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Abstract

How should a seller price her goods in a market where each buyer prefers a single
good among his desired goods, and will buy the cheapest such good, as long as it is
within his budget? We provide efficient algorithms that compute near-optimal prices
for this problem, focusing on a commodity market, where the range of buyer budgets is
small. We also show that our LP rounding based technique easily extends to a different
scenario, in which the buyers want to buy all the desired goods, as long as they are
within budget.

1 Introduction

Pricing goods to maximize revenue is a critical yet difficult task in almost any market. We
study the case of a monopolistic seller (only one seller in the market), a restricted scenario
that is already quite challenging. One difficulty is to estimate the demand curves (amount of
demand at different prices), but even complete knowledge of the demand curves is sufficient
only in rather simple cases, e.g. if the monopolist sells only a single type of good, or if the
different goods she sells cater to different markets. In such cases, the revenue-maximizing
prices can be determined for each good separately, directly from that good’s demand curve.

But what if goods of different types are sold all in the same market? Now, the seller’s
own goods could be competing against each other for the attention of the same buyer. This is
generally true of a seller who wants to tap into multiple market segments. For example, Dell
sells many models of laptops with varying features catering to varying needs of its consumers
and it must price the different models carefully so that they do not eat into each other’s
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revenue. As an example on a smaller scale, consider the pricing of movie shows. Different
shows are priced differently (for example, matinee vs. evening shows) to attract different
audience sections. Again, the pricing is critical – a very cheap matinee show might eat into
the evening show revenue and decrease the overall revenue.

On the other hand, multiple goods might lead to higher prices by complementing each
other. A very visible example is the marketing of Apple’s iPod and various accessories. The
strategy there is not to sell the iPod in isolation but to offer various accessories. These
accessories vary from items that are expensive (for example, a charger) to items that are
inexpensive (for example, songs from iTunes). Pricing for revenue maximization becomes
computationally complex precisely because of this interaction between different goods. In-
deed, Aggarwal, Feder, Motwani and Zhu [AFMZ04] and also Guruswami, Hartline, Karlin,
Kempe, Kenyon and McSherry [GHK+05] studied the computational aspects of these pricing
problems, showing that in various such settings, computing the optimal prices is NP-hard.

In one setting, referred to as unit-demand consumers in [GHK+05], each buyer wants to
buy one good out of his desired set, as follows: There are m buyers, each of whom has an
arbitrary set of desirable goods and a spending budget. The (single) seller knows the buyers’
types (i.e. desired set and budget) and needs to set a price for each of the n goods. Once
prices are set, every buyer buys the (single) cheapest good in his set, provided it is within his
budget (breaking ties arbitrarily). Another setting, referred to as single-minded consumers
in [GHK+05], differs from the first setting in that now each buyer only wants to buy his
desired set as a bundle. That is, once prices are set, every buyer buys the entire set of his
desired goods, provided its total cost is within his budget (if not, he buys nothing). We will
also refer to buyers as bidders throughout this paper.

Throughout, we shall assume that the desired set of every buyer has size at most k. As
we shall soon see, even the case of small k is nontrivial and interesting. In addition, we
shall assume that the goods are available in unlimited supply, that is, the seller can sell any
number of copies of the item without paying any marginal cost of production.

Several results are known about computing prices that maximize revenue in these two
settings. In [AFMZ04], it is shown that the problem of maximizing revenue in the unit-
demand case is not only NP-hard, but APX-hard.1 For this problem, they also give an
O(log m)-approximation algorithm (which uses the best single price). In [GHK+05], similar
results are shown independently, and it is shown in addition that for the single-minded
setting, maximizing revenue is APX-hard and that there is log(nm)-approximation algorithm
(which again uses the best single price). Demaine, Feige, Hajiaghayi, and Salavatipour
[DFHS06] show that the above results are more or less optimal in the general single minded
bidder problem – under some complexity assumptions, there is a fixed δ > 0 such that the
problem cannot be approximated to within a factor of logδ n. Balcan and Blum [BB06]
present a 4-approximation algorithm for single-minded bidders and k = 2. Their algorithm
extends to larger k, with O(k)-approximation. As was observed in [BK07], their arguments
apply to the unit-demand case as well.

1An optimization problem is APX-hard if there exists a constant ρ > 1 such that it is NP-hard to
approximate the optimum within factor ρ.
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These results depict a rather grim landscape (at least computationally) for the problem
of pricing to maximize revenue. However, many real-life instances are more specialized,
and thus, a more practice-oriented approach is to identify restrictions, under which one can
beat the aforementioned O(log n) factor, or better yet, obtain a very small constant-factor
approximation. In particular, every percent of improvement counts in practice, requiring us
to improve one (small) constant approximation factor to another.

We thus pay special attention to commoditized markets,2 where the range of buyers bud-
gets is restricted to a “small” set B. In one such restriction, B = {1, C} is a doubleton,
representing a bimodal market in which buyers are divided into poor and rich. For ex-
ample, buyers coming from different referring websites such as lastminutedeals.com and
hotels.com might have significantly different budgets for booking a hotel room. As another
example, a tourist might be willing to pay for a Broadway show a significantly higher amount
than a local. Another motivation for studying such markets could be the low descriptive
complexity for the different buyers’ budget types, or equivalently a low communication com-
plexity to identify a buyer’s budget. In yet another restriction, B = [1, C] is a small interval,
representing a market with little variation, say within 50%, in the valuation of different buy-
ers, and clearly there are numerous examples for such markets. Note that in both cases, the
buyers can be completely idiosyncratic regarding their desired goods, as only the budgets
are restricted.

