
Greedy List Intersection
Robert Krauthgamer #, Aranyak Mehta ∗, Vijayshankar Raman †, Atri Rudra‡

#Weizmann Institute, Israel and IBM Almaden, USA. Email: robert.krauthgamer@weizmann.ac.il
∗Google Inc., USA. Email: aranyak@google.com
†IBM Almaden, USA. Email: ravijay@us.ibm.com

‡University at Buffalo, State University of New York, USA. Email: atri@cse.buffalo.edu

Abstract— A common technique for processing conjunctive
queries is to first match each predicate separately using an index
lookup, and then compute the intersection of the resulting row-
id lists, via an AND-tree. The performance of this technique
depends crucially on the order of lists in this tree: it is important
to compute early the intersections that will produce small results.
But this optimization is hard to do when the data or predicates
have correlation.

We present a new algorithm for ordering the lists in an AND-
tree by sampling the intermediate intersection sizes. We prove
that our algorithm is near-optimal and validate its effectiveness
experimentally on datasets with a variety of distributions.

I. INTRODUCTION

Correlation is a persistent problem for the query processors
of database systems. Over the years, many have observed that
the standard System-R assumption of independent attribute-
value selections does not hold in practice, and have proposed
various techniques towards addressing this (e.g, [1]).

Nevertheless, query optimization is still an unsolved prob-
lem when the data is correlated, for two reasons. First, the mul-
tidimensional histograms and other synopsis structures used to
store correlation statistics have a combinatorial explosion with
the number of columns, and so are very expensive to construct
as well as maintain. Second, even if the correlation statistics
were available, using correlation information in a correct way
requires the optimizer to do an expensive numerical procedure
that optimizes for maximum entropy [2]. Thus, most databases
implementations rely heavily on independence assumptions.

A. Correlation problem in Semijoins

One area where correlation is particularly problematic is
for semijoin operations that are used to answer conjunctive
queries over large databases. In these operations, one sepa-
rately computes the set of objects matching each predicate,
and then intersects these sets to find the objects matching the
conjunction. We now consider some examples:
1. Star joins: The following query analyzes coffee sales in

California by joining a fact table Orders with multiple
dimension tables:
SELECT S.city, SUM(O.quantity), COUNT(E.name)

FROM orders O, cust C, store S, product P, employee E

WHERE O.cId=C.id and O.sId=S.id and O.pId=P.id and O.empId=e.id

C.age=65, S.state=CA, P.type=COFFEE, E.type=TEMP

GROUP BY S.city

Many DBMSs would answer this query by first intersecting
4 lists of row ids (RIDs), each built using a corresponding
index:

L1 = {Orders.id | Orders.cId = Cust.id, Cust.age = 65},
L2 = {Orders.id | Orders.sId = Store.id, Store.state = CA},
. . .;

and then fetching and aggregating the rows corresponding
to the RIDs in L1 ∩ L2 ∩ · · · .

2. Scans in Column Stores: Recently there has been a spurt
of interest in column stores (e.g, [3]). These would store
a schema like the above as a denormalized “universal
relation”, decomposed into separate columns for type, state,
age, quantity, and so on. A column store does not store a
RID with these decomposed columns; the columns are all
sorted by RID, so the RID for a value is indicated by its
position in the column. To answer the previous example
query, a column store will use its columns to find the list
of matching RIDs for each predicate, and then intersect the
RID-lists.

3. Keyword Search: Consider a query for ("query" and

("optimisation" or "optimization")) against a
search engine. It is typically processed as follows. First,
each keyword is separately looked up in an (inverted list)
index to find 3 lists Lquery, Loptimisation, and Loptimization

of matching document ids, and the second and third lists
are merged into one sorted list. Next, the two remaining
lists are intersected and the ids are used to fetch URLs and
document summaries for display.
The intersection is often done via an AND-tree, a binary

tree whose leaves are the input lists and whose internal
nodes represent intersection operators. The performance of this
intersection depends on the ordering of the lists within the tree.
Intuitively, it is more efficient to form smaller intersections
early in the tree, by intersecting together smaller lists or lists
that have fewer elements in common.

Correlation is problematic for this intersection because the
intersection sizes can no longer be estimated by multiplying
together the selectivities of individual predicates.

