniques to bypass the reliance on linear algebra.
Proof of Theorem IV.1: By Definition II.2, we
must prove that for every x ∈ RV ,

x>L
G̃
x ∈ (1± ε) · x>LGx. (3)

We may assume without loss of generality that
x>LGx = 1. We denote the set of vectors x where
this is satisfied as SG ⊆ RV . Furthermore, we
simplify notation by denoting LG as L, and L

G̃
as L̃.

Moreover, for any subset of edges F ′ ⊆ F , we denote
the Laplacian of the subgraph of G corresponding to
F ′ by LF ′ , and similarly for the subgraph of G̃ by
L̃F ′ .
It is clear from the construction of G̃ that

E
(
x>L̃x

)
= x>Lx.

Therefore, we are in effect trying to prove the
concentration of a random variable around its ex-
pectation in Equation (3). Indeed, for any specific
x, Equation (3) holds with high probability by
Chernoff bound (Theorem II.10). (One can consider
x>Lx as the sum of independent random variables
of the form z̃(u, v) · (xu − xv)2.)
In order to prove the concentration for all x ∈ SG

simultaneously, we employ a net argument, where we
“round” x to some vector from a finite set and apply
a union bound on the rounded vectors. However,
our rounding scheme is progressive and has O(logn)
“levels” with increasingly finer resolution. Each x
will then determine a partition of the edges into
levels, and we will prove concentration for each
rounded vector and each level (subset of edges), and
then apply a union bound over all these choices.
The existence of these rounding functions is guar-

anteed by the following lemma, which we will prove
in Section IV-A.

Lemma IV.2. Let G = (V, F, z) be a connected
weighted graph. Then for every i ∈ N there exists
a rounding function

ϕi : SG → RV

such that for all x ∈ SG, denoting x(i) := ϕi(x), we
have:
1) The image of ϕi is a finite set of cardinality
|ϕi(SG)| ≤ exp

(
800C logn · 2i/ε2

)
, where C >

0 is the absolute constant from Theorem IV.5.
2) For every edge f = (u, v) ∈ F such that

max
(

(xu − xv)2, (x(i)
u − x(i)

v)2
)
≥ 2−i ·RG(f),

(xu − xv)2 ∈
(

1± ε

7

)
· (x(i)

u − x(i)
v)2.

The second guarantee of Lemma IV.2 can be
expressed in terms of the Laplacian of a single edge,
resulting in the following corollary.

Corollary IV.3. For a rounding function
ϕ satisfying the guarantees of Lemma IV.2,
and an edge f = (u, v) ∈ F such that
max

(
(xu − xv)2, (x(i)

u − x(i)
v)2

)
≥ 2−i ·RG(f),

x>L{f}x ∈
(

1± ε

7

)
· x(i)>L{f}x

(i).

Let us take a sequence of the rounding functions
ϕi guaranteed by Lemma IV.2 for i = 1, . . . , I :=
log2(7n/ε) ≤ 3 logn. For each x ∈ SG, it yields
a sequence of rounded vectors x(i) = ϕi(x) for
i = 1, . . . , I. Furthermore, we use x(i) to define the
subset of edges F ′i ⊆ F as{

f = (u, v) ∈ F
∣∣∣∣ (x(i)

u − x(i)
v

)2
≥ 2−i ·RG(f)

}
.

That is, the second guarantee of Lemma IV.2 holds
for ϕi on edges in F ′i . Finally, we use {F ′i}i to
partition F as follows. Let the base case be F0 =
F ′0 := {f ∈ F | p(f) = 1}, where we recall
that p(f) = min(1, λ · z(f) · RG(f)). For each
i ∈ [I], let Fi := F ′i \

⋃i−1
j=0 F

′
j , and finally let

FI+1 = F \
⋃I
i=0 F

′
i .

Thus we have partitioned F in such a way that the
second guarantee of Lemma IV.2 applies to edges in
Fi, with respect to ϕi. Furthermore, Fi are defined in
terms of x(i) (and x(j) for j < i) instead of x, so that
the number of possible sets Fi is finite, and bounded
thanks to the first guarantee of Lemma IV.2.

We establish the following claim for later use.

