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Abstract

We define a natural notion of efficiency for approximate nearest-neighbor (ANN) search in
general n-point metric spaces, namely the existence of a randomized algorithm which answers
(1 + ε)-approximate nearest neighbor queries in polylog(n) time using only polynomial space.
We then study which families of metric spaces admit efficient ANN schemes in the black-box
model, where only oracle access to the distance function is given, and any query consistent with
the triangle inequality may be asked.

For ε < 2

5
, we offer a complete answer to this problem. Using the notion of metric dimension

defined in [GKL03] (à la [Ass83]), we show that a metric space X admits an efficient (1+ε)-ANN
scheme for any ε < 2

5
if and only if dim(X) = O(log log n). For coarser approximations, clearly

the upper bound continues to hold, but there is a threshold at which our lower bound breaks
down—this is precisely when points in the “ambient space” may begin to affect the complexity
of “hard” subspaces S ⊆ X . Indeed, we give examples which show that dim(X) does not
characterize the black-box complexity of ANN above the threshold.

Our scheme for ANN in low-dimensional metric spaces is the first to yield efficient algorithms
without relying on any additional assumptions on the input. In previous approaches (e.g.,
[Cla99, KR02, KL04, HKMR04]), even spaces with dim(X) = O(1) sometimes required Ω(n)
query times.

1 Introduction

Nearest-neighbor search. Nearest-neighbor search (NNS) is the problem of preprocessing a set
X of n points lying in a huge (possibly infinite) metric space (M,d) so that given a query q ∈ M ,
one can efficiently locate the nearest point to q among the points in X. Computing such nearest
neighbors efficiently is a classical and fundamental problem with numerous practical applications.
These include data compression, database queries, machine learning, computational biology, data
mining, pattern recognition, and ad-hoc networks. A common feature of many of these examples is
that comparing two elements is costly, hence the number of distance computations should be made
as small as possible.

Most previous research has focused on the important special case when M = R
d and distances

are computed according to some `p norm. While many types of data can be naturally represented
in such a form, this is certainly not true for a significant number of applications, and it is therefore
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desirable to address NNS in general metric spaces. On the other hand, data structures for general
metrics might perform a nearest neighbor query in time as poorly as Ω(n) which is unacceptable
in practice. Such a dependence is inherent even when only approximate solutions are required. A
well-known example is where X forms a uniform metric, so that the interpoint distances in X are
all equal, providing the preprocessing step with essentially no information.

Metric dimension. Given this state of affairs, an increasing amount of recent attention has
focused on understanding the complexity of NNS in terms of a metric’s implicit structure. In
Euclidean spaces, an obvious and common measure for a metric’s complexity is the dimension of
the Euclidean host space. Thus it is natural that to characterize the complexity of general metric
spaces, one ought to define an analogous notion of metric dimension, and indeed this approach has
been pursued to great success in recent papers [Cla99, KR02, KL04, HKMR04], where significant
progress on solving exact and approximate versions of the NNS problem in general metrics has
been made.

Unfortunately, each of these works falls short of offering the sort of generality that one should
desire from such an approach. In [Cla99], to achieve efficient algorithms (for exact NNS), it is
necessary to make some strong assumptions about the distribution of queries. In [KR02, HKMR04],
the notion of dimension is too restrictive, eliminating large classes of metric spaces which should be
considered low-dimensional, and for which efficient algorithms should exist (see [KL04] for a more
detailed explanation).

Finally, in [KL04], a more satisfying notion of dimension (taken from [GKL03], and indepen-
dently used in a different form by [Cla99]) is proposed, but the algorithms in both [KL04] and
[Cla99] are efficient only under the additional assumption that the aspect ratio Φ (i.e. the ratio of
the largest to smallest distance in X) is at most polynomial in n = |X|. In particular, the algorithm
presented in [KL04] answers approximate nearest neighbor queries in time 2O(dim(X)) log Φ. Thus
even when the set of points is X = {1, 2, 4, . . . , 2n} ⊆ R with the line metric d(x, y) = |x− y|, as in
Figure 1(a), the algorithms of [KL04], as well as those of [Cla99, KR02, HKMR04], require Ω(n)
time to answer some queries (i.e. they are no better than the trivial algorithm which tests every
point). Despite the fact that (X, d) is clearly “low-dimensional” (being a subset of the real line),
previous approaches perform dismally. Besides being theoretically disappointing, these algorithms
are incapable of searching for (even approximate) nearest neighbors in highly clustered data (e.g.
Figure 1(b)).

Efficient algorithms in the black-box model. In the present work, we are concerned with
approximate nearest neighbor search (ANN). The (1+ ε)-ANN problem is defined as follows: Given
a query q ∈ M , we are required to return an element a ∈ X for which d(q, a) ≤ (1+ε) d(q,X), where
d(q,X) is the distance from q to the closest point in X. (This is after an initial preprocessing of the
point set X.) We resolve the aforementioned shortcomings by presenting an ANN data structure
for general metric spaces which is efficient whenever dim(X) (defined formally in Section 1.2) is
small, and under no additional assumptions. For this purpose we assume throughout that ε > 0 is
fixed, i.e., independent of |X|.

We will discuss our definition of “efficient” momentarily. Beforehand, let us describe another
question that arises in the above framework: Is “dimension” the right notion to characterize the
complexity of ANN in general metric spaces? Certainly one may motivate the study of algorithms
for “low-dimensional” metrics by their abundance in practical settings (see [KL04]), but one should
also consider how tightly dim(X) captures the difficulty of nearest neighbor search in general
metrics. To this end, we consider a black-box model of nearest neighbor search in arbitrary metric
spaces, where the query is accessed as an oracle via the distance function. We say that a metric
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Figure 1: Clustered point sets

space X admits an efficient (1 + ε)-ANN scheme if there exists a (possibly randomized) algorithm
which answers any possible (1 + ε)-approximate nearest neighbor query in polylogarithmic (in n)
time using only polynomial (in n) space. Although quite a natural definition, we offer additional
motivation in Section 1.2, where the model is specified more precisely. Under this complexity
regime, we prove the following theorem.

Theorem 1.1. Let 0 < ε < 2
5 be fixed. Then every metric space X admits an efficient (1+ε)-ANN

scheme in the black-box model if and only if dim(X) = O(log log n).

Thus, below a certain approximation threshold, dim(X) captures precisely the complexity of
the problem. The behavior above the threshold is quite different, and we demonstrate in Section
2 that for sufficiently coarse approximations, the “ambient space” begins to play a crucial role,
and even metrics of very high dimension may become tractable. We note that the constants of
these constructions are not optimized; our primary goal is simply to show the existence of an
approximation threshold, on either side of which drastically different behaviors are exhibited.

1.1 Techniques

The proof of Theorem 1.1 follows immediately from Theorem 2.1, which shows a lower bound on
the black-box complexity of NNS in terms of dim(X), and from Theorem 3.1, which (together with
Lemma 1.3) proves an upper bound on the NNS complexity.