B. State of the Art

The most common implementation of list intersection in
data warehouses, column stores, and search engines, uses left-
deep AND-trees where the k input lists L1, L2, . . . Lk are

arranged by increasing (estimated) size from bottom to top
(in the tree). The intuition is that we want to form smaller
intersections earlier in the tree. However, this method may
perform poorly when the predicates are correlated, because
a pair of large lists may have a smaller intersection than a
pair of small lists. Correlation is a well-known problem in
databases and there is empirical evidence that correlation can
result in cardinality estimates being wrong by many orders of
magnitude, see e.g. [4], [1].

An alternative implementation proposed by Demaine et
al. [5] is a round-robin intersection that works on sorted lists.
It starts with an element from one list, and looks for a match
in the next list. If none is found, it continues in a round-robin
fashion, with the next higher element from this second list.
This is an extension to k lists of a comparison-based process
that computes the intersection of two lists via an alternating
sequence of doubling searches.

Neither of these two solutions is really satisfying. The first is
obviously vulnerable to correlations. The second is guaranteed
to be no worse than a factor of k from the best possible
intersection (informally, because the algorithm operates in
round-robin fashion, once in k tries it has to find a good list).
But in many common inputs it actually performs a factor k
worse than a naive left-deep AND-tree. For example, suppose
the predicates were completely independent and selected rows
with probabilities p1 ≤ p2 ≤ · · · ≤ pk, and suppose further
that {pj} forms (or is dominated by) a geometric sequence
bounded by say 1/2. For a domain with N elements, an AND-
tree that orders the lists by increasing size would take time
O(N(p1 + p1p2 + · · · + p1p2 . . . pk−1)) = O(p1N), while
the round-robin intersection would take time proportional to
Nk/(1

p1
+ · · · + 1

pk
) = Ω(kp1N). This behavior was also

experimentally observed in [6].
The round-robin method also has two practical limitations.

First, it performs simultaneous random accesses to k lists.
Second, these accesses are inherently serial and thus have
to be low-latency operations. In contrast, a left-deep AND-
tree accesses only two lists at a time, and a straightforward
implementation of it requires random accesses to only one list.
Even here, a considerable speedup is possible by dispatching
a large batch of random accesses in parallel. This is especially
useful when the lists are stored on a disk-array, or at remote
data sources.

C. Contribution of this paper

We present a simple adaptive greedy algorithm for list
intersections that solves the correlation problem. The essential
idea is to order lists not by their marginal (single-predicate)
selectivities, but rather by their conditional selectivities with
respect to the portion of the intersection that has already been
computed. Our method has strong theoretical guarantees on
its worst case performance.

We also present a sampling procedure that computes these
conditional selectivities at query run time, so that no enhance-
ment needs to be made to the optimizer statistics.

We experimentally validate the efficacy of our algorithm and
estimate the overhead of our sampling procedure by extensive
experiments on a variety of data distributions.

To streamline the presentation, we focus throughout the
paper on the data warehouse scenario, and only touch upon
the extension to other scenarios in section IV.

D. Other Related Work

Tree-based RID-list intersection has been used in query pro-
cessors for a long time. Among the earliest to use the greedy
algorithm of ordering by list size was [7], who proposed the
use of an AND-tree for accessing a single table using multiple
indexes.

Round-robin intersection algorithms first arose in the con-
text of AND queries in search engines. Demaine et al. [5]
introduced and analyzed a round-robin set-intersection al-
gorithm that is based on a sequence of doubling searches.
Subsequently, Barbay et al. [8] have generalized the analysis
of this algorithm to a different cost-model. Heuristic improve-
ments of this algorithm were studied experimentally on Google
query logs in [6], [9]. A probabilistic version of this round-
robin algorithm was used by Raman et al. [10] for RID-list
intersection.

In XML databases, RID-list intersection is used in finding
all the matching occurrences for a twig pattern that selec-
tion predicates are on multiple elements related by an XML
tree structure. [11] proposed a holistic twig join algorithm,
TwigStack, for matching an XML twig pattern. IBM’s DB2
XML has implemented a similar algorithm for its XANDOR
operator [12]. TwigStack is similar to round-robin intersection,
navigating around the legs for results matching a pattern. Our
algorithm can be applied to address correlation in all of these
cases.