Claim IV.4. For all i ∈ [I] and f = (u, v) ∈ Fi, we
have

(x(i)
u − x(i)

v)2 ≤ 3 · 2−i ·RG(f).

Proof: The second guarantee of Lemma IV.2 for
ϕi applies to f , and thus (x(i)

u −x(i)
v)2 ≤ (xu−xv)2 ·

(1− ε/7)−1.
Consider first the case i = 1. By Fact II.6 and

since x ∈ SG, we have (xu−xv)2 ≤ RG(f) ·x>Lx =
RG(f), and we indeed get (x(i)

u − x(i)
v)2 ≤ RG(f) ·

(1− ε/7)−1 ≤ 3 · 2−1 ·RG(f).
Now consider i > 1, and suppose towards contra-

diction that (x(i)
u −x(i)

v)2 > 3·2−i·RG(f). Notice that
the second guarantee of Lemma IV.2 also applies to
f for ϕi−1, and thus (x(i−1)

u −x(i−1)
v)2 ≥ (x(i)

u −x(i)
v)2·

(1 + ε/7)−1 · (1− ε/7) ≥ 2−i+1 ·RG(f). This implies
that f ∈ F ′i−1, which contradicts the assumption
f ∈ Fi = F ′i \

⋃i−1
j=0 F

′
j .

We will consider each group of edges Fi separately,
and prove that x>L̃Fi

x concentrates around its
expectation, x>LFi

x. More precisely, we will first
prove concentration for every specific (x(i), Fi), and
then extend the concentration to all possibilities
simultaneously via union bound. This is well-defined
because each Fi depends on x(1), . . . , x(i) but not
directly on x.

Edges in F0.: By definition, every edge f ∈ F0
has p(f) = 1, and thus x>L̃F0x is completely
deterministic and equal to x>LF0x.

Edges in Fi for i ∈ [I].: Note that Fi is
designed so that, by Corollary IV.3, for every edge
f ∈ Fi we have

∣∣x>L{f}x− x(i)>L{f}x
(i)
∣∣ ≤ ε/7 ·

x(i)>L{f}x
(i), and since L̃{f} is a multiple of L{f}

similarly have
∣∣∣x>L̃{f}x− x(i)>L̃{f}x

(i)
∣∣∣ ≤ ε/7 ·

x(i)>L̃{f}x
(i). Informally, this allows us to prove

concentration only for vectors x(i) instead of all x,
and thus we next aim to bound the error∣∣∣x(i)>LFix

(i) − x(i)>L̃Fix
(i)
∣∣∣

for each i ∈ [I] with high probability. It will then
remain to bound the error introduced on the remain-
ing edges (the ones in FI+1).

Fix i ∈ [I] and notice that over all possible vectors
x ∈ SG, there are only finitely many possible values
for (x(i), Fi). Therefore, we can focus on a single
value of x(i) and Fi, and then use a union bound
over all settings.
Let us therefore fix also x(i) and Fi. We will use

Chernoff bounds to prove that with high probability,
over the randomness of sampling edges to G̃,∣∣∣x(i)>LFi

x(i) − x(i)>L̃Fi
x(i)
∣∣∣ ≤ ε

7I . (4)

Indeed, note that

x(i)>L̃Fi
x(i) =

∑
f=(u,v)∈Fi

z̃(f) · (x(i)
u − x(i)

v)2,

where z̃(f) are independent random variables with
expectation E(z̃(f)) = z(f). Therefore, we can apply
the Chernoff bound from Theorem II.10 with {Zi}i
being z̃(f) · (xu − xv)2 for each f = (u, v) ∈ Fi,
and their sum being Z = x(i)>L̃Fi

x(i) with E(Z) =
x(i)>LFi

x(i). We need to set a as an upper bound
on z̃(f) · (x(i)

u −x(i)
v)2. Observe that z̃(f) is maximal

when f is sampled, in which case it equals z(f)/p(f)
where p(f) = λ · z(f) ·RG(f), since f 6∈ F0. We thus
get, using Claim IV.4, that for all f = (u, v) ∈ Fi,

z(f) · (x(i)
u − x(i)

v)2

λ · z(f) ·RG(f) = 1
λ
· (x(i)

u − x(i)
v)2

RG(f)

≤3 · 2−i

λ
=: a.