Upper bounds. We give the first efficient (i.e. polylog(n) query time and poly(n) space) (1 + ε)-
ANN scheme for metrics whose doubling dimension, denoted by dim(X) (and defined in Section
1.2), is small. In particular, these bounds hold whenever dim(X) = O(log log n). For instance, in
the case where dim(X) = O(1), our algorithm answers queries in O(log n) time and O(n3) space,
thus making only O(log n) calls to the distance function. We note that the space bound we achieve
for arbitrary metrics—obtained in Section 3.2—is a polynomial whose degree is independent of
dim(X) and the desired approximation. Indeed, our data structure can be built without knowledge
of ε (which can be passed as a parameter at query-time). When dim(X) is small, a general reduction
from O(1)-ANN to (1 + ε)-ANN follows easily from the techniques of [KL04], which we review in
Section 1.2.

Our data structure is based on two new techniques. The first is a structural theorem about
the existence of “dense,” “well-separated” clusters of points in low-dimensional metrics. These
sets manifest themselves in the form of ring separators— “thick” annuli whose inside and outside
each contain a large fraction of the points. (A similar object is used in the construction of the
ring-cover trees of [IM98] which are used to solve ANN in R

d. Our setting is quite different, since
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we are not reducing to the problem of point location in equal balls. Hence we must show that for
low-dimensional metrics, ring separators exist unconditionally.) Using these separators, we build a
binary decision tree of height 2O(dim(X)) log n which can be used to answer O(1)-ANN queries in time

2O(dim(X)) log n. Unfortunately, the natural implementation of this tree requires space n2O(dim(X))
,

which is nΩ(polylog(n)) even when dim(X) = Θ(log log n).
This exponential blow-up in space is a typical problem encountered in NNS algorithms based

on metric decompositions, and is the most difficult technical challenge faced by the present work.
In Section 3.2, we overcome this problem for low-dimensional metrics, obtaining a data structure
that uses O(n3) space whenever dim(X) = O(log log n). In addition, even for arbitrary n-point
metrics (with no bound on the dimension), the space consumption is only polynomial in n. This
improvement requires a second new technique which amounts to “folding” the decision tree back
onto itself, often merging many apparently distinct branches into one. The difficulties and solutions
are discussed more thoroughly in Section 3.2. This folding allows us to obtain a very compact
“approximate” representation of the previously huge decision tree, while incurring only a small
additional overhead at every node.

We note that since the doubling dimension was introduced in [GKL03], and the premise that
“low-dimensional” general metrics should be algorithmically tractable was set forth, an increasing
number of works have found applications of this idea to optimization problems; we mention, in
particular, the predecessor to this work [KL04] and the new results of [Tal04] for approximating
problems like TSP in low-dimensional metrics. In this context, we also mention the related work of
[KKL03] in machine learning. We believe that the development and discovery of the rich properties
of low-dimensional metrics continued herein will find additional application elsewhere.

Lower bounds. Our lower bounds are entirely information theoretic. Given a metric space X,
there exists a “nearly-uniform” submetric S ⊆ X whose size is roughly k ≥ 2Ω(dim(X)). Nearly
uniform means that the aspect ratio (the ratio of the largest pairwise distance in S to the smallest)
is bounded by a small constant. In Section 2, we then prove that, for every δ > 0, this “large”
subset S must contain within itself a subset T ⊆ S with very small aspect ratio, i.e. 2 + δ, and yet
which satisfies |T | ≥ kδ′ (where δ′ depends on δ, of course). This is a very simple (yet interesting)
Ramsey-like property of metric spaces. Similar arguments have been made in independently in
[BLMN03].

Now, if an algorithm were not allowed to compute distances from the query to X \ T (i.e. the
“ambient space”), then a lower bound of Ω(kδ′) queries for (1 + δ)-ANN would follow fairly easily
for T . And indeed, by a slightly technical extension argument, we can prove that any algorithm
solving the (1 + ε)-ANN problem must make at least 2Ω(dim(X)) queries to the distance oracle for
ε < 2

5 . This shows that in the black-box model, querying against the ambient space cannot help
too much when one requires a sufficiently fine approximation.

But our lower bound breaks down for coarser approximations, and we show that this is for
good reason: When only a 3-approximation is desired, there are n-point metrics X with dim(X) =
Ω(log n) for which every query against X can be decided in O(log n) time in the black-box model.
Thus above a certain approximation threshold, dim(X) no longer characterizes the complexity of
ANN.

1.2 Preliminaries

Metric spaces. Let (X, d) be an n-point metric space, and let S ⊆ X be a subset. We denote by

BS(x, r) = {y ∈ S : d(x, y) < r}
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the open ball of radius r about x in S. When S = X, we omit the subscript S. We write
d(x, S) = infy∈S d(x, y). Define diam(S) = supx,y∈S d(x, y), and let the aspect ratio of S be the
quantity

Φ(S) =
diam(S)

infx,y∈S d(x, y)
.

Finally, we say that a subset Y of X is a β-net if it satisfies (1) For every x, y ∈ Y , d(x, y) ≥ β
and (2) X ⊆

⋃

y∈Y B(y, β). Such nets always exist for any β > 0. For finite metrics, they can be
constructed greedily. For arbitrary metrics, proof of their existence is an easy application of Zorn’s
lemma.

The doubling dimension. We recall that the doubling constant λ(X) is the least value λ such
that every ball in X can be covered by λ balls of half the radius (see, e.g., [Hei01]). Though we will
work with this quantity, it is technically more accurate to define a slightly different quantity λ′(X)
to be the least value λ′ such that every set in X can be covered by λ′ sets of half the diameter.

The doubling dimension [GKL03] is then defined by dim(X) = log2 λ′(X). Here are some simple
properties which demonstrate that dim(X) is a robust and meaningful notion.

1. For X = R
k equipped with any norm, dim(X) = Θ(k).

2. If S ⊆ X, then dim(S) ≤ dim(X).

3. dim(X1 ∪ · · · ∪ Xm) ≤ maxi dim(Xi) + log m.
(In particular, dim(X) ≤ log |X|.)

It is not difficult to see that log2 λ(X) and log2 λ′(X) differ by at most a factor of two, and thus in
everything that follows, we assume that dim(X) = log2 λ(X), as it makes the exposition simpler.

The following simple lemma expresses the standard packing/covering duality.

Lemma 1.2 (Nearly-uniform metrics). Let (X, d) be a metric space, and let S ⊆ X. If the
aspect ratio of the metric induced on S is at most Φ ≥ 2, then |S| ≤ ΦO(dim(X)).

Proof. Let dmin = inf{d(x, y) : x, y ∈ S} and dmax = sup{d(x, y) : x, y ∈ S} be the minimum and
maximum interpoint distance in S, respectively, and assume that Φ = dmax

dmin
< ∞. Notice that S

is contained in a ball of radius 2 dmax ≤ 2Φ dmin in X (centered at any point of S). Applying the
definition of doubling dimension iteratively several times we get that this ball, and in particular S,
can be covered by 2dim(X)·O(log Φ) balls of radius dmin/3. Each of these balls can cover at most one
point of S (by definition of dmin) and thus |S| ≤ 2dim(X)·O(log Φ) ≤ ΦO(dim(X)).