The analysis of our adaptive greedy algorithm uses tech-
niques from the field of Approximation Algorithms. In par-
ticular, we exploit a connection to a different optimization
problem, called the Min-Sum Set-Cover (MSSC) problem. In
particular, we shall rely on previous work of Feige, Lovász
and Tetali [13], who proved that the greedy algorithm achieves
4-approximation for this problem.1

a) Pipelined filters.: A variant of MSSC, studied by
Munagala et al. [14], is the pipelined filters problem. In this
variant, a single list L0 is given as the “stream” from which
tuples are being generated. All predicates are evaluated by
scanning this stream, so they can be treated as lists that support
only a contains() interface that runs in O(1) time. The job of
the pipelined filters algorithm is to choose an ordering of these
other lists. [14] apply MSSC by treating the complements of
these lists as sets in a set covering. They show that the greedy
set cover heuristic is a 4-approximation for this problem, and
also study the online case (where L0 is a stream of unknown
tuples).

1An algorithm for an optimization problem is said to be an α-approximation
(for some α ≥ 1) if for every possible input, the value of the objective function
obtained by the algorithm’s solution is at least 1/α times the value obtained
by the optimal solution.

The crucial difference between this problem and the general
list intersection problem is that an algorithm for pipelined
filters is restricted to use a particular L0, and apply the other
predicates via contains() only. Hence, every algorithm has
to inspect every element in the universe at least once. In our
context, this would be no better than doing a table scan on
the entire fact table, and applying the predicates on each row.
Another difference is in the access to the lists – our setting
accommodates sampling and hence estimation of (certain)
conditional selectivities, which is not possible in the online
(streaming) scenario of [14], where it would correspond to
sampling from future tuples. Finally, the pipeline of filters
corresponds to a left-deep AND-tree, while our model allows
arbitrary AND-trees; for example, one can form separate lists
for say age=65 and type=COFFEE, and intersect them, rather
than applying each of these predicates one by one on a possibly
much larger list.

E. Organization of the Paper

We present our greedy algorithm in Section II and prove
rigorous theoretical guarantees for a model that captures the
data warehouse scenario. in Section III, we present a sampling
procedure required to implement our greedy algorithm. We
extend our results to other scenarios (that are not captured
by the data warehouse example) in Section IV. In Section V,
we present our experimental results. We conclude with some
discussion and directions for future work in Section VI.

Due to space restriction, we have omitted the proofs of some
theorems. These omitted proofs can be found in the companion
technical report [15].

II. OUR GREEDY ALGORITHM

Our list intersection algorithm builds on top of a basic
infrastructure: the access method interface provided by the lists
being intersected. The capability of this interface determines
the cost model for intersection.

The two scenarios presented in the introduction – data
warehouse and column stores, lead to different interfaces (and
different cost models). In this section we present our intersec-
tion algorithm, focusing on the data warehouse scenario and
associated cost model. We will return to the other scenario in
Section IV.

A. List Interface

The lists being intersected are specified in terms of
tables and predicates over the tables, such as L1 =
{Orders.id | Orders.cId = Cust.id, Cust.age = 65}. We access
the elements in each such list via two kinds of operations:
• iterate(): This is an ability to iterate through the elements

of the list in pipelined fashion.
• contains(rid): This looks up into the list for occurrence of

the specified RID.
These two basic routines can be implemented in a variety

of ways. One could retrieve and materialize all matching RIDs
in a hash table so that subsequent contains() is fast. Or, one
could implement contains() via a direct lookup into the fact

table to retrieve the matching row, and evaluate the predicate
directly over that row.

B. The Min-Size Cost Model

Given this basic list interface, an intersection algorithm is
implemented as a tree of pairwise intersection operators over
the lists. The cost (running time) of this AND-tree is the sum
of the costs of the pairwise intersection operators in the tree.

We model the cost of intersecting two lists Lsmall,
Llarge (we assume wlog that |Lsmall| ≤ |Llarge|) as
min{|Lsmall|, |Llarge|}. We have found this cost model to
match a variety of implementation, that all follow the pattern
of — for each element x in Lsmall, check if Llarge contains x.
Here, Lsmall has to support an iterator interface, while Llarge

need only support a contains() operation that runs in constant
time.

We observe that under this cost model, the optimal AND-
tree is always a left-deep tree (see [15] for a proof). Thus,
Lsmall has to be formed explicitly only for the left-most leaf;
it is available in a pipelined fashion at all higher tree levels.

