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Abstract

The relationship between the sparsest cut and the
maximum concurrent multi-flow in graphs has been
studied extensively. For general graphs, the worst-case
gap between these two quantities is now settled: When
there are k terminal pairs, the flow-cut gap is O(log k),
and this is tight. But when topological restrictions are
placed on the flow network, the situation is far less clear.
In particular, it has been conjectured that the flow-
cut gap in planar networks is O(1), while the known
bounds place the gap somewhere between 2 (Lee and
Raghavendra, 2003) and O(

√
log k) (Rao, 1999).

A seminal result of Okamura and Seymour (1981)
shows that when all the terminals of a planar network
lie on a single face, the flow-cut gap is exactly 1.
This setting can be generalized by considering planar
networks where the terminals lie on one of γ > 1 faces in
some fixed planar drawing. Lee and Sidiropoulos (2009)
proved that the flow-cut gap is bounded by a function
of γ, and Chekuri, Shepherd, and Weibel (2013) showed
that the gap is at most 3γ. We significantly improve
these asymptotics by establishing that the flow-cut gap
is O(log γ). This is achieved by showing that the edge-
weighted shortest-path metric induced on the terminals
admits a stochastic embedding into trees with distortion
O(log γ). The latter result is tight, e.g., for a square
planar lattice on Θ(γ) vertices.

The preceding results refer to the setting of edge-
capacitated networks. For vertex-capacitated networks,
it can be significantly more challenging to control flow-
cut gaps. While there is no exact vertex-capacitated
version of the Okamura-Seymour Theorem, an approxi-
mate version holds; Lee, Mendel, and Moharrami (2015)
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showed that the vertex-capacitated flow-cut gap is O(1)
on planar networks whose terminals lie on a single face.
We prove that the flow-cut gap is O(γ) for vertex-
capacitated instances when the terminals lie on at most
γ faces. In fact, this result holds in the more general
setting of submodular vertex capacities.

1 Introduction

We present some new upper bounds on the gap between
the concurrent flow and sparsest cut in planar graphs
in terms of the topology of the terminal set. Our
proof employs low-distortion metric embeddings into `1,
which are known to have a tight connection to the flow-
cut gap (see, e.g., [32, 19]). We now review the relevant
terminology.

Consider an undirected graph G equipped with
nonnegative edge lengths ` : E(G) → R+ and a subset
T = T(G) ⊆ V (G) of terminal vertices. We use dG,` to
denote the shortest-path distance in G, where the length
of paths is computed using the edge lengths `. We use
c+1 (G, `;T) to denote the minimal number D ≥ 1 for
which there exists 1-Lipschitz mapping F : V (G) → `1
such that F |T(G) has bilipschitz distortion D. In other
words,

∀u, v ∈ V (G) : ‖f(u)− f(v)‖1 ≤ dG,`(u, v) ,(1.1)

∀s, t ∈ T(G) : ‖f(s)− f(t)‖1 ≥
1
D · dG,`(s, t) .(1.2)

For an undirected graph G, we define c+1 (G;T) :=
sup` c

+
1 (G, `;T), where ` ranges over all nonnegative

lengths ` : E(G) → R+. When T = V (G), we
may omit it and write c+1 (G, `) := c+1 (G, `;V (G)) and
c+1 (G) := c+1 (G;V (G)). Finally, for a family F of finite
graphs, we denote c+1 (F) := sup{c+1 (G) : G ∈ F}, and
for k ∈ N, we denote

c+1 (F ; k) := sup
{
c+1 (G;T) : G ∈ F ,T ⊆ V (G), |T| = k

}
.

Let Ffin denote the family of all finite graphs, and
Fplan the family of all planar graphs. It is known
that c+1 (Ffin; k) = Θ(log k) [2, 32] for all k ≥ 1. For
planar graphs, one has c+1 (Fplan; k) ≤ O(

√
log k) [34]

and c+1 (Fplan) ≥ 2 [28].
Fix a plane graph G (this is a planar graph G

together with a drawing in the plane). For T ⊆
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V (G), we define the quantity γ(G;T) to be the smallest
number of faces in G that together cover all the vertices
of T, and γ(G) := γ(G;V (G)).

We say that the pair (G,T) is an Okamura-Seymour
instance, or in short an OS-instance, if it can be drawn
in the plane with all its terminal on the same face, i.e., if
there is a planar representation for which γ(G;T) = 1.
A seminal result of Okamura and Seymour [33] implies
that c+1 (G;T) = 1 whenever (G,T) is an OS-instance.

The methods of [29] show that c+1 (G;T) ≤
2O(γ(G;T)), and a more direct proof of [11, Theorem 4.13]
later showed that c+1 (G;T) ≤ 3γ(G;T). Our main result
is the following improvement.