In particular, the above lemma provides a bound on the cardinality of a δR-net intersected with
a ball of radius R. Namely, such an intersection contains at most (1

δ )O(dim(X)) points.

The black-box model and efficiency. Our model is quite simple. Suppose that (X, d) is a
metric space. We assume that the only thing known about the query (and thus the only constraint
on the query) is that the space (X ∪ {q}, d) is again a metric space, i.e. that the query does not
violate the triangle inequality. The only access that an algorithm has to the query is through
oracle calls to the distance function, i.e. the values d(q, x) for x ∈ X. We assume that d(q, ·) can
be evaluated in unit time (although this is without loss of generality, since our upper bounds scale
linearly with the time needed to evaluate the distance function, and our lower bounds are in terms
of the number of calls to d(q, ·)).

We define an algorithm as “efficient” if, after the preprocessing phase, it can answer any query
in polylog(n) time using only poly(n) space for any fixed ε > 0. We make no restriction on
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preprocessing time or space, but we note that in all of our upper bounds, both are linear in the
space used by the algorithm for answering a query.

As for the running time, we note that all of the algorithms in [Cla99, KR02, KL04] strive for
polylog(n) query times, thus it is the natural candidate for “efficiency.” We also note that the
best algorithms for ANN in high-dimensional Euclidean spaces answer queries in polylog(n) time
[IM98, KOR98, HP01]. As for space, poly(n) is again the natural choice, but this assumption
should not be abused. Straightforward implementations of the algorithms of [IM98] and [KOR98],
although outstanding theoretical achievements, are hampered due to their extremely high space
complexity (the degree of the polynomial grows with 1

ε for (1 + ε)-ANN).
Even in the worst case (i.e. when dim(X) = Ω(log n)), the algorithms of Section 3.2 use only

poly(n) space (independent of the approximation factor desired). When dim(X) = O(log log n),
the space consumption is O(n3). This factor has not been optimized, and we hope that eventually
a near-linear space algorithm can be obtained, at least for the case when dim(X) = O(1).

The [KL04] reduction to O(1)-ANN. The next lemma follows immediately from the ANN
algorithm of [KL04].

Lemma 1.3 (The [KL04] reduction). For every n-point metric space (X, d) there is an algorithm
consuming O(n2) space, such that given a query q, two parameters α > 1 and 0 < ε < 1/2, and a
point in X which is an α-ANN to q, the algorithm computes a (1+ε)-ANN in time (α/ε)O(dim(X))+
O(log n).

The idea is that given x ∈ X which is an α-ANN to q, it suffices to enumerate, for r =
Θ(ε/α) · d(q, x), over all the r-net points in B(x, 3d(x, q)), and output the one which is closest to
q. In essence, the data structure of [KL04] maintains a 2i-net for every integer i, together with
pointers from every 2i-net point to the nearby 2i−1-net points; this consumes only 2O(dim(X)) · n
space. A simple iterative procedure then yields the desired enumeration. The main difference from
[KL04] is that here we wish to use the α-approximate nearest neighbor point given to us as a “warm
start”. And indeed, we can maintain for every point x ∈ X and every integer 2j the closest point
to x in the 2j-net, so that the total space is only O(n2) and the access time is O(log n).

The running time of this reduction is only polylog(n) whenever dim(X) = O(log log n) and
α/ε = O(1), thus we content ourselves with finding O(1)-ANNs in everything that follows.

2 Lower bounds

In this section, we show that for any metric space X and any fixed ε < 2
5 , solving the (1 + ε)-ANN

problem on X is as hard as unordered search in a k-element database with k = 2Ω(dim(X)). It will
follow that any algorithm (deterministic or randomized) which solves the (1 + ε)-ANN problem
on X must make at least 2Ω(dim(X)) calls to the distance oracle for some query q. We note that
the constructions of this section are not optimized; our goal is simply to show the existence of an
approximation threshold, on either side of which drastically different behaviors are exhibited.

Theorem 2.1. For every metric space X and every fixed ε < 2
5 , every algorithm solving the (1+ε)-

ANN problem on X must make at least 2Ω(dim(X)) calls to the distance oracle for some query q.
For randomized algorithms, this bound holds in expectation.

First, we require a partial converse to Lemma 1.2.

Lemma 2.2. For any n-point metric space X and any 2 < Φ0 ≤ 4, there exists a subset S ⊆ X
with Φ(S) ≤ Φ0 and |S| ≥ 2dim(X)dlog Φ0−1e.
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Proof. Let k be the least number for which every subset S ⊆ X with Φ(S) ≤ Φ0 satisfies the bound
|S| ≤ k. Then every ball B(x, 1

2Φ0r) can be covered by k balls of radius r. To see this, let N be an
r-net in B(x,Φ0r). Then it is clear that Φ(N) ≤ Φ0, hence |N | ≤ k. But from the definition of a
net, the r-balls around points in N cover all of B(x, 1

2Φ0r).
Now consider B(x,R) for some x ∈ X. From the above discussion, we see that B(x,R) can be

covered by k balls of radius 2R/Φ0. Since each of these smaller balls can be covered by k balls of
radius R(2/Φ0)

2, we see that B(x, 2R) can be covered by k2 balls of radius R(2/Φ0)
2.

Continuing in this manner, we see that every ball of radius R can be covered by kd1/(log Φ0−1)e

balls of radius R/2. It follows that kd1/(log Φ0−1)e ≥ 2dim(X) so that k ≥ 2dim(X)(log Φ0−1). In other
words, there exists some subset S ⊆ X with Φ(S) ≤ Φ0 and |S| ≥ 2dim(X)(log Φ0−1).

Theorem 2.3. Let (X, d) be any metric space which contains a submetric S ⊆ X with Φ(S) = Φ0

and |S| ≥ k. Then there exists some ε = ε(Φ0) > 0 such that any algorithm for (1 + ε)-ANN on X
must make at least Ω(k) calls to the distance oracle for some query q. For randomized algorithms,
this holds in expectation.

Proof. Let S = {x1, x2, . . . , xk}. Let dmax = maxx,y∈S d(x, y) and dmin = minx,y∈S d(x, y). To
each index i ∈ {1, . . . , k}, we associate a query qi. The idea is that qi is close to xi and far from
S \ {xi}, and hence a (1 + ε)-ANN scheme essentially discovers xi. Note however that d(qi, xi)
should not be too small (say 0), as otherwise the distance between qi and some fixed point, say x1,
might reveal the value of i (e.g. if the distances d(x1, xj) are distinct). Another complication is
that a (1 + ε)-ANN algorithm might make use of (or return as an answer) the points in X \ S, i.e.
the “ambient space.” Hence, when defining d(qi, y) for y ∈ X we must make a smooth transition
between the cases where y is (i) close to xi, (ii) close to S \ {xi}, or (iii) far from both.

Formally, the query qi is defined by:

d(qi, y) =











1
2dmax + 1

4dmin + d(y, xi) if d(y, xi) < 1
2dmin

1
2dmax + 3

4dmin if d(y, xi) ≥ 1
2dmin and d(y, S) ≤ 1

2dmin

1
2dmax + 1

4dmin + d(y, S) otherwise

First, we must assure that the space (X∪{qi}, d) satisfies the triangle inequality for every 1 ≤ i ≤ k.
The proof (which is slightly technical) appears in Lemma A.1 of the appendix.