In our data warehouse example, Lsmall is formed by index
lookups, such as on Cust.age to find {Cust.id | age = 65}, and
then for each id x therein, lookup an index on Orders.cId to
find {Orders.id | cId = x}. Llarge needs to support contains(),
and can be implemented in two ways:
1. Llarge can be formed explicitly as described for Lsmall, and

then built into a hash table.
2. Llarge.contains() can be implemented without forming

Llarge, via index lookups: to check if a RID is contained in
say L2 = {Orders.id | O.sId = Store.id and Store.state =
CA}, we just fetch the corresponding row (by a lookup into
the index on Orders.id and then into Store.id) and evaluate
the predicate.

C. The Greedy Algorithm

We propose and analyze a new algorithm that orders the lists
into a left-deep AND-tree, dynamically, in a greedy manner.
Denoting the input k lists by L = {L1, L2, . . . , Lk}, our
greedy algorithm chooses lists G0, G1, . . . as follows:
1. Initialization: Start with a list of smallest size G0 =

argminL∈L |L|.
2. Iteratively for i = 1, 2, . . .: Assuming the intersection G0∩

G1 ∩ . . . ∩ Gi−1 was already computed, choose the next
list Gi to intersect with, such that the (estimated) size of
|(G0 ∩G1 ∩ · · ·Gi−1) ∩ (Gi)| is minimized.

We will initially assume that perfectly accurate intersection
size estimates are available. In Section III we provide an esti-
mation procedure that approximates the intersection size, and
analyze the effect of this approximation on our performance
guarantees.

One advantage of this greedy algorithm is its simplicity.
It uses an left-deep AND-tree structure, similarly to what is
currently implemented in most database systems. The AND-
tree is determined only on-the-fly as the intersection proceeds.
But this style of progressively building a plan fits well in

current query processors, as demonstrated by systems like
Progressive Optimization [16].

Perhaps a more important advantage of this greedy algo-
rithm is that it attains worst-case performance guarantees, as
we discuss next. For an input instance L, let GREEDY(L)
denote the cost incurred by the above greedy algorithm on
this instance, and let OPT(L) be the minimum possible cost
incurred by any AND-tree on this instance. We have the
following result:

Theorem 2.1: In the Min-Size cost model, the performance
of the greedy algorithm is always within factor of 8 of the
optimum, i.e., for every instance L, GREEDY(L) ≤ 8 ·
OPT(L). Further, it is NP-hard to find an ordering of the lists
that would give performance within factor better than 5/2 of
the optimum (even if the size of every intersection can be
computed).

The proof of Theorem 2.1 can be found in [15]. We
supplement our theoretical results with experimental evidence
that our greedy algorithm indeed performs better than the
commonly used heuristic, that of using a left-deep AND-tree
with the lists ordered by increasing size. The experiments are
described in detail in Section V.

III. SAMPLING PROCEDURE

We now revisit our assumption that perfectly accurate in-
tersection size estimates are available to the greedy algorithm.
We will use a simple procedure that estimates the intersection
size within small absolute error, and provide rigorous analysis
to show that it is sufficiently effective for the performance
guarantees derived in the previous sections. As we will see in
Theorem 3.4, the total cost (running time) of computing the
intersection estimates is polynomial in k, the number of lists
(which is expected to be small), and completely independent
of the list sizes (which are typically large).

Proposition 3.1: There is a randomized procedure that gets
as input 0 < ε, δ < 1 and two lists, namely a list A that
supports access to a random element, and a list B that supports
the operation contains() in constant time; and produces in
time O(1

ε2 log 1
δ) an estimate s such that

Pr
[
s = |A ∩B| ± ε|A|

]
≥ 1− δ.

Proof: (Sketch) The estimation procedure works as
follows:
1. Choose independently t = 1

ε2 log 1
δ elements from A,

2. Compute the number s′ of these elements that belong to
B.

3. Report the estimate s = s′
t · |A|.

The proof of the statement is a straightforward application of
Chernoff bounds.

In practice, the sampling step 1 can be done either by
materializing the list A and choosing elements from it, or by
scanning a pre-computed sample of the fact table and choosing
elements that belong to A.

We next show that in our setting, the absolute error of
Proposition 3.1 actually translates to a relative error. This
relative error does not pertain to the intersection, but rather

to its complement, as seen in the statement of the following
proposition. Indeed, this is the form which is required to
extend the analysis of Theorem 2.1.