We let δ := ε/(14I), we can bound

x(i)>LFix
(i) ≤

(
1 + ε

7

)
· x>LFix ≤

(
1 + ε

7

)
· x>Lx

= 1 + ε

7 ≤ 2 =: µ.

(This is true for an arbitrary preimage x ∈
ϕ−1
i (x(i)).)
Finally, Theorem II.10 implies

P
(∣∣∣x(i)>LFix

(i) − x(i)>L̃Fix
(i)
∣∣∣ ≥ ε

7I

)
≤2 exp

(
− δ

2µ

3 · a

)
=2 exp

(
−

ε2

196I2 · 2
9 · 2−i/λ

)

≤2 exp
(
− ε2 · 2i · λ

10000 log2(n)

)
=2 exp

(
−2000C logn · 2i

ε2

)
,

where the last step by setting λ = 2·107 ·C log3 n/ε4,
where C > 0 is the absolute constant from Theo-
rem IV.5.

We can now use a union bound to bound the
probability that Equation (4) holds simultaneously
for all values of (x(i), Fi). Fi depends only on F ′j for
j ∈ [i], which in turn depend on x(j) for the same
values of j. By the first guarantee of Lemma IV.2,
the number of possible vectors x(j) is at most
exp

(
800C logn · 2j/ε2

)
, where C > 0 is the absolute

constant from Theorem IV.5. Therefore, the number
of possible pairs (x(i), Fi) is at most

i∏
j=1

exp
(

800C logn · 2j

ε2

)

= exp

 i∑
j=1

800C logn · 2j

ε2



≤ exp
(

1600C logn · 2i

ε2

)
.

Finally, the probability that Equation (4) does not
hold simultaneously for all pairs (x(i), Fi) is at most

exp
(

1600C logn · 2i

ε2

)
· 2 exp

(
−2000C logn · 2i

ε2

)
= 2 exp

(
−400C logn · 2i

ε2

)
≤ 1
n
.

Edges in FI+1.: First we show that for any
x ∈ SG and any edge f = (u, v) ∈ FI+1 we
have that (xu − xv)2 ≤ ε · RG(f)/(6n). Suppose
for contradiction that this is not the case. Then
the second guarantee of Lemma IV.2 applies and
(x(I)
u −x(I)

v)2 ≥ (xu−xv)2 ·(1−ε/7) ≥ ε·RG(e)/(6n)·
(1− ε/7) ≥ ε ·RG(e)/(7n). Therefore f ∈ F ′I , which
contradicts the assumption f ∈ FI+1. (Here we used
that I was defined to be log2(7n/ε).)
Next, we would like to bound∣∣∣x>L̃FI+1x− x>LFI+1x

∣∣∣ by showing that both
terms are small. First,

x>LFI+1x =
∑

f=(u,v)∈FI+1

z(f) · (xu − xv)2

≤
∑

f∈FI+1

z(f) · ε · RG(f)
6n

≤ ε

6n ·
∑
f∈F

z(f) ·RG(f) ≤ ε

6 ,

where the last inequality uses Fact II.9. Second, we
start similarly,

x>L̃FI+1x =
∑

f=(u,v)∈FI+1

z̃(f) · (xu − xv)2

≤
∑

f∈FI+1

z̃(f) · ε · RG(f)
6n

≤ ε

6n ·
∑
f∈F

z̃(f) ·RG(f),

and ideally we would like to show that
∑
z̃(f) ·

RG(f) ≤ 2n. This is not always true, but it is a
random event, independent of the choice of x, and
can be shown to hold with high probability using
our Chernoff bound from Theorem II.10. Indeed,
z̃(f) ·RG(f) are independent random variables with
maximum value when f is sampled, in which case
z̃(f) = z(f)/p(f), and thus

z̃(f) ·RG(f) ≤ z(f) ·RG(f)
p(f)

= z(f) ·RG(f)
min(1, λ · z(f) ·RG(f))

= max (z(f) ·RG(f), 1/λ)

=: a ≤ 1,

where the last inequality uses Fact II.8. We apply
Theorem II.10 by setting δ := 1 and µ := n (which
we may do by Fact II.9), and obtain

P

∑
f∈F

z̃(f) ·RG(f) ≥ 2n

 ≤ 2 exp
(
−n3

)
.