1.1 Results and Techniques

Unit-demand setting. In Section 2, we consider inputs with B = {1, C} (i.e., bimodal
markets) and k = 2 (i.e. a desired set is a pair of goods). On the one hand, the APX-hardness
results [AFMZ04, GHK+05] mentioned above are actually shown for such restricted instances
(in fact, for C = 2). On the other hand, obtaining (2 − 1

C
)-approximation is rather easy

— simply choose the best single price (same for all goods) among {1, C} — obviously a
very naive solution, but already better than the (more general) 4-approximation that can be
derived from [BB06]. The challenge in this regime is to improve the approximation below 2,
and indeed we present an algorithm achieving factor 3

2
− 1

2C
. Observe that even when C is not

too large, this is a significant improvement (e.g. for C = 2, from 1.5 to 1.25). This approach
easily extends to larger k, in which case the approximation we achieve is 2− 1

k
− k−1

kC
.

Our algorithms are based on randomized rounding of a linear programming (LP) relax-
ation, a powerful paradigm that is often useful for discrete optimization (for example, see
the survey of Srinivasan [Sri99]). We “round” the prices suggested by the LP to prices in the
discrete (“integral”) set {1, C}. The rationale behind this rounding is that an optimal pric-
ing may always choose prices from the set {1, C}. However, it is interesting to note that the
pricing problem does not require the prices to be “discrete”, and thus, the real reason behind
our rounding procedure is the following: In contrast with a “standard” randomized rounding
algorithm, where the probability (with which we round a variable upwards) depends linearly

2A commoditized market is one characterized by price-competition with little or no differentiation by
brand.
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on the corresponding LP variable, we use a probability that is polynomial in the LP variable.
The only other non-linear randomized LP rounding algorithms that we are aware of are the
approximation algorithm of Goemans and Williamson [GW94] for MAX SAT, and that for
finding the densest k-subgraph problem that is attributed to Goemans [Goe96]. The crux
is that at every optimal basic feasible solution of our LP relaxation, all the prices are half-
integral [Vaz01, Chap. 14] (modulo a normalization factor), and this fact greatly simplifies
the choice of the polynomial–in fact, our rounding procedure raises the variables to a power.
Interestingly, the value of the power is a function of C.

From a technical viewpoint, the case of k = 2 is really a quadratically constrained discrete
optimization problem. The algorithm of [BB06] essentially avoids the quadratic constraints
completely by eliminating a random half of the variables (setting goods prices to 0). Our
LP-based approach linearizes the constraints, and thus does not decouple the two goods in
each desired set, and the difficult part is of course to bound the resulting profit loss.

We further show that our algorithm can be derandomized, and that its approximation
matches the LP’s integrality gap, and thus it is optimal with respect to this LP. In addition,
we observe that in the case where budgets come from an interval B = [1, C], a simple
algorithm achieves (1 + ln C)-approximation by computing the best single price, and that
this factor matches the integrality gap of an LP relaxation that extends the LP mentioned
above for the case {1, C}. We summarize our results (along with previously known results)
for the unit demand setting in Table 1.

Budgets range: Unlimited {1, C} [1, C]

k = 2 here – 3
2
− 1

2C
1 + ln C

previous [BB06] 4 4 4
hardness [AFMZ04, GHK+05] APX-hard APX-hard APX-hard

general k here – 2− 1
k
− k−1

kC
–

previous [AFMZ04, GHK+05] O(ln m) – –
hardness [AFMZ04, GHK+05] APX-hard APX-hard APX-hard

Table 1: Comparison of results: Unit Demand Setting.

Single-Minded setting. Recently, Khandekar, Könemann and Markakis [KKM07] have
studied the case of single-minded bidders with desired sets of size at most 2, and the same
budget for all the buyers, and gave a 4/3-approximation algorithm. Subsequently (but using
independently derived techniques), we found out that our LP rounding approach mentioned

above is easy to adapt to this setting as well, achieving 6+
√

2
5+
√

2
≈ 1.15 approximation. In

Section 3 we briefly present this algorithm, and show a matching integrality gap. Again, this
problem is known to be APX-hard because the results of [GHK+05] are actually shown for
such restricted instances. Further, our algorithm obtains much better approximation than
a 3/2-approximation achievable by choosing the best single price in the set {1/2, 1}, which
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was already better than the (more general) 4-approximation of [BB06]. We summarize our
result, along with previously known results for the single-minded setting in Table 2.

Budget range: Unlimited {1}
k = 2 here – 6+

√
2

5+
√

2
≈ 1.15

previous [BB06, KKM07] 4 4/3
hardness [GHK+05] APX-hard APX-hard

general k here – –
previous [GHK+05] log nm –

hardness [DFHS06, GHK+05] logδ n APX-hard

Table 2: Comparison of results: Single Minded Setting

Online pricing. Finally, we consider in Section 4 inputs with k = 2 (and no restriction
on the budget). Using a variation of the algorithm designed by Balcan and Blum [BB06],
we design an algorithm that works even in an online setting, where goods arrive sequentially
(together with the bids of all the buyers interested in that good), and the seller has to
determine the price of a good immediately as it arrives. This model may correspond for
instance to Comcast cable TV selling video on demand, where new offerings are announced
(with prices) on a regular basis. Our algorithm achieves 4-approximation, compared to the
best (offline) prices. We note that [BB06] also give an online pricing algorithm, but in their
setting buyers arrive online, and the prices (of a fixed set of goods) need to be updated.

Truthful Mechanisms. We assume throughout the paper that the seller knows the budget
of each bidder. We may also be interested in settings where the seller does not know such
information about the market. Balcan, Blum, Hartline and Mansour [BBHM05] show that
every approximation algorithm for revenue maximization can be converted into a truth-
revealing mechanism. They design a general technique that loses only an additional factor of
1+ ε in the approximation, if certain technical conditions (like sufficiently many bidders) are
satisfied. Similarly to [BB06], we note that this technique is applicable in our setting, and
thus converts our algorithms to truthful mechanisms, provided that the number of bidders
is at least (roughly) Cn/ε2.

1.2 Related Work

The notion of revenue-maximizing pricing of goods in unlimited supply was introduced by
Goldberg, Hartline, Karlin, Saks and Wright [GHK+06]. In their setting, the goods were
“independent” and hence the optimization problem was trivial, and they focused on designing
truthful mechanisms to maximize revenue. There have been numerous followup work, and
we only mention here results that are directly related to our work.