Theorem 1.1. For every plane graph G and terminal
set T ⊆ V (G),

c+1 (G;T) ≤ O(log γ(G;T)).

A long-standing conjecture [19] asserts that
c+1 (F) < ∞ for every family F of finite graphs that
is closed under taking minors and does not contain all
finite graphs. If true, this conjecture would of course
imply that one can replace the bound of Theorem 1.1
with a universal constant.

It is known that a plane graph G has treewidth
O(
√
γ(G)) [24]. If we use Ftw(w) and Fpw(w) to denote

the families of graphs of treewidth w and pathwidth
w, respectively, then it is known that c+1 (Ftw(2)) is
finite [19], but this remains open for c+1 (Ftw(3)). (On
the other hand, c+1 (Fpw(w)) is finite for every w ≥
1 [30], and currently the best quantitative bound is
c+1 (Fpw(w)) ≤ O(

√
w) [1].)

The parameter γ(G;T) was previously studied in
the context of other computational problems, including
the Steiner tree problem [13, 4, 21], all-pairs shortest
paths [16], and cut sparsifiers [26, 20]. For a planar
graph G (without a drawing) and T ⊆ V (G), the
terminal face cover, denoted γ∗(G;T), is the minimum
number of faces that cover T in all possible drawings of
G in the plane. All our results, including Theorems 1.1,
1.3, and 1.5, hold also for the parameter γ∗(G;T),
simply because the relevant quantities do not depend
on the graph’s drawing. When G and T are given as
input, γ(G;T) can be computed in polynomial time [5],
but computing γ∗(G;T) is NP-hard [5]. In other words,
while finding faces that cover T optimally in a given
drawing is tractable, finding an optimal drawing is hard.

1.1 The flow-cut gap We now define the flow-cut
gap, and briefly explain its connection to c+1 . Consider
an undirected graph G with terminals T = T(G). Let c :
E(G)→ R+ denote an assignment of capacities to edges,
and d :

(
T
2

)
→ R+ an assignment of demands. The

triple (G, c, d) is called an (undirected) network. The
concurrent flow value of the network is the maximum
value λ > 0, such that λ · d({s, t}) units of flow can
be routed between every demand pair {s, t} ∈

(
T
2

)
,

simultaneously but as separate commodities, without
exceeding edge capacities.

Given the network (G, c, d) and a subset S ⊂ V ,
let cap(S) denote the total capacity of edges crossing
the cut (S, V \ S), and let dem(S) denote the sum
of demands d({s, t}) over all pairs {s, t} ∈

(
T
2

)
that

cross the same cut. The sparsity of a cut (S, V \ S) is
defined as cap(S)/ dem(S), and the sparsest-cut value
of (G, c, d) is the minimum sparsity over all cuts in
G. Finally, the flow-cut gap in the network (G, c, d)
is defined as the ratio

gap(G, c, d) :=
sparsest-cut(G, c, d)

concurrent-flow(G, c, d)
≥ 1 ,

where the inequality is a basic exercise.
For a graph G (without capacities and demands),

denote gap(G;T) := supc,d gap(G, c, d), where c and

d :
(
T
2

)
→ R+ range over assignments of capacities

and demands as above. The following theorem presents
the fundamental duality between flow-cut gaps and `1
distortion.

Theorem 1.2. ([2, 32, 19]) For every finite graph G
with terminals T ⊆ V (G),

gap(G;T) = c+1 (G;T) .

Thus our main result (Theorem 1.1) can be stated
in terms of flow-cut gaps as follows.

Theorem 1.3. For every plane graph G and terminal
set T ⊆ V (G),

gap(G;T) ≤ O(log γ(G;T)) .

Remark 1.4. It is straightforward to check that our
argument yields a polynomial-time algorithm that, given
a plane graph G and capacities c and demands d :

(
T
2

)
→

R+, produces a cut (S, V (G)\S) whose sparsity is within
an O(log γ(G;T)) factor of the sparsest cut in the flow
network (G, c, d).

1.2 The vertex-capacitated flow-cut gap One
can consider the analogous problems in more gen-
eral networks; for instance, those which are vertex-
capacitated (instead of edge-capacitated). In that set-
ting, bounding the flow-cut gap appears to be signifi-
cantly more challenging than for edge capacities. The
authors of [15] establish that the vertex-capacitated
flow-cut gap is O(log k) for general networks with k ter-
minals, and this bound is known to be tight [31].
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For planar networks, Lee, Mendel, and Mohar-
rami [27] sought a vertex-capacitated version of the
Okamura-Seymour Theorem [33], and proved that the
vertex-capacitated flow-cut gap is O(1) for instances
(G,T) satisfying γ(G;T) = 1.