Now, let us continue in proving our lower bound. First, note that for query qi, the unique
closest point is xi and d(qi, xi) = 1

2dmax + 1
4dmin. Also, note that for y /∈ B(xi,

1
2dmin), we have

d(qi, y) ≥ 1
2dmax + 3

4dmin. Thus any (1 + ε)-ANN algorithm, for ε < 1/(Φ0 + 1
2), must find some

point y ∈ B(xi,
1
2dmin) on query qi. This is because

1
2dmax + 3

4dmin

1
2dmax + 1

4dmin
= 1 +

1

Φ0 + 1
2

.

In other words, given query qi, where i ∈ {1, . . . , k}, the algorithm must be able to determine which
ball B(xi,

1
2dmin) contains the “close” points. And since for distinct xi, these balls are disjoint, the

algorithm must be able to figure out the index i.
We claim that this is as hard as searching for the index in an unordered list. In other words,

the best the algorithm can do given a query q is ask the question “Is q = qi?” To see this, and
note first that for y not in S′ = {x ∈ X : d(x, S) ≤ 1

2dmin}, the value of d(qi, y) is independent of
the value i ∈ {1, . . . , k}, thus these queries don’t help at all. Furthermore, the value of d(qi, y) for
y ∈ S′ \B(xi,

1
2dmin) is independent of the index i ∈ {1, . . . , k}. Thus when asking the “important”

questions d(qi, y) for y ∈ S′, the algorithm is simply told YES if y ∈ B(xi,
1
2dmin) and NO otherwise.

This completes the proof.
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Now we prove the main theorem of this section.

Proof of Theorem 2.1. Let (X, d) be any metric space. Note that as Φ0 → 2 in Lemma 2.2, the
lower bound value of ε to which the preceding theorem applies behaves like ε < (Φ0 + 1

2 )−1 → 2
5 .

Thus for any fixed ε < 2
5 , there is a lower bound of 2Ω(dim(X)) on the number of calls to the distance

function which are needed to answer some (1 + ε)-ANN query.

We obtain the following corollary.

Corollary 2.4. If dim(X) = ω(log log n) and ε < 2
5 , then there is no efficient (1+ ε)-ANN scheme

for X in the black-box model, since 2Ω(dim(X)) is bigger than any polylog(n).

2.1 Above the threshold

In this section, we show that when coarser approximations are desired, there are metrics of high
dimension which nevertheless admit very efficient ANN algorithms, and thus the lower bounds
of the previous section cannot be pushed too much further. Again, we do not seek to optimize
constants.

Lemma 2.5. There exists an n-point metric space (X, d) with dim(X) = Θ(log n), which admits
a 3-ANN algorithm with query time O(log n) and space O(n).

Proof. Assuming that n is a power of 2, let A = {e1, . . . , en} where ei ∈ R
n is an n-dimensional

vector with a 1 in the ith coordinate and zeros elsewhere. Additionally, let B consists of log n
vectors; to construct the jth vector, partition the n coordinates into (consecutive) blocks of size
2j−1, and let coordinates in odd blocks be −1 and those in even blocks be 0. We endow these points
with the `∞ metric, i.e., for any two vectors u, v ∈ R

n, let d(u, v) = ‖u− v‖∞ = max1≤i≤n |ui − vi|
(where vi is the ith coordinate of v).

Let X = A ∪ B be the set of points to be preprocessed. Clearly, X contains the n-point
uniform metric A, and thus dim(X) ≥ dim(A) = log n. On the other hand, |X| ≤ 2n and thus
dim(X) ≤ 1 + log n.

However, it is not difficult to exhibit a 3-ANN algorithm for X. Let q be the query. First, note
that since |B| = O(log n), we may efficiently compute d(q, b) for every b ∈ B. Our algorithm will
clearly report the closest point to q among the points of A ∪ B that were tested, and hence we
may assume that d(q,A) = d(q,X), i.e. the closest point to q is in A. Call this point ek. Now, if
d(q, ek) ≥ 1

2 , then for any k′ 6= k, d(q, ek′) ≤ 1 + d(q, ek) ≤ 3 d(q, ek), thus we may return ek′ as a
3-approximate nearest neighbor. Hence we may assume that d(q, ek) < 1

2 .
In what follows, we write bi for the ith coordinate of b. Observe that for each vector b ∈ B,

d(b, ei) =

{

1 if bi = 0;

2 if bi = −1.

By the triangle inequality, if bk = 0 then d(b, q) ≤ d(b, ek) + d(ek, q) < 3/2, and if bk = −1 the
d(b, q) ≥ d(b, ek) − d(ek, q) > 3/2. Hence, for each b ∈ B, when we check whether d(b, q) < 3/2
or not, we effectively find out whether k ∈ {i : bi = 0} or whether k ∈ {i : bi = −1}. Now if
b is the jth vector in B, then this simply determines the jth (least significant) bit in the binary
representation of k. Repeating this for all b ∈ B uniquely identifies the index k.

Let us reiterate the algorithm: We compute d(q, b) for every b ∈ B. Let b∗ ∈ B be the closest
point to q amongst those of B. The sequence of distance queries determines an index k′ (as above);
let ek′ be the corresponding point. We then return the closest point among {b∗, ek′}.
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3 Efficient algorithms

We provide two algorithms for (1 + ε)-approximate nearest neighbor search in a general metric
space; the two have similar query time, but they differ in their space requirement. By the general
reduction discussed in Section 1.2, it suffices to exhibit an O(1)-ANN algorithm. Our first algorithm
(Section 3.1) is based on the existence of a certain ring-separator, which naturally yields a binary
decision tree that can be used to solve 3-ANN. The decision tree’s depth is 2O(dim(X)) log n, so this
algorithm has an optimal query time. However, its space requirement grows rapidly with dim(X).
The second algorithm, which achieves space that is polynomial in n (independently of dim(X)) is
significantly more complex, and we refer the reader to Section 3.2 for a discussion of the subtle
issues which arise. This algorithm proves the main result of this section, as follows.

Theorem 3.1. For every n-point metric space (X, d) there exists an O(1)-ANN algorithm that
consumes n3 space and answers every query q in time 2O(dim(X)) log n.

3.1 The ring-separator tree

The basic notion introduced in this subsection is that of a ring-separator; this naturally yields a
ring-separator tree, which can be used as a binary decision tree for 3-ANN. Throughout this section,
we shall use the following definition. For x ∈ S ⊆ X and R1, R2 ≥ 0, define the annulus about x as

AS(x,R1, R2)
def
= BS(x,R2) \ BS(x,R1).

The ring-separator. Let (X, d) be an n-point metric space. A δ-ring-separator of a subset
S ⊆ X is a pair (x,R) consisting of a point x ∈ S and a real R > 0, that satisfies the following
condition: |BS(x,R)| ≥ δ|S| and yet |BS(x, 2R)| ≤ (1 − δ)|S|. We now prove the main lemma of
this subsection.