Therefore, with probability at least 1−O(1/n),∣∣∣x>L̃FI+1x− x>LFI+1x
∣∣∣ ≤ ε

2 . (5)

Putting everything together.: By the above
derivations, Equation (4) holds for all i and all
(x(i), Fi) simultaneously, as well as Equation (5)
holds with probability at least 1 − O(logn/n). As-
suming henceforth that this high probability event
occurs, we shall deduce that Equation (3) holds for
all x ∈ SG. Indeed, by the triangle inequality and
Equation (5),∣∣∣x>L̃x− x>Lx∣∣∣ ≤ I+1∑

i=0

∣∣∣x>L̃Fix− x>LFix
∣∣∣

≤ 0 +
I∑
i=1

∣∣∣x>L̃Fi
x− x>LFi

x
∣∣∣+ ε

2 .

Now for each i ∈ [I], we can approximate terms
involving x by x(i) and vice versa, formalized by the
aforementioned fact that for every (u, v) ∈ Fi we
have |(xu−xv)2− (x(i)

u −x(i)
v)2| ≤ ε/7 · (x(i)

u −x(i)
v)2

(see the second condition of Lemma IV.2 and the
definition of F ′i ⊆ Fi), and get∣∣∣x>L̃Fi

x− x>LFi
x
∣∣∣

≤
∣∣∣x>L̃Fi

x− x(i)>L̃Fi
x(i)
∣∣∣+∣∣∣x(i)>L̃Fi

x(i) − x(i)>LFi
x(i)
∣∣∣+∣∣∣x(i)>LFix

(i) − x>LFix
∣∣∣

≤ ε7 · x
(i)>L̃Fi

x(i)+∣∣∣x(i)>L̃Fi
x(i) − x(i)>LFi

x(i)
∣∣∣+

ε

7 · x
(i)>LFi

x(i)

now we use the triangle inequality,

≤ ε7 · x
(i)>LFi

x(i)+(
1 + ε

7

)
·
∣∣∣x(i)>L̃Fi

x(i) − x(i)>LFi
x(i)
∣∣∣+

ε

7 · x
(i)>LFi

x(i)

and now we crucially use Equation (4),

≤
(

1 + ε

7

)
· ε7I + 2ε

7 ·
(

1− ε

7

)−1
· x>LFix

≤ ε

6I + 2ε
6 · x

>LFix.

Substituting this into our previous bound, we obtain∣∣∣x>L̃x− x>L̃x∣∣∣ ≤ I∑
i=1

(ε

6I + ε

3 · x
>LFi

x
)

+ ε

2

≤ ε

6 + ε

3 · x
>Lx+ ε

2
= ε · x>Lx,

where the last equality uses x>Lx = 1. This com-
pletes the proof of Theorem IV.1.

A. Proof of Lemma IV.2
To prove Lemma IV.2, we use the following The-

orem:

Theorem IV.5 (Theorem VI.1 of [36]). Let
a1, . . . , am ∈ Rn be vectors of norm at most 1 and let
η ∈ (0, 1). Then, over all vectors y ∈ Rn of norm at
most 1, the number of possible values of the “rounded
vector”(⌊

〈a1, y〉
η

⌋
,

⌊
〈a2, y〉
η

⌋
, . . . ,

⌊
〈ak, y〉
η

⌋)
is at most exp

(
C logm
η2

)
for some absolute constant

C > 0.

Remark IV.6. In fact, the original theorem (The-
orem 6.1 in [36]) is stated with stronger require-
ments on m and η, and a stronger consequence.
However, we can easily get the weaker upper bound
of exp(O(logm/η2)) stated in Theorem IV.5 of this
paper, by setting the variables appropriately: ε := η,
n := max(m, 1/η2), and k := n, where the left hand
side always represents their variable names and the
right hand side ours.