However, it was not previously known whether the
gap is bounded even for γ(G;T) = 2. We prove
that in planar vertex-capacitated networks (G,T) with
γ = γ(G;T), the flow-cut gap is O(γ); see Theorem 3.1.
In fact, we prove this result in the more general setting
of submodular vertex capacities, also known as poly-
matroid networks. This model was introduced in [10]
as a generalization of vertex capacities, and the papers
[10, 27] showed that more refined methods in metric em-
bedding theory are able to establish upper bounds on
the flow-cut gap even in this general setting.

1.3 Stochastic embeddings Instead of embedding
plane graphs with a given γ(G;T) directly into `1, we
will establish the stronger result that such instances can
be randomly approximated by trees in a suitable sense.

If (X, dX) is a finite metric space and F is a family
of finite metric spaces, then a stochastic embedding of
(X, dX) into F is a probability distribution µ on pairs
(ϕ, (Y, dY )) such that ϕ : X → Y , (Y, dY ) ∈ F , and
dY (ϕ(x), ϕ(x′)) ≥ dX(x, x′) for all x, x′ ∈ X. The
expected stretch of µ is defined by

str(µ) := max
x 6=x′∈X

{E(ϕ,(Y,dY ))∼µ [dY (ϕ(x), ϕ(x′))]

dX(x, x′)

}
.

We will refer to an undirected graph G equipped
with edge lengths `G : E(G) → R+ as a metric graph,
and use dG to denote the corresponding shortest-path
distance. If G is equipped implicitly with a set T(G) ⊆
V (G) of terminals, we refer to it as a terminated graph.
A graph equipped with both lengths and terminals will
be called a terminated metric graph. We will consider
any graph or metric graph G as terminated with T(G) =
V (G) if terminals are not otherwise specified.

Given a terminated metric graph G, a stochastic
terminal embedding of G into a family F of terminated
metric graphs is a distribution µ over pairs (ϕ, F ) such
that ϕ : V (G)→ V (F ); the graph F ∈ F ; the terminals
map to terminals:

∀t ∈ T(G), P
[
ϕ(t) ∈ T(F )

]
= 1 ;

and the embedding is non-contracting on terminals:
(1.3)
∀s, t ∈ T(G), P

(ϕ,F )∼µ

[
dF (ϕ(s), ϕ(t)) ≥ dG(s, t)

]
= 1 .

The expected stretch of this embedding, again denoted

str(µ), is defined just as for general metric spaces:
(1.4)

str(µ) := max
u6=v∈V (G)

{E(ϕ,F )∼µ [dF (ϕ(u), ϕ(v))]

dG(u, v)

}
.

Theorem 1.5. Consider a terminated metric plane
graph G with γ = γ(G;T(G)). Then G admits a
stochastic terminal embedding into the family of metric
trees with expected stretch O(log γ).

Theorem 1.5 immediately yields Theorem 1.1 using
the fact that every finite tree metric embeds isometri-
cally into `1 (see, e.g., [19] for further details). The
bound O(log γ) is optimal up to the hidden constant, as
it is known that for an m × m planar grid equipped
with uniform edge lengths, the expected stretch of
any stochastic embedding into metric trees is at least
Ω(logm) [25]. (A similar lower bound holds for the di-
amond graphs [19].)

Theorem 1.5 may also be of independent interest
(including when T(G) = V (G)) as embedding into dom-
inating trees has many applications, including to com-
petitive algorithms for online problems such as buy-
at-bulk network design [3], and to approximation al-
gorithms for combinatorial optimization, e.g., for the
group Steiner tree problem [17]. We remark that
stochastic terminal embeddings into metric trees were
employed by [18] in the context of approximation algo-
rithms, and were later used in [12] to design flow spar-
sifiers.

2 Approximation by random trees

Before introducing our primary technical tools, we will
motivate their introduction with a high-level overview
of the proof of Theorem 1.5. Fix a terminated metric
plane graph G with γ = γ(G;T(G)) > 1. Our
plan is to approximate G by an OS-instance (where
all terminals lie on a single face) by uniting the γ
faces covering T(G), while approximately preserving
the shortest-path metric on G. The use of stochastic
embeddings will come from our need to perform this
approximation randomly, preserving distances only in
expectation. Using the known result that OS-instances
admit stochastic terminal embeddings into metric trees,
this will complete the proof.

A powerful tool for randomly “simplifying” a graph
is the Peeling Lemma [29], which informally “peels
off” any subset A ⊂ V (G) from G, by providing a
stochastic embedding of G into graphs obtained by
“gluing” copies of G \ A to the induced graph G[A].
The expected stretch of the embedding depends on
how “nice” A is; for example, it is O(1) when A is a
shortest path in a planar G. The Peeling Lemma can
be used to stochastically embed G into dominating OS-
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instances with expected stretch 2O(γ) [11, Section 4.5],
by iteratively peeling off a shortest path A between two
special faces (which has the effect of uniting them into
a single face).