Lemma 3.2 (Ring separators). For any metric space (X, d) and any subset S ⊆ X with |S| ≥ 2,
there exists a δ-ring-separator of S with δ ≥ (1

2 )O(dim(X)).

Proof. We proceed by contradiction. Fix some 0 < δ < 1 and assume that S does not have a
δ-ring-separator; we will show that for a sufficiently large constant c > 0, δ > (1

2 )c dim(X), yielding
the desired result.

Let B̄S(x, r) = {y ∈ S : d(x, y) ≤ r} be the closed ball of radius r around x (in S). For every

point x ∈ S, let R(x)
def
= min{R ≥ 0 : |B̄S(x,R)| ≥ δ|S|}. Since |S| ≥ 2 is finite, R(x) is defined and

furthermore |BS(x,R(x))| < δ|S|. By our assumption, for all x ∈ X, |BS(x, 2R(x))| > (1 − δ)|S|,
and hence each annulus AS(xi, R(xi), 2R(xi)) contains at least (1 − 2δ)|S| points.

Let x0 ∈ S be the point for which R(x0) is minimal, and iteratively for t = 1, 2, . . . choose
xt ∈ S to be an arbitrary point of

t−1
⋂

i=0

AS(xi, R(xi), 2R(xi)).

Clearly we can continue this process as long as the above intersection remains non-empty. Sup-
pose we are forced to stop after selecting k points x0, x1, . . . , xk−1. On the one hand, we threw
away at most 2δ|S| points at every step, and thus k ≥ 1/2δ. On the other hand, the set
U = {x0, x1, . . . , xk−1} is contained in B(x0, 2R(x0)). Furthermore, for any pair xi, xj with i < j,
we see that d(xi, xj) ≥ R(xi) since xj /∈ BS(xi, R(xi)). But by construction, R(xi) ≥ R(x0) for
all i ≥ 0. It follows that the set U has Φ(U) ≤ 4, and thus by Lemma 1.2, k ≤ 2O(dim(X)). We
conclude that δ ≥ 1/2k ≥ (1

2)O(dim(X)).
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The ring-separator tree. Given the above lemma, it is natural to define a δ-ring-separator tree
for a metric space (X, d). This is a binary tree where each node has a label S ⊆ X, constructed
recursively as follows. The root of the tree has the label S = X. A node labeled by S is a leaf if
|S| = 1, and has two children if |S| ≥ 2. In the latter case, we take (x,R) to be a δ-ring-separator
of S and add it to the node’s label, i.e., the label becomes 〈S, (x,R)〉 (where S ⊆ X, x ∈ S and
R > 0). The two children of the node are an inside child, whose label is SI = BS(x, 2R), and an
outside child, whose label is SO = S \ BS(x,R). Note that SI and SO are not a partition of S,
as their intersection is generally non-empty. Lemma 3.2 shows that if |S| ≥ 2 then S admits a
δ-ring-separator with δ ≥ (1

2 )O(dim(X)). Since every step (away from the root) decreases the size of

S by a factor of at least 1 − δ, the height of the tree is at most 2O(dim(X)) log n.

The 3-ANN algorithm. We now show how to use ring-separator trees to solve the 3-ANN
problem on X in time 2O(dim(X)) log n. Unfortunately, a bound of 2O(dim(X)) log n on the height of
the ring-separator tree implies a possibly huge space requirement of n2O(dim(X))

. This problem will
be remedied in Section 3.2.

Let q be the query against X. The algorithm proceeds along a root to leaf path, i.e., starts
at the root and iteratively goes down the tree until a leaf node is met. Suppose that we are at a
node N = 〈S, (x,R)〉. If d(q, x) ≤ 3R/2, the algorithm proceeds to the inside child of N ; otherwise,
it proceeds to the outside child. The iterative process ends when a leaf node N = 〈{x}〉 is met.
Let xi be the point x seen in the ith node along this root to leaf path (either the point from the
ring-separator or the only point in S at a leaf node). The algorithm outputs the point which is
closest to q among the encountered points {xi}.

This algorithm clearly runs in time linear in the height of the tree, i.e. 2O(dim(X)) log n. We now
proceed to show that the point xi which is output is indeed a 3-approximate nearest neighbor to q.

Proposition 3.3. The above algorithm outputs a 3-approximate nearest neighbor to q.

Proof. Let a∗ ∈ X be a real nearest neighbor to q, i.e. d(q,X) = d(q, a∗). Let N1, N2, . . . , Nk be
the sequence of tree nodes seen by the algorithm on input q. For i < k let Ni = 〈Si, (xi, Ri)〉, and
let Nk = 〈{xk}〉. Clearly a∗ ∈ S1 since S1 = X. If a∗ ∈ Sk, then xk = a∗, and in this case the
algorithm returns the exact nearest neighbor. Otherwise, there exists some j for which a∗ ∈ Sj but
a∗ /∈ Sj+1. We claim that in this case, xj is a 3-approximate nearest neighbor to q.

If Nj+1 is the inside child of Nj , then d(q, xj) ≤ 3Rj/2, yet d(a∗, xj) ≥ 2Rj , so by the triangle
inequality,

d(q, a∗) ≥ d(a∗, xj) − d(q, xj) ≥ 2Rj − 3Rj/2 = Rj/2 ≥ d(q, xj)/3.

If Nj+1 is the outside child of Nj , then d(q, xj) > 3Rj/2, yet d(a∗, xj) ≤ Rj. Again by the triangle
inequality d(q, a∗) ≥ Rj/2, and we conclude that

d(xj , q) ≤ d(xj , a
∗) + d(a∗, q) ≤ Rj + d(a∗, q) ≤ 3 d(a∗, q).

The proof follows by recalling that the algorithm outputs the closest point to q among x1, . . . , xk.

3.2 Polynomial storage

We now achieve a space requirement that is polynomial in n, regardless of dim(X), by modifying
the ring-separator tree algorithm of Section 3.1. In a nutshell, we employ three techniques that,
when applied together, “massage” the decision tree into a polynomial size directed acyclic graph
(DAG) that can be used for O(1)-ANN. First, we obtain a more “canonical” form of the decision
tree by snapping every δ-ring-separator to a suitable net of the metric. This step limits the number
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distinct radii that are used by the ring-separators in the data structure. Second, we eliminate
altogether the outside children, essentially replacing each one by sufficiently many inside children
(i.e., balls). The advantage in having only inside children is that now if a path in the tree (sequence
of inside children) corresponds to properly nested balls, then the information in the entire sequence
may be represented by a single ball (namely, the last one, considered as a ball in X). And indeed,
the key idea in the third step is to maintain the invariant that whenever we go to an inside child
corresponding to a ball BX(y, 2R), it holds that d(y, q) ≤ βR for a suitable constant 1 < β < 2.
This invariant is used to ensure that the next inside child in the sequence is properly nested,
and hence we can merge nodes that have the same role (i.e., correspond to the same ball). As a
consequence, the decision tree “folds” onto itself, creating a DAG of polynomial size.

We start by describing the first two techniques mentioned above, and then provide the actual
scheme, which combines all three techniques. For clarity of exposition, we make no attempt to
optimize the constants.