5



Guruswami, Hartline, Karlin, Kempe, Kenyon and McSherry [GHK+05] considered the
problem of revenue maximization in a variety of settings, including both unit-demand and
single-minded bidders, and also envy-free pricing of goods in limited supply. As mentioned
earlier, they showed logarithmic upper bounds and APX-hardness for both types of bidders.
The results for the unit-demand case were also obtained independently by Aggarwal, Feder,
Motwani and Zhu [AFMZ04]. For single-minded bidders, a polylogarithmic hardness result,
which complements the result above, was obtained by Demaine, Feige, Hajiaghayi, and
Salavatipour [DFHS06]. The problem of the single-minded bidder case, where the size of the
demand sets was upper bounded by k, was considered by Briest and Krysta [BK06] who gave
an O(k2)-approximation for the problem, and was improved by Blum and Balcan [BB06] to
O(k). For the special case of k = 2, they obtain a 4-approximation algorithm [BB06].

Another paper that is less directly related but was also a starting point for our work is
the work of Bansal, Cheng, Cherniavsky, Rudra, Schieber and Sviridenko [BCC+07], which
studies a problem of pricing over time, that was proposed in [GHK+05]. A special case of
their problem gives another interpretation for the unit-demand setting: The seller is selling
just one type of good (in unlimited supply), and does so over a period of n days, and can
set a different price on each day. Each of the m buyers has a subset of size k of the n days,
which represent the days on which he can purchase the item, and will choose to buy a copy
of the good at the cheapest price he sees over the k days. The seller’s aim is to maximize
revenue.

1.3 Problem Definitions

Our pricing problems involve one seller and m buyers. The seller has a collection V of n
goods (also called items). Each j ∈ V is a digital good, i.e., the seller has 0 marginal cost
of production, or equivalently, the number of copies of j is at least the number of buyers m.
Once the seller sets the prices of the goods, each buyer will buy a collection of goods, based
on his own utility function. The seller’s problem is to determine a price pj of each good
j ∈ V so as to maximize revenue. Depending on the utility functions of the buyers, we have
the following variations of the pricing problem. The first variation is our main focus, but we
will also show how the techniques we develop also work for the second variation.

1. Unit-demand bidders: We let UDk(B) denote the problem of item pricing for unit-
demand bidders with sets of size at most k, and bids from the set B, as follows. Buyer i
has a budget of ui ∈ B and a subset Si of desirable goods, with |Si| ≤ k. He is interested
in buying exactly one good from Si, and given prices on the goods, he will buy the cheapest
good in Si, provided that its price is at most ui. For a price vector p = (p1, ..., pm), let πi(p)
be the revenue that the seller obtains from buyer i if the prices are set to p. Thus

πi(p) =

{
min{pj : j ∈ Si} if min{pj : j ∈ Si} ≤ ui

0 otherwise
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Thus the seller’s problem is: Find p so as to maximize
∑n

i=1 πi(p). We are interested in the
following special cases of this problem, defined by different values of k and B: (1) UDk([1, C])
for C > 1; and (2) UDk({1, C}) for C > 1.

2. Single-minded bidders: We let SMk(B) denote the problem of item pricing for single-
minded bidders, who have sets of size k and bids from the set B, as follows. Buyer i has a
budget of ui ∈ B and a subset Si of V of desirable goods with |Si| ≤ k. He is interested in
buying all the goods in the set Si. For a price vector p, let πi be the revenue that the seller
obtains from buyer i, if the prices are set to p. Thus

πi(p) =

{∑
j∈Si

pj if
∑

j∈Si
pj ≤ ui

0 otherwise

Again, the seller’s problem is: Find p so as to maximize
∑n

i=1 πi(p). We will show how our
techniques for UD2({1, C}) extend to give an algorithm for the case SM2({1}). Note that
when |B| = 1, then all budgets can be scaled to 1, and we may take B = {1} without loss of
generality.

The case of k = 2: Pricing on a graph

Following [BB06], for k = 2, UD2(B) becomes a problem of pricing the vertices of a graph,
with the buyers’ desired sets corresponding to the edges of the graph. This will be our main
focus in demonstrating our techniques and analysis. We study two settings of budget ranges:
B = {1, C} and B = [1, C], for C > 1.

Given a graph G = (V,E) (possibly with self loops and parallel edges), along with edge
weights cij ∈ B for every edge (i, j) ∈ E, the goal is to set prices pi on every vertex i so as
to maximize the total revenue, where the revenue from an edge (i, j) ∈ E is:

πij =

{
min(pi, pj) if min(pi, pj) ≤ cij

0 otherwise.

The case of SM2(B), studied in [BB06], is defined as a pricing problem on a graph analo-
gously.

1.4 LP Terminology

We shall use standard LP terminology, with a slight abuse notation due to the fact that all
our LPs are bounded. Recall that a solution to an LP is called feasible if it satisfies all the
constraints. A feasible solution is called an extreme point if it cannot be written as the convex
combination of two distinct feasible solutions. For every bounded LP, the optimum can be
attained at an extreme point, and furthermore such an optimum solution can be computed
in polynomial time. In the sequel, we shall freely exchange the notion of an extreme point
with the (perhaps more common) notion of a basic feasible solution.
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max
∑

(i,j)∈E

πij subject to:

∀(i, j) ∈ E, cij = C πij ≤ 1 + pi (1)

∀(i, j) ∈ E, cij = C πij ≤ 1 + pj (2)

∀(i, j) ∈ E, cij = 1 πij ≤ 1 (3)

∀(i, j) ∈ E, i 6= j, cij = 1 πij ≤ 2− pi + pj

C − 1
(4)

∀(i, i) ∈ E, cii = 1 πii ≤ 1− pi

C − 1
(5)

∀i ∈ V 0 ≤ pi ≤ C − 1 (6)

∀(i, j) ∈ E πij ≥ 0 (7)

Figure 1: LP relaxation for the unit-demand setting

2 Unit-Demand Buyers in Commoditized Markets

In this section, we look at pricing for unit-demand bidders with restricted valuations. We
start with valuations restricted to the set {1, C} for some C > 1. In other words, we are
interested in pricing schemes for the UDk({1, C}) model. Our main result is a pricing scheme

that generates a revenue within a factor (2k−1)C−k+1
kC

of the optimal revenue (Theorem 2.4).
For ease of exposition, we present the proofs for the k = 2 case.