In contrast, our argument applies the Peeling
Lemma only once. We pick A to form a connected sub-
graph in G that spans the γ distinguished faces. By
cutting along A, one effectively merges all γ faces into
a single face in a suitably chosen drawing of G \ A .
The Peeling Lemma then provides a stochastic terminal
embedding of G into a family of OS-instances that are
constructed from copies of A and G \A.

The expected stretch we obtain via the Peeling
Lemma is controlled by how well the (induced) termi-
nated metric graph on A can be stochastically embed-
ded into a distribution over metric trees. For this pur-
pose, we choose the set A to be a shortest-path tree in
G that spans the γ distinguished faces, and then use
a result of Sidiropoulos [35] to stochastically embed A
into metric trees with expected stretch that is logarith-
mic in the number of leaves (rather than logarithmic in
the number of vertices, as in stochastic embeddings for
general finite metric spaces [14]). We remark that this
is non-trivial because, while A is (topologically) a tree
spanning γ faces, the relevant metric on A is dG (which
is not a path metric on G[A]).

2.1 Random partitions, embeddings, and peel-
ing For a finite set S, we use Trees(S) to denote the
set of all metric spaces (S, d) that are isometric to
(V (T ), dT ) for some metric tree T .

Theorem 2.1. (Theorem 4.4 in [35]) Let G be a
metric graph, and let P1, . . . , Pm be shortest paths in
G sharing a common endpoint. Then the metric space(
∪mi=1 V (Pi), dG

)
admits a stochastic embedding into

Trees(∪mi=1V (Pi)) with expected stretch O(logm).

Let (X, d) be a finite metric space. A distribution
ν over partitions of X is called (β,∆)-Lipschitz if every
partition P in the support of ν satisfies S ∈ P =⇒
diamX(S) ≤ ∆, and moreover,

∀x, y ∈ X, P
P∼ν

[P (x) 6= P (y)] ≤ β · d(x, y)

∆
,

where for x ∈ X, we use P (x) to denote the unique set
in P containing x.

We denote by β(X,d) the infimal β ≥ 0 such that
for every ∆ > 0, the metric (X, d) admits a (β,∆)-
Lipschitz random partition. The following theorem is
due to Klein, Plotkin, and Rao [22] and Rao [34].

Theorem 2.2. For every planar graph G, we have
β(V (G),dG) ≤ O(1).

Let G be a metric graph, and consider A ⊆ V (G).
The dilation of A inside G is defined to be

dilG(A) := max
u,v∈A

dG[A](u, v)

dG(u, v)
,

where dG[A] denotes the induced shortest-path distance
on the metric graph G[A].

For two metric graphs G,G′, a 1-sum of G with G′

is a graph obtained by taking two disjoint copies of G
and G′, and identifying a vertex v ∈ V (G) with a vertex
v′ ∈ V (G′). This definition naturally extends to a 1-sum
of any number of graphs. Note that the 1-sum naturally
inherits its length function from G and G′.

2.1.1 Peeling Consider a subset A ⊆ V (G). For
a ∈ A, let GA

a
denote the graph G[(V (G) \ A) ∪ {a}].

We define the graph ĜA as the 1-sum of G[A] with
{GA

a
: a ∈ A}, where G[A] is glued to each GA

a
at their

common copy of a ∈ A. Let us write the vertex set of
ĜA as the disjoint union:

V (ĜA) = Â t
⊔
a∈A
{(a, v) : v ∈ V (G) \A} ,

where Â := {â : a ∈ A} represents the canonical image

of G[A] in ĜA, and (a, v) corresponds to the image of
v ∈ V (G) \ A in GA

a
. Say that a mapping ψ : V (G) →

V (ĜA) is a selector map if it satisfies:

1. For each a ∈ A, ψ(a) = â.

2. For each v ∈ V (G) \A, ψ(v) ∈ {(a, v) : a ∈ A}.

In other words, a selector maps each a ∈ A to its unique
copy in ĜA, and maps each v ∈ V (G) \ A to one of its

|A| copies in ĜA.

Lemma 2.3. (The Peeling Lemma [29]) Let G =
(V,E) be a metric graph and fix a subset A ⊆ V . Let
G′ be obtained by removing all the edges inside A:

G′ := (V,E′) with E′ = E \ E(G[A]) ,

and denote β = β(V,dG′ ). Then there is a stochastic

embedding µ of G into the metric graph ĜA such that
µ is supported on selector maps has expected stretch
str(µ) ≤ O(β · dilG(A)).