For the rest of this subsection, fix an r-net Yr of X for every r in the set Γ of all powers of 2 in
the range [ 1

128dmin, 4dmax]; here dmin = inf{d(x, y) : x, y ∈ X} is the minimum interpoint distance
in X and dmax = sup{d(x, y) : x, y ∈ X} is the diameter of X. We further assume that Yr ⊆ Yr/2

for all min Γ < r ≤ maxΓ. Notice that Ymax Γ contains only one point and that YminΓ = X.

Enhanced ring-separator. An enhanced δ-ring-separator of S ⊆ X is a pair (x, t) consisting of
t/2 ∈ Γ and x ∈ Yt/2, such that |BS(x, t)| ≥ δ|S| and yet |BS(x, 2t)| ≤ (1− δ)|S|. Notice that it is a
δ-ring-separator of S, except that x is allowed to be in X \ S. We first enhance the ring-separator
lemma.

Lemma 3.4 (Enhanced ring separators). For any metric space (X, d) and any subset S ⊆ X,
there exists an enhanced δ-ring-separator (x, t) of S with δ ≥ (1

2 )O(dim(X)).

Proof. By suitably modifying various constants in the proof of Lemma 3.2, we obtain that for
δ ≥ (1

2 )O(dim(X)) there exist x∗ ∈ S and R∗ > 0 such that BS(x∗, R∗) ≥ δ|S| and |BS(x∗, 10R∗)| ≤
(1− δ)|S|. Now let t be the unique power of 2 in the range [2R∗, 4R∗). It is clear that dmin ≤ R∗ ≤
dmax, and thus t/2 ∈ Γ. By the definition of a net, there exists x ∈ Yt/2 such that d(x∗, x) ≤ t/2. The
triangle inequality implies that |BS(x, t)| ≥ |BS(x∗, t/2)| ≥ δ|S| and |BS(x, 2t)| ≤ |BS(x∗, 5t/2)| ≤
(1 − δ)|S|, which proves the lemma.

How to avoid outside children. Let S ⊆ X and let (x, t) be an enhanced δ-ring-separator for
S, i.e., with t/2 ∈ Γ and x ∈ Yt/2. Instead of constructing an inside child (which corresponds to a
ball) and an outside child (which corresponds to the complement of ball) as we did in Section 3.1,
we shall have two families of only inside children, as follows. The first family (see Figure 2) will
handle queries q for which d(x, q) ≤ 2t. For each point y ∈ Yt/4 which is within distance 3t from x
we create an inside child by taking Sy = BS(y, t/2). Since Sy has diameter at most t, it must be
disjoint from either BS(x, t) or S \ BS(x, 2t), and thus |Sy| ≤ (1 − δ)|S|. Using Lemma 1.2, this
creates at most 2O(dim(X)) inside children.

The second family (see Figure 3) will handle queries q such that d(x, q) > 2t. For every R ∈ Γ
and R ≥ 2t we do the following. For each point y ∈ YR/8 which is in the (3

4R, 9
4R)-annulus around

x, we create an inside child by taking Sy = BS(y,R/4). Since d(x, y) ≥ 3
4R ≥ 1

4R + t, this child
Sy must be disjoint from BS(x, t), and thus contains at most (1 − δ)|S| points. By Lemma 1.2,
this creates at most 2O(dim(X)) inside children. It is not difficult to see that the number of inside
children is O(n), because each point y′ ∈ X appears in at most dlog2(

9
4/3

4 )e = 2 of these sets.
This modification yields a decision tree similar to the ring-separator tree, except that each node

may have O(n) inside children instead of two. The algorithm changes accordingly–at each node,
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Figure 2: Balls B(y, t/2) forming the first family of inside children.
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Figure 3: Balls B(y,R/4) forming the subcase R = 2t of the second family of inside children

we compute d(x, q), recover the list of corresponding inside children (given by Zt/4 or ZR/4), and
proceed to the ball whose center is closest to q. An O(1)-approximation guarantee follows quite
easily, since the balls are defined so that they have a certain overlap. However, the depth of the
tree is, as before, at most 2O(dim(X)) log n, which provides a good (actually optimal) bound on the
number of distance computations by the query procedure, but does not lead to a polynomial bound
on the space requirement. So our next goal is to “compress” the decision tree into a DAG that has
a small size. This requires a subtle modification, which will guarantee that along any path in the
tree it actually suffices to “remember” only the last ball; namely, if our last child was BS(y,R) for
S defined by the previous children along the path, then we can actually consider instead BX(y,R)
(with no dependence on S). Since this introduces additional technical complications, we shall have
to modify the constants in the above construction of inside children.

The ring-separator DAG. We start by defining the vertex set of the DAG. For every R ∈ Γ and
every point y ∈ YR the DAG contains a vertex 〈y,R〉 that is associated with the set BX(y, 2R).
Clearly, this vertex set size is bounded by O(n log dmax

dmin
). To achieve a bound that is polynomial

in n, independently of dmax
dmin

, we do not explicitly store vertices 〈y,R〉 for which R > min Γ and
BX(y, 2R) = BX(y,R/2). We call these implicit vertices. It is easy to see that for every point
y ∈ X there are only O(n) values R for which the vertex 〈y,R〉 is stored explicitly. Therefore, the
overall number of vertices is O(n2). To make it easier to track certain constants, we shall identify
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them as the following parameters α = 3
2 , β = 9

8 , and γ = 5
4 .

The directed edges leaving a vertex 〈y,R〉 are as follows. If the set S = BX(y, 2R) associated
with the vertex contains only one point, then this vertex 〈y,R〉 has no outgoing edges. Otherwise,
let (x, t) be an enhanced δ-ring-separator for S, as guaranteed by Lemma 3.4. Notice that the
ring-separator implies that S contains two points at least t apart, and thus t ≤ diam(S) ≤ 4R. We
have two families of edges outgoing from 〈y,R〉:

(a). For every z ∈ Yt/32, we add an edge to the node 〈z, t/32〉 if

d(x, z) ≤ 3t and d(y, z) ≤ αR. (1)

(b). For every R′ ∈ Γ, R′ ≥ 2t and every y′ ∈ YR′/32, we add an edge to the node 〈y′, R′/32〉 if

3

4
R′ ≤ d(x, y′) <

9

4
R′ and d(y, y′) ≤ αR. (2)

Note: R′ ≤ 8R, because 3
4R′ ≤ d(x, y′) ≤ d(x, S) + 2R + d(y, y′) ≤ t + 2R + αR ≤ 7.5R (by

the triangle inequality and since |BS(x, t)| ≥ δ|S| > 0), which is just R′ ≤ 10R, but both
sides are integral powers of 2.

If an edge is supposed to go to an implicit vertex 〈y,R〉, we “redirect” it so that it leads instead to
〈y, r〉, where r < R is the maximal possible value such that 〈y, r〉 is explicitly stored. Such a vertex
always exists, because for every y ∈ X, the vertex 〈y,min Γ〉 has an explicit representation. Note
that this redirection is done at the preprocessing stage.

Lemma 3.5. If an edge of the DAG goes from a vertex with point set S to a vertex with point set
S′, then S′ ⊆ S, and furthermore |S′| ≤ (1 − δ)|S| for δ ≥ (1

2 )O(dim(X)).