Our pricing scheme rounds an LP relaxation for the problem. Theorem 2.2 shows that
our rounding algorithm (for the case k = 2) has an approximation factor of 3C−1

2C
. We show

in Section 2.4 that the integrality gap of our LP relaxation is at least 3C−1
2C

demonstrating
that our rounding procedure is tight (optimal).

It is not difficult to verify that the LP in Figure 1 is a relaxation for our pricing problem
UD2({1, C}); note that pi ∈ [0, C − 1] and that the price set to vertex i is actually pi + 1.

2.1 On the optimal LP solutions

We first observe that an optimal basic feasible solution to the LP relaxation is half integral,
in the sense that all the pi variables are from the set {0, C−1

2
, C − 1}. Recall that the price

of vertex i is actually pi + 1.

Proposition 2.1 Every optimal basic feasible solution to the LP in Figure 1 is half integral.
More precisely, if ({p∗i }i∈V , {π∗ij}(i,j)∈E) is such a solution then p∗i ∈ {0, C−1

2
, C− 1} for all i.
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Proof: Let ({p∗i }i∈V , {π∗ij}(i,j)∈E) be an optimal solution, and suppose that the p(·) are not
half integral. We will show that such an assignment is not an extreme point by exhibiting
two feasible solutions (p−, π−) and (p+, π+) such that for all i ∈ V , p∗i = 1

2
(p−i + p+

i ) and for
every (i, j) ∈ E, π∗ij = 1

2
(π+

ij + π−ij).
In the sequel, we may use values given to {pi}i∈V to define, for each (i, j) ∈ E,

πij =





1 + min(pi, pj) if cij = C

min
(
1, 2− pi+pj

C−1

)
if i 6= j and cij = 1

1− pi

C−1
if i = j and cij = 1.

(8)

Note that if 0 ≤ pi ≤ C − 1 for every i ∈ V then the resulting solution solution (p, π) is
feasible. Furthermore, the above assignment to πij maximizes the objective function. In
particular, since (p∗, π∗) is an optimal solution, we may assume that {π∗ij} were defined from
{p∗i } according to (8).

We proceed to exhibit the two aforementioned solutions (p+, π+) and (p−, π−). In fact,
we shall only define explicitly p+ and p−; the corresponding π+ and π− are defined according
to (8). Define the following two subsets of vertices: V + = {i | C−1

2
< p∗i < C − 1} and

V − = {i | 0 < pi < C−1
2
}. By the assumption that p∗ is not half integral, V − ∪ V + 6= ∅. Let

ε > 0 be a small enough number (to be defined later). We define the two related “price”
assignments.

p+
i =





p∗i + ε if i ∈ V +

p∗i − ε if i ∈ V −

p∗i otherwise

p−i =





p∗i − ε if i ∈ V +

p∗i + ε if i ∈ V −

p∗i otherwise

We set ε = 1
4
min{ε1, ε2, ε3, ε4, C − 1} where:

ε1 = min{|p∗i − p∗j | : p∗i 6= p∗j , (i, j) ∈ E and cij = C},

ε2 = min
{|1− p∗i + p∗j

C − 1
| : p∗i + p∗j 6= C − 1, (i, j) ∈ E, and cij = 1

}

ε3 = min{p∗i : i ∈ V −}
ε4 = min{C − 1− p∗i : i ∈ V +}.

First note that ε > 0, which implies that p+ 6= p∗ and p− 6= p∗. Further, by the choice of ε3, ε4

and the fact that ε < min(ε3, ε4, (C − 1)/2), we have that for every i ∈ V , 0 ≤ p+
i ≤ C − 1

and 0 ≤ p−i ≤ C− 1. As observed earlier, this implies that (p+, π+) and (p−, π−) are feasible
solutions to the LP.

Obviously, for all i ∈ V , p∗i = 1
2

(
p+

i + p−i
)
. To complete the proof, we will show that for

every (i, j) ∈ E,
π∗ij = (π+

ij + π−ij)/2. (9)

Let E1 = {(i, j) ∈ E | i, j 6∈ V + ∪ V −}. Clearly, for (i, j) ∈ E1, we have π∗ij = π+
ij = π−ij and

hence (9) holds. It thus remains to consider edges (i, j) ∈ E \ E1, i.e., edges with at least
one endpoint in V + ∪ V −.
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First consider the case where i 6= j and cij = C. In this case, π∗ij = 1 + min(p∗i , p
∗
j),

π+
ij = 1 + min(p+

i , p+
j ) and π−ij = 1 + min(p−i , p−j ). If p∗i = p∗j (both equal to p∗, say),

then π∗ij = 1 + p∗. Further, either both i, j ∈ V + or both i, j ∈ V −. In the former case,
π+

ij = 1+p∗+ε and π−ij = 1+p∗−ε, while in the latter case π+
ij = 1+p∗−ε and π−ij = 1+p∗+ε.

In either case, (9) is satisfied. If p∗i 6= p∗j , then by the definition of ε if p∗i (without loss of
generality) is the minimum price for (i, j), then so are p+

i and p−i ; this is because by the
choice of ε1 and the fact that ε ≤ ε1/4, we have p∗i + ε < p∗j − ε. Again by the definitions of
p+ and p−, (9) is satisfied.