Remark 2.4. The statement of the Peeling Lemma
in [29] (see also [9]) does not specify explicitly all the
above details about the selector maps, but they can be
easily verified by inspecting the proof.
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2.1.2 Composition Consider now some metric tree
T ∈ Trees(A). Via the identification between A and

Â ⊆ V (ĜA), we may consider the associated metric tree

T̂ ∈ Trees(Â). Define the metric graph ĜAJT K with

vertex set V (ĜA) and edge set

E(ĜAJT K) :=
(
E(ĜA) \ E(ĜA[Â])

)
∪ E(T̂ ) ,

where the edge lengths are inherited from ĜA and T̂ ,
respectively. In other words, we replace the edges of
ĜA[Â] with those coming from T̂ . Finally, denote by

FG,A :=
{
ĜAJT K : T ∈ Trees(A)

}
the family of all metric graphs arising in this manner.
The following lemma is now immediate.

Lemma 2.5. Every metric graph in FG,A is a 1-sum of
some T ∈ Trees(A) with the graphs {GA

a
: a ∈ A}.

Suppose that µ is a stochastic embedding of G into
ĜA that is supported on pairs (ψ, ĜA), where ψ is a
selector map. Let ν denote a stochastic embedding
of (A, dG) into Trees(A). By relabeling vertices, we
may assume that ν is supported on pairs (id, T ) where
id : A→ A is the identity map. Altogether, we obtain a
stochastic embedding of G into FG,A, which we denote
ν ◦ µ and define by

∀T ∈ Trees(A), (ν◦µ)(ψ, ĜAJT K) := µ(ψ, ĜA)·ν(id, T ) ,

where the product between the probability measures µ
and ν represents drawing from the two distributions
independently. While notationally cumbersome, the
following claim is now straightforward.

Lemma 2.6. (Composition Lemma) It holds that

str(ν ◦ µ) ≤ str(ν) · str(µ) .

2.2 Approximation by OS-instances Let us now
show that every terminated metric plane graph G with
γ = γ(G;T(G)) admits a stochastic terminal embedding
into OS-instances. In Section 2.3, we recall how OS-
instances can be stochastically embedded into metric
trees, thereby completing the proof of Theorem 1.5.

Let F1, . . . , Fγ be faces of G that cover T(G), and
denote Ti := V (Fi) ∩ T(G). For each i ≥ 1, fix an
arbitrary vertex vi ∈ V (Fi). Denote r := v1, and for
each i ≥ 2, let Pi be the shortest path from vi to r.
Finally, let P be the tree obtained as the union of these
paths, namely, the induced graph G[∪i≥2Pi].

We present now Klein’s Tree-Cut operation [23]. It
takes as input a plane graph G and a tree T in G,

and “cuts open” the tree to create a new face Fnew.
More specifically, consider walking “around” the tree
and creating a new copy of each vertex and edge of T
encountered along the way. This operation maintains
planarity while replacing the tree T with a simple cycle
CT that bounds the new face. It is easy to verify that CT
has two copies of every edge of T , and degT (v) copies of
every vertex of T , where degT (v) stands for the degree
of v in T . This Tree-Cut operation can also be found
in [6, 7, 8].

We apply Klein’s Tree-Cut operation to G and the
tree P , and let G1 be the resulting metric plane graph
with the new face Fnew, after we replace P with a simple
cycle CP ; see Figure 1 for illustration. Since P shares
at least one vertex with each face Fi in G (namely, vi),
the cycle CP shares at least one vertex with each face
Fi in G1.

We now construct G2 by applying two operations
on G1. First, for every face Fi that shares exactly one
vertex with CP , namely only vi (or actually a copy of
it), we split this vertex into two as follows. Let N1

G1
(vi)

be all the neighbors of vi in G1 embedded between the
face Fi and Fnew on one side, and N2

G1
(vi) be all its

neighbors on the other side. We split vi into two vertices
v′i, v

′′
i that are connected by an edge of length 0, and

connect all the vertices in N1
G1

(vi) to v′i and all the
vertices in N2

G1
(vi) to v′′i . See Figure 2 for illustration.

Notice that this new edge {v′i, v′′i } is incident to both
Fi and Fnew, and that this operation maintains the
planarity, along with the distance metric of G1 (in the
straightforward sense, where one takes a quotient by
vertices at distance 0 from each other).

The second operation adds between all the copies
of the same v ∈ V (P ) a star with edge length 0 drawn
inside Fnew. Note that adding the stars inside Fnew
does not violate the planarity since all the copies of the
vertices in CP are ordered by the walk around P ; see
Figure 1 for illustration. It is easy to verify that if we
identify each v ∈ V (P ) with one of its copies in G2

arbitrarily then

(2.5) ∀x, y ∈ V (G), dG(x, y) = dG2
(x, y).