Proof. Fix a DAG vertex 〈y,R〉, and let S = BX(y, 2R). Consider a directed edge of the family
(a), going to 〈z, t/32〉. Notice that S′ = BX(z, t/16) ⊆ BX(y, 2R) = S because (1) implies that
d(y, z) + t/16 ≤ αR + t/16 ≤ 2R. Furthermore, S′ has diameter at most t/8, must be disjoint
from either BS(x, t) or S \ BS(x, 2t). Since (x, t) is an enhanced δ-ring-separator, we get that
|S′| ≤ (1 − δ)|S|.

Consider a directed edge of the second family (b), going to 〈y′, R′/32〉. Notice that S′ =
BX(y′, R′/16) ⊆ BX(y, 2R) = S because (2) implies that d(y, y′) + R′/16 ≤ αR + R′/16 ≤ 2R.
Furthermore, S′ is disjoint from BS(x, t) since the distance between their centers is d(x, y′) ≥ 3

4R′ >
R′/16 + R′/2 ≥ R′/16 + t, and thus |S′| ≤ (1 − δ)|S|.

The O(1)-ANN algorithm. Given a query q against X, the algorithm traverses the DAG along
the directed edges, constructing along the way a set L ⊂ X. Each step in the traversal will add to
L at most two points; namely, at a vertex 〈y,R〉 the point y is added to L, and if this vertex has a
ring-separator (x, t), then x is added to L as well. Once the traversal ends, the algorithm reports
the point in L which is closest to q.

The DAG traversal starts at the vertex 〈ŷ, R̂〉 where R̂
def
= maxΓ ≥ 2 diam(X) and ŷ is the

single point in YR̂. To specify how one step in the traversal proceeds, denote the current vertex by
〈y,R〉. If S = BX(y, 2R) contains only one point, the traversal ends. Otherwise, let (x, t) be the
enhanced δ-ring-separator for this vertex. We now have two cases, depending on d(x, q).

• If d(x, q) ≤ 2t, we examine family (a) of outgoing edges of 〈y,R〉. If none of them goes to
a vertex 〈z, t/32〉 for which d(z, q) ≤ βt/32 (this includes the case t/32 /∈ Γ), the traversal
ends; otherwise, we proceed along one such edge, breaking ties arbitrarily.
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• If d(x, q) > 2t, we compute the value R′ which is a power of 2 such that R′ < d(x, q) ≤ 2R′,
and examine family (b) of outgoing edges of 〈y,R〉. If none of them goes to a vertex 〈y′, R′/32〉
for which d(y′, q) ≤ βR′/32 (this includes the case R′/32 /∈ Γ), the traversal ends; otherwise,
we proceed along one such edge, breaking ties arbitrarily.

Finally, if the vertex 〈z, t/32〉 above is implicit and the edge to it is redirected to some 〈z, t̃〉, then
we still check only whether d(z, q) ≤ βt/32. Similarly, if the 〈y′, R′/32〉 as above is implicit and the
edge to it is redirected to another vertex then we still check only whether d(y′, q) ≤ βR′/32.

We are now ready to complete the proof of Theorem 3.1. Below, we bound the space consump-
tion (Lemma 3.6) and the query time (Lemma 3.7), and show that the algorithm’s output is indeed
an O(1) approximation (Lemma 3.8).

Lemma 3.6. The above algorithm consumes O(n3) space.

Proof. The query algorithm only needs to have access to the DAG, and we already argued above
that the DAG contains O(n2) vertices. It thus remains to upper bound the number of edges in the
DAG. Fix a single vertex 〈y,R〉 and let us bound the number of its outgoing edges. If S = BX(y, 2R)
contains only one point, the vertex has no outgoing edges. Otherwise, let (x, t) be the enhanced
δ-ring-separator for S. The number of outgoing edges in family (a) is clearly bounded by the size
of Yt/32 ⊆ X, and thus by n. To bound the number of outgoing edges in family (b), observe that
for every point y′ ∈ X, there are only O(1) values R′ ∈ Γ for which there is an edge to 〈y′, R′〉,
because we must have R′ = Θ(d(x, y′)). We conclude that there are only O(n) outgoing edges from
every vertex, and hence the total number of edges in the DAG is O(n3).

Lemma 3.7. The above algorithm runs, for any query q, in time 2O(dim(X)) log n. In particular,
this bounds the number of distance computations.

Proof. By Lemma 3.5, any traversal that proceeds along directed edges of the DAG has length at
most 2O(dim(X)) log n. Each step in the traversal computes d(y, q) to decide between the two cases.
In the first case, we enumerate over family (a) of edges outgoing to vertices of the form 〈z, t/32〉,
computing each time d(z, q), and determine along which edge (if at all) to proceed in the traversal.
Using Lemma 1.2 we can bound the number of edges in this family, and hence the running time of
this step of the traversal, by 2O(dim(X)). In the second case, we compute the appropriate value R′,
and retrieve the corresponding list of edges from family (b), namely, those outgoing to vertices of
the form 〈y′, R′/32〉. There are only O(n) values of R′ for which this list is nonempty; binary search
would locate the desired one in time O(log n), but we can do it in O(1) time using hashing, see e.g.
[MR95, Section 8.5]. By doing one distance computation for each edge in the list (if the edge goes
to 〈y′, R′/32〉 we compute d(y′, q)), we can determine along what edge (if at all) to proceed in the
traversal. Again, using Lemma 1.2 we can bound the number of edges in this list, and hence the
running time of this step of the traversal, by 2O(dim(X)).

We conclude that each step of the DAG traversal runs in time 2O(dim(X)), and therefore the
overall running time is at most 2O(dim(X)) log n.

Lemma 3.8. The above algorithm outputs an O(1)-approximate nearest neighbor to any query q.

Proof. Let a∗ ∈ X be the real nearest neighbor to q, i.e., d(q,X) = d(q, a∗). Consider the DAG
traversal made by the algorithm. Let 〈yi, Ri〉 be the ith vertex in the traversal, and let Si =
BX(yi, 2Ri) be the point set associated with it. To ease notation (and only for the sake of analysis),
we let this sequence contain also the implicit vertices which the traversal did not really visit. That
is, an implicit vertex and the explicitly stored vertex the traversal was redirected will be represented
here by 〈yi, Ri〉 and 〈yi+1, Ri+1〉, respectively, with yi = yi+1.
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Let j be the largest (i.e., last vertex in the traversal) such that a∗ ∈ BX(yj, γRj). This j is
well-defined because for the first vertex in the traversal we have γR1 = γR̂ ≥ diam(X).

We can rule out two cases that are easy to handle. First, if |Sj| = 1, then since a∗ ∈
BX(yj , γRj) ⊆ Sj , the traversal must end at 〈yj, Rj〉 with a∗ being added to L, and hence the
algorithm returns the exact nearest neighbor to q. So in the rest of the proof we assume that
|Sj | > 1. Second, if 〈yj, Rj〉 is an implicit vertex then we know that the traversal is redirected to
vertex 〈yj+1, Rj+1〉, which satisfies yj = yj+1 and furthermore

BX(yj, 2Rj) = BX(yj , Rj) = BX(yj, Rj/2) = · · · = BX(yj+1, Rj+1). (3)

But by the definition of j, a∗ ∈ BX(yj, γRj) ⊆ BX(yj , 2Rj) and a∗ /∈ BX(yj+1, γRj+1) ⊇
BX(yj+1, Rj+1), and this contradicts (3). So from now on we assume that 〈yj, Rj〉 is not an
implicit vertex.