Now consider the case where i 6= j and cij = 1. We now consider three subcases. First if
p∗i + p∗j < C − 1, then as ε < ε2/2, we have p+

i + p+
j < C − 1 and p−i + p−j < C − 1. Thus,

we have π∗ij = π+
ij = π−ij = 1, which implies that (9) is satisfied. Second if p∗i + p∗j > C − 1,

then again as ε < ε2/2, we have p+
i + p+

j > C − 1 and p−i + p−j > C − 1. This implies that
π∗ij = 2− (p∗i + p∗j)/(C − 1), π+

ij = 2− (p+
i + p+

j )/(C − 1) and π−ij = 2− (p−i + p−j )/(C − 1),
which implies (9). Finally, if p∗i + p∗j = C − 1 then exactly one of p∗i , p∗j is in V − and the
other is in V +, thus π∗ij = π+

ij = π−ij , which implies (9).

If i = j, then πii depends linearly on pi. As p∗i = 1
2
(p+

i + p−i ), in this case (9) is also
satisfied. ¥

2.2 A rounding algorithm

Consider the following randomized algorithm, where τ > 0 is a parameter (to be chosen
later).

Algorithm Algo(τ):

1. Solve the LP in Figure 1 and obtain an optimal basic feasible solution with
prices variables {pi}i∈V .

2. For every i ∈ V , independently assign a price of C with probability
(

pi

C−1

)τ

and a price of 1 with probability 1− (
pi

C−1

)τ
.

We now analyze the performance of the rounding algorithm above.

Theorem 2.2 For every C > 1, there is τ > 0 such that Algo(τ) is a (3C − 1)/(2C)-
approximation for the pricing problem with unit-demand bidders, k = 2, and budgets from
B = {1, C}. That is, the expected revenue of Algo(τ) is at least 2C

3C−1
fraction of the optimum

for UD2({1, C}).
Proof: Set τ = 1

2
log

(
3C−1
C−1

)
. For notational convenience, we will denote Algo(τ) by Algo.

Let the optimal (extreme point) solution of the LP assign prices p∗i to every vertex i and
obtain a revenue of π∗ij from every edge (i, j). We will show that for every edge (i, j) ∈ E,

the expected revenue of Algo from that edge is at least 2C
3C−1

· π∗ij; the theorem then follows
by linearity of expectation. For the rest of the proof, it will be convenient to define, for every
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i ∈ V , qi =
p∗i

C−1
. By Proposition 2.1, we have qi ∈ {0, 1

2
, 1}. The main idea is to analyze

the different edge types and chose τ so as to balance the revenues obtained in the different
cases.

Let us first consider the case when i 6= j. We have two subcases.

Case 1a: cij = 1. In this case π∗ij ≤ min(1, 2− qi − qj), while Algo obtains an expected
revenue of 0 · (qτ

i q
τ
j ) + 1 · (1− qτ

i q
τ
j ) = 1− (qiqj)

τ . When qi = qj = 1 then both the LP and
Algo obtain a revenue of 0. When qi + qj = 3

2
then the ratio of the revenue obtained by

Algo to π∗ij (which is 1/2) is 2(1 − 1
2τ ) > 1 − 1

22τ .3 Finally, when qi + qj ≤ 1, then π∗ij = 1,
while Algo obtains the least revenue when qi = qj = 1

2
, which implies a ratio of at least

1− 1
22τ = 2C

3C−1
in all the possibilities.

Case 1b: cij = C. In this case π∗ij ≤ 1 + (C − 1) min(qi, qj), while Algo obtains an
expected revenue of C · (qτ

i q
τ
j ) + 1 · (1 − qτ

i q
τ
j ) = 1 + (C − 1)(qiqj)

τ . W.l.o.g. assume that
qj ≥ qi. Thus, the ratio of the revenue obtained by Algo and π∗ij is at least:

min
qi,qj∈{0, 1

2
,1},qj≥qi

1 + (C − 1)(qiqj)τ

1 + (C − 1)min(qi, qj)
≥ min

qi∈{0, 1
2
,1}

1 + (C − 1)q2τ
i

1 + (C − 1)qi

=
1 + C−1

22τ

1 + C−1
2

=
2C

3C − 1
. (10)

We now consider the case i = j. Again we have two sub cases.

Case 2a: cii = 1. In this case π∗ii ≤ min(1, 1− qi) = 1− qi, while Algo gets a revenue of
0 · qτ

i + 1 · (1− qτ
i ) = 1− qτ

i . Thus, the ratio of the revenue of Algo to π∗ii is at least

min
qi∈{0, 1

2
,1}

1− qτ
i

1− qi

= min(1, 2− 21−τ ) ≥ 1− 1

22τ
=

2C

3C − 1
.

Case 2b: cii = C. In this case πii ≤ 1 + (C − 1)qi. The expected revenue for Algo is
1 · (1− qτ

i ) + C · qτ
i = 1 + (C − 1)qτ

i ≥ 1 + (C − 1)q2τ
i . Thus, from (10), the ratio is at least

2C
3C−1

.
Thus, in all cases for every edge (i, j) ∈ E, Algo obtains an expected revenue of at least

2C
3C−1

· π∗ij, as desired. ¥
3To see why this is true set a = 2−τ and note that we have to show that 2 − 2a > 1 − a2, which is true

for a 6= 1. The latter is true as τ > 0.

11



2.3 Derandomization

Algorithm Algo(τ) can be derandomized in a straightforward way using standard techniques.
In particular, observe that the analysis of the randomized rounding step only required pair-
wise independence among the random choices. One can use a small family of pairwise inde-
pendent random variables (see the survey [LW06] for such constructions) and exhaustively
try all the possibilities in this space.

Alternatively, one can employ the method of conditional expectation [AS92, Sri99], since
the expected revenue after randomized rounding is an easy formula to calculate (given the
probabilities).

2.4 A tight integrality gap

Next, we show that Theorem 2.2 is the best one can hope from any algorithm that rounds
the LP. Formally, we prove the following.

Proposition 2.3 There exist an instance of UD2({1, C}) for which the the integrality gap
of the LP in Figure 1 is at least 3C−1

2C
.

Proof: Consider the graph with two vertices and C parallel edges– one of which has a cost
of C and the rest have a cost of 1. (This assumes that C is integral; if however C is not
integral, we need to choose an appropriate number of cost 1 edges and cost C edges such
that their ratio is C.) The optimal revenue is C. However, the LP can set a price of C+1

2
on

both the vertices to get a revenue of C+1
2

from the cost C edge and a revenue of 1 from each
of the cost 1 edges. Thus, the integrality gap is at least

1 · (C+1
2

) + (C − 1) · 1
C

=
3C − 1

2C
.