Lemma 2.7. (V (P ), dG) admits a stochastic embedding
into Trees(V (P )) with expected stretch at most O(log γ).

Proof. Apply Theorem 2.1 on the shortest-paths
P2, . . . , Pγ in G, with shared vertex v1 = r. �

Let A ⊆ V (G2) denote all the vertices on the
boundary of Fnew in G2. To every T ∈ Trees(V (P )),
we can associate a tree T ′ ∈ Trees(A) by identifying
x ∈ V (P ) with one of its copies in A, and attaching
the rest of its copies to x with an edge of length 0.
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𝐺 𝐺2𝐺1 (i.e. after the tree-cut operation)

𝑣1 𝑣2

𝑣3𝑣4

𝐹𝑛𝑒𝑤

Figure 1: In G, the tree P (in blue) is incident to all γ = 4 special faces (drawn in green). G1 is obtained by the
tree-cut operation on P , which creates a new face Fnew. Finally, G2 is obtained by duplicating some vertices on
Fnew and connecting copies of the same vertex by zero edges (star in dashed red).

Using (2.5) in conjunction with Lemma 2.7 yields the
following.

Corollary 2.8. (A, dG2
) admits a stochastic embed-

ding into Trees(A) with expected stretch at most
O(log γ).

Let H be the graph obtained from G2 by adding
an edge {u, v} of length dG(u, v) between every pair of
vertices u, v ∈ A. By construction, we have dilH(A) =
1. Let E′ := E(H) \ E(H[A]), and H ′ = (V (H), E′).
While H is in general non-planar, the graph H ′ and HA

a

for a ∈ A are subgraphs of the planar graph G2, and
are thus planar as well, and by Theorem 2.2 we have
β(V (H),dH′ ) ≤ O(1).

By applying the Peeling Lemma (Lemma 2.3) to
H and A ⊆ V (H), we obtain a stochastic embedding

µ of H into ĤA such that µ is supported on selector
maps and str(µ) ≤ O(1). Using Corollary 2.8 and the
fact that (A, dH) is the same as (A, dG2

), we obtain a
stochastic embedding ν of (A, dH) into Trees(A) with
str(ν) ≤ O(log γ).

Define T(H) to be the set of vertices in T(G)
together with all their copies created in the construction
of H, and

T(ĤA) := {â : a ∈ T(H)} ∪ {(v, a) : v ∈ T(H), a ∈ A} .

By convention, for any subgraph H ′ of H we have
T(H ′) := V (H ′) ∩ T(H).

Applying the Composition Lemma (Lemma 2.6) to
the pair µ, ν (in conjunction with Lemma 2.5) yields

a stochastic embedding π := ν ◦ µ satisfying the next
lemma.

Lemma 2.9. (V (G), dG) admits a stochastic embedding
π into the family of metric graphs that are 1-sums of a
metric tree with the graphs {HA

a
: a ∈ A}, where HA

a

is glued to T along a vertex of T(HA
a
), and such that

str(π) ≤ O(log γ). Moreover, every (ϕ,W ) ∈ supp(π)
satisfies ϕ(T(G)) ⊆ T(W ).

It remains to prove that π in this lemma is an
embedding into OS-instances, i.e., every 1-sum in the
support of π is an OS-instance. We first show this for
every pair {(HA

a
,T(HA

a
)) : a ∈ A}.

Lemma 2.10. For every a ∈ A, there is a face Fa in
HA
a

such that T(HA
a
) ⊆ V (Fa).

Proof. Fix a ∈ A. The graph G2 is planar, and while H
need not be planar, the subgraphs G2[(V (G2)\A)∪{a}]
and HA

a
are identical for each a ∈ A. Thus, it suffices to

prove the lemma for the subgraphsG2[(V (G2)\A)∪{a}].
Observe that if we remove from G2 a vertex v ∈

V (G2), then all the faces incident to v in G2 become
one new face in the graph G2 \ {v}. Moreover, if we
remove from G2 both endpoints of an edge {u, v}, then
all the faces incident to either u or v become one new
face in G2 \ {u, v}. Recall that G2[A] is a simple cycle
(bounding Fnew), thus G2[A \ {a}] = G2[A] \ {a} is
connected, and all the faces incident to at least one
vertex in A \ {a} become one new face in G2[(V (G2) \
A) ∪ {a}], which we denote F anew.
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Figure 2: The neighbors of vi are partitioned into two sets (colored red and blue) by going around vi in the plane
and watching for the location of faces Fi and Fnew, to eventually split vi into two.