Proof of Lemma IV.2:We use the idea of resistive
embedding introduced in []. Note that L = LG is a
positive semidefinite matrix, and we denote by L+/2

the square root of its Moore-Penrose pseudo-inverse.
For each (unordered) vertex pair (u, v), let bu,v ∈ RV
be the vector with all zero coordinates, except for
the coordinates associated with u and v, which are 1
and −1 (ordered arbitrarily). With each vertex pair
(u, v), we associate the vector

au,v = L+/2bu,v
‖L+/2bu,v‖2

.

Furthermore, we associate with each x ∈ SG the
vector yx = L1/2x.

We can then apply Theorem IV.5 to {au,v |
(u, v) ∈

(
V
2
)
} and all possible yx, setting η =

ε ·2−i/2/20. Indeed, au,v is normalized by definition,
and also yx is normalized because x ∈ SG and thus

‖yx‖2
2 = x>L1/2L1/2x = x>Lx = 1.

For each possible value of the rounded vector(⌊
〈au,v, yx〉

η

⌋)
(u,v)∈(V

2)

choose a representative x ∈ SG, and let ϕi map each
x ∈ SG to its representative (i.e., with the same
rounded vector). Then by Theorem IV.5, the image
of ϕi is of size |ϕi(SG)| ≤ exp

(
800C logn · 2i/ε2

)
, as

claimed. Recall that we denote ϕi(x) by x(i); then(⌊
〈au,v, yx〉

η

⌋)
(u,v)∈(V

2)

=
(⌊
〈au,v, yx(i)〉

η

⌋)
(u,v)∈(V

2)
.

It follows that for all f = (u, v) ∈ F and all x ∈ SG,

|〈au,v, yx〉 − 〈au,v, yx(i)〉| ≤ η. (6)

Furthermore, bu,v is perpendicular to the null-space
of L (which is spanned by the all-ones vector because
G is connected), thus L1/2L+/2bu,v = bu,v and

〈au,v, yx〉2 =
(
x>L1/2L+/2bu,v

)2

b>u,vL
+/2L+/2bu,v

=
(
x>bu,v

)2

b>u,vL
+bu,v

= (xu − xv)2

RG(u, v) . (7)

To prove the second guarantee of Lemma IV.2, let
f = (u, v) ∈ F and x ∈ SG and consider first the
case

(
x

(i)
u − x(i)

v

)2
≥ 2−i · RG(f), which by (7) is

equivalent to 〈au,v, yx(i)〉2 ≥ 2−i. This means that
the absolute error bound η in Equation (6) implies
a relative error bound, namely,

|〈au,v, yx〉 − 〈au,v, yx(i)〉| ≤ η = ε · 2−i/2

20
≤ ε

20 · |〈au,v, yx(i)〉| .

The other case (xu − xv)2 ≥ 2−i · RG(f) is similar
up to constants; by (7), this case is equivalent to
〈au,v, yx〉2 ≥ 2−i, and thus

|〈au,v, yx〉 − 〈au,v, yx(i)〉|

≤η = ε · 2−i/2

20
≤ ε

20 · |〈au,v, yx〉| ,

which implies

|〈au,v, yx〉 − 〈au,v, yx(i)〉|

≤ ε

20 ·
(

1− ε

20

)−1
|〈au,v, yx〉|

≤ ε

16 · |〈au,v, yx(i)〉| .

Now in both cases,∣∣〈au,v, yx〉2 − 〈au,v, yx(i)〉2
∣∣

= |〈au,v, yx〉 − 〈au,v, yx(i)〉| · |〈au,v, yx〉+ 〈au,v, yx(i)〉|

≤ ε

16 · |〈au,v, yx(i)〉| ·
(

2 + ε

16

)
· |〈au,v, yx(i)〉|

≤ ε7 · 〈au,v, yx(i)〉2.

Using (7) and scaling by RG(u, v), we can write
this as (xu − xv)2 ∈ (1 ± ε/7) · (x(i)

u − x(i)
v)2, which

completes the proof of Lemma IV.2.

References

[1] Y. Takai, A. Miyauchi, M. Ikeda, and
Y. Yoshida, “Hypergraph clustering based
on PageRank,” in Proceedings of the 26th
ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD),
2020, pp. 1970–1978.