Consider the algorithm’s operation upon entering 〈yj , Rj〉. To ease notation, denote y = yj,
R = Rj and S = Sj. We assumed |S| ≥ 2, hence the algorithm computes an enhanced δ-ring-
separator (x, t) for S. Recall that t ≤ diam(S) ≤ 4R. We have two cases, depending on d(x, q).

• Suppose d(x, q) ≤ 2t. We can assume d(q, a∗) < t/300, as otherwise x ∈ L is a 600-
approximate nearest neighbor. We may assume further that t/32 ∈ Γ, as otherwise t/32 <
dmin/128 and d(x, q) ≤ 2t < dmin/2, hence x is an exact nearest neighbor to q. We now aim to
show that the traversal proceeds from this vertex to a vertex that contradicts the definition
of j. As a net, Yt/32 must contain a point z such that d(a∗, z) ≤ t/32. Notice that there must
be an outgoing edge from 〈y,R〉 to 〈z, t/32〉, because (1) holds:

d(x, z) ≤ d(x, q) + d(q, a∗) + d(a∗, z) ≤ 2t + t/300 + t/32 < 3t,

d(y, z) ≤ d(y, a∗) + d(a∗, z) ≤ γR + R/8 ≤ αR.

Furthermore, the traversal is allowed to proceed to 〈z, t/32〉, because d(z, q) ≤ d(z, a∗) +
d(a∗, q) ≤ t/32 + t/300 < βt/32.

Due to ties, the next vertex in the DAG traversal, 〈yj+1, Rj+1〉, does not have to be 〈z, t/32〉.
But by definition, Rj+1 = t/32 and d(yj+1, q) ≤ βt/32. Thus, d(yj+1, a

∗) ≤ d(yj+1, q) +
d(q, a∗) ≤ βt/32 + t/300 ≤ 5

4t/32 = γRj+1, which contradicts the definition of j.

• Suppose d(x, q) > 2t and let R′ be the a power of 2 such that R′ < d(x, q) ≤ 2R′. We can
assume that d(q, a∗) < R′/300, as otherwise x ∈ L is a 600-approximate nearest neighbor.
We may assume further that R′/32 ∈ Γ, as otherwise R′/32 < dmin/128 and d(x, q) ≤ 2R′ <
dmin/2, hence x is an exact nearest neighbor to q. We now aim to show that the traversal
proceeds from this vertex to a vertex that contradicts the definition of j. As a net YR′/32

must contain a point y′ such that d(a∗, y′) ≤ R′/32. It follows that there is an outgoing edge
from 〈y,R〉 to 〈y′, R′/32〉, because (2) holds:

d(x, y′) ≤ d(x, q) + d(q, a∗) + d(a∗, y′) ≤ 2R′ + R′/300 + R′/32 ≤ 9

4
R′,

d(x, y′) ≥ d(x, q) − d(q, y′) ≥ R′ − (R′/300 + R′/32) ≥ 3

4
R′,

d(y, y′) ≤ d(y, a∗) + d(a∗, y′) ≤ γR + R′/32 ≤ γR + 8R/32 ≤ αR.

Furthermore, the traversal is allowed to proceed to 〈y′, R′/32〉, because d(y′, q) ≤ d(y′, a∗) +
d(a∗, q) ≤ R′/32 + R′/300 < βR′/32.
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Due to ties, the next vertex in the DAG traversal, 〈yj+1, Rj+1〉, does not have to be 〈y′, R′/32〉.
But by definition, Rj+1 = R′/32 and d(yj+1, q) ≤ βR′/32. Thus, d(yj+1, a

∗) ≤ d(yj+1, q) +
d(q, a∗) ≤ βR′/32 + R′/300 ≤ 5

4R′/32 = γRj+1, which contradicts the definition of j.

We conclude that in either case, the algorithm outputs an O(1)-approximate nearest neighbor of
q.
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A Triangle inequality for the lower bound

Lemma A.1. For every i ∈ {1, . . . , k}, the space (X ∪ {qi}, d) satisfies the triangle inequality.

Proof. Fix x, y ∈ X. We need to verify that all triangle inequalities on q, x, y are satisfied, i.e., that

d(x, y) ≤ d(x, q) + d(q, y) and |d(x, q) − d(y, q)| ≤ d(x, y).

To ease notation, let S′ = {x ∈ X : d(x, S) ≤ 1
2dmin}. Then each of x,y can be either in (i)

B(xi,
1
2dmin), (ii) S′ \B(xi,

1
2dmin), or (iii) in X \S′. We have to consider six cases for x, y (because

of symmetry). In the sequel, let F = 1
2dmax + 1

4dmin.

1. x, y ∈ B(xi,
1
2dmin):

x y

q

F
+

d(
x,

x i) F
+

d(y, x
i )

d(x, y) ≤ 1
2dmin + 1

2dmin < 2F
√

∆ = |d(x, xi) − d(y, xi)| ≤ d(x, y)
√

2. x, y ∈ S′ \ B(xi,
1
2dmin):

x y

q

F
+

1
2
dm

in

F
+ 1

2 d
min

d(x, y) ≤ 1
2dmin + dmax + 1

2dmin = 2F + 1
2dmin

√

∆ = 0
√

3. x, y /∈ S′:

x y

q

F
+

d(
x,

S) F
+

d(y, S)

d(x, y) ≤ d(x, S) + dmax + d(y, S) < d(x, S) + 2F + d(y, S)
√

∆ = |d(x, S) − d(y, S)| ≤ d(x, y)
√

4. x ∈ B(xi,
1
2dmin), y ∈ S′ \ B(xi,

1
2dmin):

x y

q

F
+

d(
x,

x i) F
+ 1

2 d
min

d(x, y) ≤ 1
2dmin + dmax + 1

2dmin = 2F + 1
2dmin

√

∆ = 1
2dmin − d(x, xi) ≤ d(y, xi) − d(x, xi) ≤ d(x, y)

√

5. x ∈ B(xi,
1
2dmin), y /∈ S′:

x y

q

F
+

d(
x,

x i) F
+

d(y, S)

d(x, y) ≤ 1
2dmin + dmax + d(y, S) = 2F + d(y, S)

√

∆ = d(x, xi) − d(y, S) = d(x, S) − d(y, S) ≤ d(x, y)
√
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6. x ∈ S′ \ B(xi,
1
2dmin), y /∈ S′:

x y

q

F
+

1
2
dm

in

F
+

d(y, S)

d(x, y) ≤ 1
2dmin + dmax + d(y, S) = 2F + d(y, S)

√

∆ = d(y, S) − 1
2dmin ≤ d(y, S) − d(x, S) ≤ d(x, y)

√

18