¥

2.5 The general case

The results presented for k = 2 in the previous sections can be suitably modified to work
for the general case. The LP relaxation for general k is the natural one. For exam-
ple, the constraint (4), the sum pi + pj will be replaced by

∑k
j=1 pij for the hyperedge

(pi1 , pi2 , . . . , pik). The “half-integrality” gap result will now say that the prices are in the set
{0, (1−1/k)(C−1), C−1}. Finally, we can prove the following counterparts of Theorem 2.2
and Proposition 2.3 by straightforward generalizations of their proofs

Theorem 2.4 For every C > 1, there an algorithm that is a (2k−1)C−k+1
kC

approximation for
the pricing problem with unit-demand bidders with demand size at most k and budgets from
B = {1, C}.
Proposition 2.5 There exist an instance of UDk({1, C}) for which the the integrality gap

of the LP used above is at least (2k−1)C−k+1
kC

.
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2.6 Budget Range [1, C]

Another interesting restriction on the range of buyer’s budgets is to an interval B = [1, C],
which clearly generalizes the previous doubleton case {1, C}. For this case, denoted UD2([1, C]),
we obtain the following approximation.

Proposition 2.6 For every C > 1, there is a polynomial time (1 + ln C)-approximation
algorithm for the unit-demand pricing problem with k = 2 and budgets from B = [1, C].

Proof: Consider the best single price (same price for all goods) in the range [1, C]. We
claim that the revenue from this single price is always within factor 1 + ln C of the sum of
budgets of all the buyers (denote this quantity by B), and clearly B is an upper bound on
the maximum revenue. Assuming the claim, the proof is complete by observing that the
best single price can always be attained by one of the budgets appearing in the input, and
thus the algorithm need only try at most n different prices.

We conclude the proof by proving that for every ε > 0, there exists a pε price in [1, C]
such that the revenue from pε is at least B

1+ε+ ε ln C
ln(1+ε)

. Note that this implies the existence of

a price that attains a revenue of at least B/(1 + ln C) as the above result holds for every
ε > 0 (and limε→0 ε/ ln(1 + ε) → 1). Next, we argue the existence of pε. First round down
all the budgets to the largest power of (1 + ε). Note that this changes the total budget to
B′ ≥ B/(1 + ε). Further, after rounding down there are m ≤ ln1+ε C many distinct budget
values greater than 1. For 0 ≤ i ≤ m, let there be ni budgets with values (1+ ε)i. Note that
B′ =

∑m
i=0(1 + ε)ini. Further, for every 0 ≤ i ≤ m, let Ri = (1 + ε)i

∑m
j=i nj be the revenue

obtained by fixing the single price to (1 + ε)i. It is not too hard to verify that

B′ = R0 +
ε

1 + ε

(
m∑

i=1

Ri

)
.

Note that best possible revenue is
max

0≤i≤m
Ri.

Thus, the best possible revenue is at least the value of the optimum to the following math-
ematical program

min

(
max

0≤i≤m
yi

)
subject to:

y0 +
ε

1 + ε

(
m∑

i=1

yi

)
= B′ (11)

yi ≥ 0 for every 0 ≤ i ≤ m

We claim that the optimum above occurs when all the yi’s are equal. (If not, we could
change the yi’s and yj’s with the largest and second largest values by small enough amounts
so that the constraint (11) is still satisfied but the objective value decreases.)
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max
∑

(i,j)∈E

πij subject to:

∀(i, i) ∈ E πii ≤ pi (12)

∀(i, j) ∈ E, i 6= j πij ≤ pi + pj (13)

∀(i, j) ∈ E, i 6= j πij ≤ 2− pi − pj (14)

∀i ∈ V 0 ≤ pi ≤ 1 (15)

∀(i, j) ∈ E πij ≥ 0 (16)

Figure 2: LP relaxation for the single-minded bidders setting

Thus, the best single price obtains a revenue of at least

B′

1 + εm
1+ε

≥ B′

1 + ε ln1+ε C
1+ε

≥ B

(1 + ε)
(
1 + ε ln C

(1+ε) ln(1+ε)

) =
B

1 + ε + ε ln C
ln 1+ε

,

as desired. ¥

One can try a natural extension of our LP-relaxation technique for {1, C} to this more
general case [1, C]. However, it turns out that the resulting LP has integrality gap 1 + ln C,
and thus cannot offer improved approximation.

3 Single-Minded Buyers in Commoditized Markets

We now consider the pricing problem for single minded bidders when all the bidders have
the same budget, which can be assumed w.l.o.g. to be 1. That is, we are interested in pricing
schemes for the SM2({1}) model. We extend our techniques from Section 2 to get a pricing

algorithm with an approximation factor of 6+
√

2
5+
√

2
≈ 1.156 (Theorem 3.2). As in the case of

single-minded bidders, our rounding procedure is tight (optimal), as we show that this LP
relaxation has a matching integrality gap.

It is not difficult to verify the LP in Figure 2 is a relaxation for our problem SM2({1}).
As in the UD2({1, C}), we first observe that an optimal basic feasible solution to the LP

relaxation is half integral.

Proposition 3.1 Every optimal basic feasible solution to the LP in Figure 2 is half integral.
More precisely, if ({p∗i }i∈V , {π∗ij}(i,j)∈E) is such a solution then p∗i ∈ {0, 1

2
, 1} for all i.
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The proof is very similar to that of Proposition 2.1 and is omitted (we have to analyze
fewer because C = 1).

We next analyze the following randomized algorithm4.

Algorithm AlgoSM :

1. Solve the LP in Figure 2 to obtain an optimal basic feasible solution with
price variables {pi}i∈V .

2. Fix prices according to the three schemes below and pick the one that gener-
ates the maximum revenue.

(a) Assign a price pi to vertex i.