By construction of G2 (which splits a vertex of G1

if it is the only vertex incident to both Fi and Fnew),
every face Fi is incident to at least two vertices in A,
and thus to at least one in A\{a}. It follows that all the
terminals in G2[(V (G2) \A)∪{a}] are on the same face
F anew. In addition, since a has at least one neighboring
vertex b ∈ A, at least one face is incident to both a
and b in G2, and it becomes part of the face F anew in
G2[(V (G2) \A)∪ {a}]. Therefore, a ∈ V (F anew) as well,
and the lemma follows. �

Lemma 2.11. Suppose W is a planar graph formed
from the 1-sum of a tree T and a collection of (pairwise
disjoint) plane graphs {Ha : a ∈ A}, where each Ha

has a distinguished face Fa, and Ha is glued to T along
a vertex of V (Fa). Then there exists a drawing of W
in which all the vertices V (T ) ∪

⋃
a∈A V (Fa) lie on the

outer face.

Proof. It is well-known that every plane graph can be
redrawn so that any desired face is the outer face (see,
e.g., [36, §9]). So we may first construct a planar
drawing of T , and then extend this to a planar drawing
of W where each Ha is drawn so that Fa bounds the
image of Ha, and the interior of Fa contains only the
images of vertices in V (Ha). �

Combining Lemmas 2.9, 2.10 and 2.11 yields the
following corollary.

Corollary 2.12. G admits a stochastic embedding
with expected stretch O(log γ) into a family F of termi-
nated metric plane graphs, where each W ∈ F satisfies
γ(W ;T(W )) = 1.

Note that in the stochastic embedding of this corol-
lary, the stretch guarantee applies to all vertices (and

not only to terminals), and the choice of terminals re-
stricts the host graphsW ∈ F , as they are OS-instances.

2.3 From OS-instances to random trees We
need a couple of known embedding theorems.

Theorem 2.13. ([19, Thm. 5.4]) Every metric out-
erplanar graph admits a stochastic embedding into met-
ric trees with expected stretch O(1).

The next result is proved in [27, Thm. 4.4] (which
is essentially a restatement of [12, Thm. 12]).

Theorem 2.14. If G is a terminated metric plane
graph and γ(G;T(G)) = 1, then G admits a stochastic
terminal embedding into metric outerplanar graphs with
expected stretch O(1).

In conjunction with Theorem 2.13, this shows that
every OS-instance admits a stochastic terminal embed-
ding into metric trees with expected stretch O(1). Com-
bined with Corollary 2.12, this finishes the proof of The-
orem 1.5.

3 Polymatroid flow-cut gaps

We now discuss a network model introduced in [10] that
generalizes edge and vertex capacities. Recall that if
S is a finite set, then a function f : 2S → R is called
submodular if f(A)+f(B) ≥ f(A∩B)+f(A∪B) for all
subsets A,B ⊆ S. For an undirected graph G = (V,E),
we let E(v) denote the set of edges incident to v. A
collection ~ρ = {ρv : 2E(v) → R+}v∈V of monotone,
submodular functions are called polymatroid capacities
on G.

Say that a function ϕ : E → R+ is feasible with
respect to ~ρ if it holds that for every v ∈ V and sub-
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set S ⊆ E(v), it holds that
∑
e∈S ϕ(e) ≤ ρv(S). Given

demands dem : V × V → R+, one defines the max-
imum concurrent flow value of the polymatroid net-
work (G, ~ρ, dem), denoted mcfG(~ρ, dem), as the maxi-
mum value ε > 0 such that one can route an ε-fraction
of all demands simultaneously using a flow that is fea-
sible with respect to ~ρ.

For every subset S ⊆ E, define the cut semimetric
σS : V ×V → {0, 1} by σS(u, v) := 0 if and only if there
is a path from u to v in the graph G(V,E \S). Say that
a map g : S → V is valid if it maps every edge in S
to one of its two endpoints in V . One then defines the
capacity of a set S ⊆ E by

ν~ρ(S) := min
g:S→V

valid

∑
v∈V

ρv(g
−1(v)) .

The sparsity of S is given by

ΦG(S; ~ρ, dem) :=
ν~ρ(S)∑

u,v∈V dem(u, v)σS(u, v)
.

We also define ΦG(~ρ, dem) := min∅6=S⊆V Φ(S; ~ρ, dem).
Our goal in this section is to prove the following
theorem.

Theorem 3.1. There is a constant C ≥ 1 such that
the following holds. Suppose that G = (V,E) is a
planar graph and D ⊆ F1 ∪ F2 ∪ · · · ∪ Fγ , where each
Fi is a face of G. Then for every collection ~ρ of
polymatroid capacities on G and every set of demands
dem : D ×D → R+ supported on D, it holds that

mcfG(~ρ, dem) ≤ ΦG(~ρ, dem) ≤ Cγ ·mcfG(~ρ, dem) .