[2] M. Hein, S. Setzer, L. Jost, and S. S. Ranga-
puram, “The total variation on hypergraphs -
learning on hypergraphs revisited,” in Advances
in Neural Information Processing Systems 26
(NIPS), 2013, pp. 2427–2435.

[3] N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin,
A. Louis, and P. P. Talukdar, “HyperGCN: A
new method for training graph convolutional
networks on hypergraphs,” in Advances in Neu-
ral Information Processing Systems 32, 2019,
pp. 1509–1520.

[4] C. Zhang, S. Hu, Z. G. Tang, and T.-H. H.
Chan, “Re-revisiting learning on hypergraphs:
Confidence interval, subgradient method, and
extension to multiclass,” IEEE Transactions on
Knowledge and Data Engineering, vol. 32, no. 3,
pp. 506–518, 2020.

[5] N. Yadati, V. Nitin, M. Nimishakavi, P. Ya-
dav, A. Louis, and P. Talukdar, “NHP: Neural
hypergraph link prediction,” in Proceedings of
the 29th ACM International Conference on In-
formation & Knowledge Management (CIKM),
2020, pp. 1705–1714.

[6] T. Soma and Y. Yoshida, “Spectral sparsifica-
tion of hypergraphs,” in Proceedings of the 30th
Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), jan 2019, pp. 2570–2581.

[7] D. A. Spielman and S.-H. Teng, “Spectral spar-
sification of graphs,” SIAM Journal on Comput-
ing, vol. 40, no. 4, pp. 981–1025, 2011.

[8] N. Bansal, O. Svensson, and L. Trevisan, “New
notions and constructions of sparsification for
graphs and hypergraphs,” in Proceedings of the
IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS), 2019, pp. 910–
928.

[9] M. Kapralov, R. Krauthgamer, J. Tardos, and
Y. Yoshida, “Towards tight bounds for spectral
sparsification of hypergraphs,” in Proceedings of
the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, ser. STOC 2021. ACM,
2021, pp. 598–611.

[10] Y. Chen, S. Khanna, and A. Nagda, “Near-
linear size hypergraph cut sparsifiers,” in Pro-
ceedings of the 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020,
2020, pp. 61–72.

[11] A. A. Benczúr and D. R. Karger, “Randomized
approximation schemes for cuts and flows in
capacitated graphs,” SIAM Journal on Com-
puting, vol. 44, no. 2, pp. 290–319, 2015.

[12] D. Kogan and R. Krauthgamer, “Sketching cuts
in graphs and hypergraphs,” in Proceedings of
the 2015 Conference on Innovations in Theoret-
ical Computer Science (ITCS), 2015, pp. 367–
376.

[13] I. Newman and Y. Rabinovich, “On multi-
plicative λ-approximations and some geometric
applications,” SIAM Journal on Computing,
vol. 42, no. 3, pp. 855–883, 2013.

[14] A. Andoni, J. Chen, R. Krauthgamer, B. Qin,
D. P. Woodruff, and Q. Zhang, “On sketching
quadratic forms,” in Proceedings of the 2016
Conference on Innovations in Theoretical Com-
puter Science (ITCS), 2016, pp. 311–319.

[15] C. Carlson, A. Kolla, N. Srivastava, and L. Tre-
visan, “Optimal lower bounds for sketching
graph cuts,” in Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2019, pp. 2565–2569.

[16] J. D. Batson, D. A. Spielman, and
N. Srivastava, “Twice-Ramanujan sparsifiers,”
SIAM Journal on Computing, vol. 41, no. 6,
pp. 1704–1721, 2012. [Online]. Available:
https://doi.org/10.1137/090772873

[17] D. A. Spielman and N. Srivastava, “Graph
sparsification by effective resistances,” SIAM
Journal on Computing, vol. 40, no. 6, pp. 1913–
1926, 2011.