Proposition 3.2: Let L = {L1, . . . , Lk} be an instance
of the list intersection problem such that ∩iLi = ∅, and
denote I = L1 ∩ L2 · · · ∩ Lj . If |I ∩ Lm| is estimated using
Proposition 3.1 for each m ∈ {j + 1, . . . , k} and m∗ is the
index yielding the smallest such estimate, then |I \ Lm∗ | ≥
(1− 2kε)maxm |I \ Lm|.

Proof: For m ∈ {j +1, . . . , k}, the estimate for |I ∩Lm|
naturally implies an estimate for I\Lm, which we shall denote
by sm. By our accuracy guarantee, for all such m

sm = |I \ Lm| ± ε|I|. (1)

Let m0 be the index that really maximizes |I \Lm|. Let m∗

be the index yielding the smallest estimate for |I ∩ Lm|, i.e.,
the largest estimate for |I \Lm|. Thus, sm∗ ≥ sm0 , and using
the accuracy guarantee (1) we deduce that

|I \Lm∗ | ≥ sm∗−ε|I| ≥ sm0−ε|I| ≥ |I \Lm0 |−2ε|I|. (2)

The following lemma will be key to completing the proof
of the proposition.

Lemma 3.3: There exists m ∈ {j +1, . . . , k} such that |I \
Lm| ≥ |I|/k.

Proof: [Proof of Lemma 3.3] Recall that ∩iLi = ∅. Thus,
every element in I does not belong to at least one list among
Lj+1, . . . , Lk, i.e., I ⊆ ∪k

m=j+1(I \ Lm). By averaging, at
least one of these lists I\Lm must have size at least |I|/(k−j).

We now continue proving the proposition. Using Lemma 3.3
we know that |I \ Lm0 | ≥ |I|/k, and together we conclude,
as required, that

|I \ Lm∗ | ≥ |I \ Lm0 | − 2ε|I| ≥ |I \ Lm0 | · (1− 2kε).

This completes the proof of Proposition 3.2.
What accuracy (value of ε > 0) do we need to choose

when applying Proposition 3.2 to the greedy list intersection?
A careful inspection of the proof of Theorem 2.1 reveals
that our the performance guarantees continue to hold, with
slightly worse constants, if the greedy algorithm chooses the
next list to intersect with using a constant approximation
to the intersection sizes. Specifically, suppose that for some
0 < α < 1, the greedy algorithm chooses lists G0, G1, . . . (in
this order), and that at each step j, the list Gj is only factor
α approximately optimal in the following sense (notice that
the factor α pertains not to the intersection, but rather to the
complement):

|(G0 ∩ · · · ∩Gj−1) \Gj | ≥
α ·max

L∈L
|(G0 ∩ · · · ∩Gj−1) \ L|. (3)

Note that α = 1 corresponds to an exact estimation of the
intersections, and the proof of Theorem 2.1 holds in this case.
For general α > 0, an inspection of the proof shows that the

performance guarantee of Theorem 2.1 increases by a factor
of at most 1/α.

From Proposition 3.2, we see that choosing the parameter ε
(of our estimation procedure) to be of the order of 1/k gives
a constant factor approximation of the above form. Choosing
the other parameter δ carefully gives the following:

Theorem 3.4: Let every intersection estimate used in the
greedy algorithm on input L be computed using Proposition
3.1 with ε ≤ 1/(8k) and δ ≤ 1/k2.
(a) The total cost (running time) of computing intersection
estimates is at most O(k4 log k), independently of the list
sizes.
(b) With high probability, the bounds in Theorem 2.1 hold
with larger constants.

Proof: Part (a) is immediate from Proposition 3.1, Since
the greedy algorithm performs at most k iterations, each
requiring at most k intersection estimates. It thus remains to
prove (b).

For simplicity, we first assume that the input instance L =
{L1, . . . , Lk} satisfies ∩iLi = ∅. By Propositions 3.2 and our
choice of ε and δ, we get that, with high probability, every
list Gj chosen by greedy at step j is factor 1/2 approximately
optimal in the sense of (3). It is enough that each estimate has,
say, accuracy parameter ε = 1/(8k) and confidence parameter
δ = 1/k2.

Now consider a general input L and denote I∗ = ∩iLi. We
partition the iterations into two groups, and deal with each
group separately. Let j′ ≥ 1 be the smallest value such that
|G0 ∩G1 ∩ · · · ∩Gj′ | ≤ 2|I∗|. For iterations j = 1, . . . , j′ −
1 (if any) we can essentially apply an argument similar to
Proposition 3.2: we just ignore the elements in I∗, which are
less than half the elements in I = G0 ∩ G1 ∩ · · · ∩ Gj , and
hence the term 1− 2kε should only be replaced by 1− 4kε;
as argued above, it can be shown that the algorithm chooses
a list that is O(1)-approximately optimal.