(b) If pi 6= 1, assign a price of pi to vertex i, else assign a price of 1/2.

(c) If pi 6= 1/2, assign a price of pi to vertex i, else assign a price of 0 with
probability 1/

√
2 and a price of 1 with probability 1− 1/

√
2.

Theorem 3.2 AlgoSM achieves 6+
√

2
5+
√

2
approximation for the pricing problem with single-

minded bidders, desired sets of size at most 2, and unit budgets. That is, expected revenue
of AlgoSM is at least 5+

√
2

6+
√

2
fraction of the optimum for SM2({1}).

Proof: Fix an arbitrary edge (i, j) ∈ E. Let πa
ij, π

b
ij and πc

ij be the (expected) revenue that
the pricing schemes in steps 2(a), 2(b) and 2(c) in AlgoSM generate for that edge. By
linearity of expectation, the claimed result will follow if

max
(
πa

ij, π
b
ij, π

c
ij

) ≥ 5 +
√

2

6 +
√

2
· πij. (17)

To prove the above, we will show the following inequality.

1

2
· πa

ij +
2

6 +
√

2
· πb

ij +
2 +

√
2

2(6 +
√

2)
· πc

ij ≥
5 +

√
2

6 +
√

2
· πij. (18)

By Proposition 3.1, we know that pi, pj ∈ {0, 1
2
, 1}. A simple case analysis (for the eight

possible values of (pi, pj)) proves (18). For example, consider the case when pi = 1/2 and
pj = 1. In this case πij = 1/2 (due to constraint (14) in the LP). It is easy to check that
πa

ij = 0, πb
ij = 1 and πij = 1/

√
2 · 1 + (1− 1/

√
2) · 0. Thus, we have

1

2
·πa

ij+
2

6 +
√

2
·πb

ij+
2 +

√
2

2(6 +
√

2)
·πc

ij =
1

2
·0+

2

6 +
√

2
·1+

2 +
√

2

2(6 +
√

2)
· 1√

2
=

5 +
√

2

6 +
√

2
·1
2

=
5 +

√
2

6 +
√

2
·πij,

4A minor technical modification is required: since the probability used in step 2(c) is irrational, we need
to approximate it so as to work in polynomial time.
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as desired. The calculations for the other cases (and the case of self-loops, i.e. i = j) are
similar and omitted. ¥

The rounding procedure above is tight (optimal), as the following proposition shows.

Proposition 3.3 Let ε > 0 be a real number. There exist an instance of SM2({1}) for

which the the integrality gap of the LP in Figure 2 is at least 6+
√

2
5+
√

2
− ε.

Proof: Consider the following graph, with all costs being 1. The graph consist of n + 1
vertices; n of the vertices form a complete graph, with each edge having a multiplicity of a

n
,

where a = 1 +
√

2.5 The last vertex, call it w, has 2n self loops and an edge to each of the
other n vertices (with multiplicity of 1).

The idea is the following. The LP will set the price of w to be 1 and the rest of the prices
are set to 1

2
. Thus, the LP gets a total revenue of

a

n
· n(n− 1)

2
+ 2n +

n

2
=

a

2
(n− 1) +

5n

2
=

a + 5

2
n− a

2
.

Below we will show that the OPT for this graph is at most (neglecting lower-order terms):

(
max

(
a + 2

4
,
a

2
,
(a + 1)2

4a

)
+ 2

)
· n (19)

Now for a ≥ 2, a
2
≥ a+2

4
. Further, (a+1)2

4a
≥ a

2
if a2−2a−1 ≤ 0, which happens if a ≤ 1+

√
2.

Finally, (a+1)2

4a
> a+2

4
. Thus, we have the following:

max

(
a + 2

4
,
a

2
,
(a + 1)2

4a

)
=

{
(a+1)2

4a
if a ≤ 1 +

√
2

a
2

if a ≥ 1 +
√

2

The integrality gap is maximized when a = 1 +
√

2, which for large enough n gives a gap of
at least

a+5
2

a
2

+ 2
− ε =

a + 5

a + 4
− ε =

6 +
√

2

5 +
√

2
− ε.

Next, we prove (19). It will be convenient to denote α = a
n
.

First observe that in OPT, there is always a pricing where w is priced at 1,6 which gives
a revenue of 2n from the self loops. Now assume of the remaining n vertices, x ≥ 0, y ≥ 0

5The multiplicity a
n is not an integer or even rational; formally, we approximate it using a rational number

to within any desired accuracy, and then increase all the multiplicities by the same large enough factor, which
cancels out in the final ratio.

6If w is priced at 0 then obviously, it is not optimal. If the price is 1
2 , then the total revenue from self

loops is n and another at most n from the edges from w to other nodes. If price is changed to 1, one gets a
revenue of 2n from the self loops, which is at least as much as the case when price is set to 1

2 .
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and z ≥ 0 nodes have prices 0, 1/2 and 1 respectively. Note that z +x+ y = n. In this case,
the revenue from the non-loop edges is

x + α

(
y(y − 1)

2
+

xy

2
+ xz

)

= x +
αy(y − 1)

2
+

αxy

2
+ αnx− αxy − αx2

= x(αn + 1− αx) +
αy(y − x− 1)

2
. (20)

Now if y < x + 1, then to maximize (20), it is better to set y = 0. In this case we want to
maximize

x(αn + 1− αx),

which happens at x = αn+1
2α

giving a value of

αn + 1

2α

(
αn + 1

2

)
=

(αn + 1)2

4α
=

(a + 1)2

4a
· n. (21)

Now if y ≥ x+1, then for any fixed x, it is good to set y as large as possible to maximize
(20). That is, set y = n− x. Substituting this in (20), we need to maximize

x(1 + αn)−αx2 +

(
αn− αx

2

)
(n− 1− 2x) =

= x + αnx− αx2 +
αn(n− 1)

2
− αnx− αx(n− 1)

2
+ αx2

=
αn(n− 1)

2
+ x

(2 + α− αn)

2

'
(

a

2
+

x(2− a)