3.1 Embeddings into thin trees In order to prove
this, we need two results from [27]. Suppose G is an
undirected graph, T is a connected tree, and f : V (G)→
V (T ). For every distinct pair u, v ∈ V (G), let PTuv
denote the unique simple path from f(u) to f(v) in T .
Say that the map f is ∆-thin if, for every u ∈ V (G), the
induced subgraph on

⋃
v:{u,v}∈E(G) P

T
uv can be covered

by ∆ simple paths in T emanating from f(u).
Suppose further that G is equipped with edge

lengths ` : E(G) → R+. If (X, dX) is a metric space
and f : V (G) → X, we make the following definition.
For τ > 0 and any u ∈ V (G):

|∇τf(u)|∞ := max
{u,v}∈E and `(u,v)∈[τ,2τ ]

{
dX(f(u), f(v))

`(u, v)

}
.

Fact 3.2. Suppose that f : V (G) → R is 1-Lipschitz,
where V (G) is equipped with the path metric dG,`. Then
f is 2-thin and

max {|∇τf(u)|∞ : u ∈ V (G), τ > 0} ≤ 1 .

Theorem 3.3. (Rounding theorem [27]) Consider
a graph G = (V,E) and a subset D ⊆ V . Suppose that
for every length ` : E → R+, there is a random ∆-thin
mapping Ψ : V → V (T ) into some random tree T that
satisfies:

1. For every v ∈ V and τ > 0: E |∇τΨ(v)|∞ ≤ L.

2. For every u, v ∈ D:

E [dT (Ψ(u),Ψ(v))] ≥ dG,`(u, v)

K
.

Then for every collection ~ρ of polymatroid capacities
on G and every set of demands dem : D × D → R+

supported on D, it holds that

mcfG(~ρ, dem) ≤ ΦG(~ρ, dem) ≤ O(∆KL)·mcfG(~ρ, dem) .

Theorem 3.4. (Face embedding theorem [27])
Suppose that G = (V,E) is a planar graph and D ⊆ V
is a subset of vertices contained in a single face of G.
Then for every ` : E → R+, there is a random 4-thin
mapping Ψ : V → V (T ) into a random tree metric
that satisfies the assumptions of Theorem 3.3 with
K,L ≤ O(1).

We now use this to prove the following multi-face
embedding theorem; combined with Theorem 3.3, it
yields Theorem 3.1.

Theorem 3.5. (Multi-face embedding theorem)
Suppose that G = (V,E) is a planar graph and
D ⊆ F1 ∪ F2 ∪ · · · ∪ Fγ , where each Fi is a face of G.
Then for every ` : E → R+, there is a random 4-thin
mapping Ψ : V → V (T ) into a random tree metric that
satisfies the assumptions of Theorem 3.3 with L ≤ O(1)
and K ≤ O(γ).

Proof. For each i = 1, 2, . . . , γ, let Ψi : V → V (Ti) be
the random 4-thin mapping guaranteed by Theorem 3.4
with constants 1 ≤ K0, L0 ≤ O(1), and let Ψ′i :
V → R be the 2-thin mapping given by Ψ′i(v) =
dG,`(v, Fi) (recall Fact 3.2). Now let Ψ : V →
V (T ) be the random map that arises from choosing
one of {Ψ1, . . . ,Ψγ ,Ψ

′
1, . . . ,Ψ

′
γ} uniformly at random.

Then Ψ is a random 4-thin mapping satisfying (1) in
Theorem 3.3 for some L ≤ O(1).

Consider now some u ∈ Fi and v ∈ V . Let u′ ∈ Fi
be such that dG,`(v, u

′) = dG,`(v, Fi). If dG,`(u
′, v) ≥

dG,`(u,v)
4K0L0

, then

E [dT (Ψ(u),Ψ(v))] ≥ 1

2γ
|Ψ′i(u)−Ψ′i(v)|

=
dG,`(u

′, v)

2γ

≥ dG,`(u, v)

8γK0L0
.
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If, on the other hand, dG,`(u
′, v) <

dG,`(u,v)
4K0L0

, then

E [dT (Ψ(u),Ψ(v))] ≥ 1

2γ
E [dTi(Ψi(u),Ψi(v))] ≥

≥ 1

2γ
E [dTi

(Ψi(u),Ψi(u
′))− dTi

(Ψi(u
′),Ψi(v))]

≥ 1

2γ

(
dG,`(u, u

′)

K0
− L0 dG,`(u

′, v)

)
≥ 1

2γ

(
dG,`(u, v)− dG,`(u′, v)

K0
− dG,`(u, v)

4K0

)
≥ 1

2γ

(
3

4

dG,`(u, v)

K0
− dG,`(u

′, v)

K0

)
≥ dG,`(u, v)

4γK0
.

Thus Ψ also satisfies (2) in Theorem 3.3 with K ≤ O(γ),
completing the proof. �
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