[18] Z. A. Zhu, Z. Liao, and L. Orecchia, “Spectral
sparsification and regret minimization beyond

matrix multiplicative updates,” in Proceedings
of the Forty-Seventh Annual ACM on Sympo-
sium on Theory of Computing, STOC 2015.
ACM, 2015, pp. 237–245. [Online]. Available:
https://doi.org/10.1145/2746539.2746610

[19] Y. T. Lee and H. Sun, “Constructing linear-
sized spectral sparsification in almost-linear
time,” in IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015.
IEEE Computer Society, 2015, pp. 250–269.
[Online]. Available: https://doi.org/10.1109/
FOCS.2015.24

[20] Y. T. Lee and H. Sun, “An sdp-
based algorithm for linear-sized spectral
sparsification,” in Proceedings of the 49th
Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017. ACM,
2017, pp. 678–687. [Online]. Available:
https://doi.org/10.1145/3055399.3055477

[21] N. K. Vishnoi, “Lx = b,” Foundations and
Trends® in Theoretical Computer Science,
vol. 8, no. 1–2, pp. 1–141, 2013.

[22] S.-H. Teng, “Scalable algorithms for data and
network analysis,” Foundations and Trends® in
Theoretical Computer Science, vol. 12, no. 1-2,
pp. 1–274, 2016.

[23] A. Louis, “Hypergraph Markov operators,
eigenvalues and approximation algorithms,” in
Proceedings of the 47th Annual ACM on Sym-
posium on Theory of Computing (STOC), 2015,
pp. 713–722.

[24] T.-H. H. Chan, A. Louis, Z. G. Tang,
and C. Zhang, “Spectral properties of hy-
pergraph Laplacian and approximation algo-
rithms,” Journal of the ACM, vol. 65, no. 3,
pp. 1–48, 2018.

[25] Y. Yoshida, “Cheeger inequalities for submodu-
lar transformations,” in Proceedings of the 30th
Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 2019, pp. 2582–2601.

[26] M. Ikeda, A. Miyauchi, Y. Takai, and
Y. Yoshida, “Finding Cheeger cuts in
hypergraphs via heat equation,” 2019.

[27] K. Fujii, T. Soma, and Y. Yoshida,
“Polynomial-time algorithms for submodular
Laplacian systems,” 2018.

[28] M. Ikeda, Y. Kitabeppu, and Y. Takai, “Coarse
Ricci curvature of hypergraphs and its general-
ization,” 2021.

[29] Y. Komura, “Nonlinear semi-groups in Hilbert
space,” Journal of the Mathematical Society of
Japan, vol. 19, no. 4, pp. 493–507, 1967.

[30] I. Miyadera, Nonlinear Semigroups. American
Mathematical Soc., 1992, vol. 109.

[31] Y. Yoshida, “Nonlinear Laplacian for digraphs
and its applications to network analysis,” in
Proceedings of the 9th ACM International
Conference on Web Search and Data Mining
(WSDM), 2016, pp. 483–492.

[32] P. Li and O. Milenkovic, “Submodular hyper-
graphs: p-Laplacians, Cheeger inequalities and
spectral clustering,” in Proceedings of the 35th
International Conference on Machine Learning
(ICML), vol. 80, 2018, pp. 3020–3029.

[33] N. Alon and J. H. Spencer, The Probabilistic
Method, Third Edition, ser. Wiley-Interscience
series in discrete mathematics and optimiza-
tion. Wiley, 2008.

[34] J. A. Tropp, “User-friendly tail bounds for sums
of random matrices,” Foundations of Computa-
tional Mathematics, vol. 12, no. 4, pp. 389–434,
2011.

[35] M. Rudelson and R. Vershynin, “Sampling from
large matrices: An approach through geomet-
ric functional analysis,” Journal of the ACM,
vol. 54, no. 4, p. 21, 2007.

[36] N. Alon and B. Klartag, “Optimal compression
of approximate inner products and dimension
reduction,” in Proceedings of the IEEE 58th An-
nual Symposium on Foundations of Computer
Science (FOCS), 2017, pp. 639–650.

[37] L. Lovász, “Random walks on graphs: A
survey,” in Combinatorics, Paul ErdHos is
eighty. Vol. 2, D. Miklós, V. T. Sós, and
T. Szönyi, Eds. János Bolyai Mathematical
Society, 1993, pp. 353–397. [Online]. Available:
http://bolyai.math.elte.hu/~lovasz/erdos.pdf