2n

)
· n, (22)

where in the last equation, we removed lower-order terms. Now to maximize (22), there are
two cases. If a > 2, then one should set x = 0 and if a ≤ 2, the x should be set to as large
a value as possible, which is n

2
(recall that we are in the case that y ≥ x + 1 and also that

x + y ≤ n). Thus, (22) is at most

max

(
a

2
,
a + 2

4

)
· n

¥

We note that the case of k = 2 and B = {1} is the simplest non-trivial case for the
single-minded buyers model. Our algorithm and proofs crucially use this, and while it
may be possible to extend the techniques to more complex scenarios (e.g., for larger k, or
B = {1, C}), we do not see an easy extension.
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4 An online 4-approximation

In this section, we consider the following online version of the UD2(·) and SM2(·) problems.
Buyers are assumed to be “in the system” at the beginning and the goods arrive in an online
fashion. When a good arrives, any buyer who is interested submits a bid and the seller has
to price this good before the next good arrives. We assume that every buyer is interested in
at most two items and the seller knows the identity of each buyer but only finds out about
the exact set of elements the buyer is interested in after the buyer has bid for both the items
he is interested in. The price that a buyer pays follows the same rules as in UD2(·) and
SM2(·) models respectively. In the graph abstraction of the UD2(·) and SM2(·), the online
model has the following interpretation. At every step, a vertex in the underlying graph
arrives. Once a vertex appears, all the edges incident on it (along with the edge weights)
are revealed to the seller. But the only way the seller knows about the other endpoint of
an edge is if that vertex had arrived earlier. Under these constraints, the seller has to price
every vertex as it arrives, so as to make as much revenue as possible. For the rest of the
section, we will only talk about the UD2(·) model. The discussion holds equally well for the
SM2(·) model (just replace the prices of ∞ by 0).

The (offline) algorithm in [BB06] can be interpreted in a weaker online model in which
when a vertex arrives, the seller has the full information about the edges incident on it.
That is, if the other endpoint is in the “future” then the seller also gets to know about this
other endpoint. We now restate the algorithm in [BB06] that works in this full-information
scenario. Initially with probability 1/2 decide on “left” or “right”. For the ease of exposition,
assume that the algorithm chose left. When a vertex (say i) arrives, with probability 1/2
tag it as a left vertex or a right vertex (unless it is already assigned a tag). If i is a right
vertex then assign it a price ∞. Otherwise look at the set of neighboring vertices of i (recall
that in this weaker model the seller knows everything about the edge incident on i). If some
neighbor j has not arrived yet then assign j one of the tags with equal probability. Let N ′(i)
denote the set of neighbors of i that are tagged right. Now consider all edges between i and
N ′(i) and set the price of i to be the best fixed price given that the vertices in N ′(i) are
priced at ∞. By the analysis in [BB06], this algorithm is 4-competitive.

We now consider the more general (true online) model, where the seller has no information
about the vertices that are yet to arrive. To clarify the difference between our online model
and the weaker model we used above, consider a graph on four vertices a, b, c, d and two
edges {a, c} and {b, d}. After vertices a and b arrive (but before c and d arrive), the seller
sees (the identity of) only one endpoint of each edge, and cannot differentiate it from a
scenario where the second edge is actually {b, c}. This is in contrast to the weaker where the
identities of both endpoints are revealed and thus the seller can differentiate between these
two scenarios.

For our (more general) model, we consider the following refinement of the algorithm
in [BB06]. For any vertex i, let p∗i denote the best fixed price for vertex i, given that all of
its neighbors are priced at ∞. Recall that in our online model, once a vertex arrives, the
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seller knows the weights of all the incident edges. Thus, the seller can calculate the price p∗i .
Given this, the online algorithm is very simple.

Algorithm: When each vertex i arrives,

• Compute its best fixed price p∗i .

• With probability 1/2 set its price pi = ∞ and with probability 1/2 set pi = p∗i .

We have the following performance guarantee.

Theorem 4.1 For the online UD2(·) model, the algorithm above is 4-competitive in the
expected sense.

Proof: For any vertex i, let R(i) denote the maximum revenue obtainable from i. That is
R(i) = πii(p

∗
i )+

∑
(i,j)∈E πij(p

∗
i ,∞), where πij(pi, pj) is zero if min(pi, pj) > cij and min(pi, pj)

otherwise. πii(pi) is zero if pi > cii and pi otherwise7. It is not too hard to check that

OPT ≤
∑
i∈V

R(i)

=
∑

(i,j)∈E

(
πij(p

∗
i ,∞) + πij(∞, p∗j)

)
+

∑

(i,i)∈E

πii(p
∗
i ), (23)

where OPT is the revenue of the optimal offline pricing. Now fix an edge (i, j) ∈ E, with
i 6= j. With probability 1/4 each, the algorithm sets the prices to (pi, pj) = (p∗i ,∞) and
(pi, pj) = (∞, p∗j). Thus, the expected revenue that the algorithm generates for the edge
(i, j) is at least

1

4
· πij(p

∗
i ,∞) +

1

4
· πij(∞, p∗j). (24)

Now consider a self loop (i, i) ∈ E. With probability of 1/2, the algorithm set the price
pi = p∗. Thus, the expected revenue that the algorithm generates from the self loop (i, i) is
at least 1

2
· πii, which along with (23), (24) and linearity of expectation completes the proof.

¥

5 Conclusions

We have shown near-optimal algorithms for computing profit-maximizing prices in various
scenarios of restricted bidder types. As argued earlier, these restricted scenarios may be
applicable in many situations that do not require solving the most general problem. In
practice, every percent of improvement counts, requiring us to improve one (small) constant
to another. In fact, these problems fall in a familiar regime – the challenge of designing
algorithmic techniques that beat the rather naive approach of a single price for all goods.

7 For the ease of exposition, we assume that every vertex has at most one self loop.
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Indeed, in one example given in Section 1.1, our algorithm can increase the guaranteed profit
by 20% and decrease the “potentially lost” profit almost by half.
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