For iterations j = j′, . . . , k−1 (if any), we compare the cost
of our algorithm with that of a greedy algorithm that would
have had perfectly accurate estimates: Our algorithm has cost
at most O(|I∗|) per iteration, regardless of the accuracy of its
intersection estimates, while if the estimates were perfectly
accurate, would still cost at least |I∗|; hence, the possibly
inaccurate estimates can increase our upper bounds by at most
a constant factor.

IV. OTHER SCENARIOS AND COST MODELS

We now turn to alternative cost model proposed by [5],
which assumes that all the lists to be intersected have already
been sorted. The column store example of Section I-A fits well
into this model, because every column is kept sorted by RID.

On the other hand, this model is not valid in the data
warehouse scenario because the lists are formed by separate
index lookups for each matching dimension key. E.g., the
list of RIDs matching Cust.age = 65 is formed by separate
lookups into the index on Orders.cId for each Cust.id | age =
65. The result of each lookup is individually sorted on RID,
but the overall list is not.

A. The Comparisons Cost Model

In this model, the cost of intersecting two lists L1, L2 is
the minimum number of comparisons needed to “certify” the
intersection. This model assumes that both lists are already
sorted by RID. Then, the intersection is computed by an
alternating sequence of doubling searches2 (see Figure 1 for
illustration):
1. Start at the beginning of L1.
2. Take the next element in L1, and do a doubling search for

a match in L2.
3. Take the immediately next (higher) element of L2, and

search for a match in L1.
4. Go to Step 2.

L1

L2

unsuccessful
search

successful
search

RID

Fig. 1. Intersecting two sorted lists

The number of searches made by this algorithm could
sometimes be as small as |L1 ∩ L2|, and at other times as
large as 2 min{|L1|, |L2|}, depending on the “structure” of
the lists (again approximating the cost of a doubling search as
a constant).

B. The Round-Robin Algorithm

Demaine et al. [5] and Barbay and Kenyon [8] have ana-
lyzed an algorithm that is similar to the above, but runs in a
round-robin fashion over the k input lists. Their cost model
counts comparisons, and they show that the worst-case running
time of this algorithm is always within a factor of O(k) of
the smallest number of comparisons needed to certify the
intersection. They also show that a factor of Ω(k) is necessary:
there exists a family of inputs, for which no deterministic or
randomized algorithm can compute the intersection in less
than k times the number of comparisons in the intersection
certificate.

C. Analysis of the Greedy algorithm

For the Comparisons model, we show next that the greedy
algorithm is within a constant factor of the optimum plus the
size of the smallest list, `min = |G0| = minL∈L |L|; namely,
for every instance L, GREEDY(L) ≤ 8 ·OPT(L) + 16`min.
We get around the factor Ω(k) lower bound of Barbay and
Kenyon [8] by restricting OPT to be an AND-tree, and by
allowing an additive cost based on `min (but independent
of k). We further discuss the merits of the above bound
vs. the factor O(k) bound for round-robin in Section VI.
We also prove that the above bound is the best possible,

2 By doubling search we mean looking at values that are powers of two
away from where the last search terminated, and doing a final binary search.
We approximate this cost as O(1).

up to constant factors, since there are instances L for which
OPT(L) = O(1) and GREEDY(L) ≥ (1 − o(1))`min. This
instance shows that with our limited lookahead (information
about potential intersections), paying Ω(`min) is essentially
unavoidable, regardless of OPT(L).

Theorem 4.1: In the comparison cost model, the perfor-
mance of the greedy algorithm is always within factor of 8 of
the optimum (with an additive factor), i.e., for every instance
L, GREEDY(L) ≤ 8OPT(L)+16`min, where `min is length
of the smallest input list. Further, there is a family of instances
L for which GREEDY(L) ≥ (1− o(1))(OPT(L) + `min).

The proof can be found in [15]. Note that the optimum
AND-tree for the Min-Size model need not be optimal for the
Comparison model and vice versa. Also note that if we only
have estimates of intersection sizes (using Proposition 3.1),
the theoretical bounds hold, with slightly worse constants.

V. EXPERIMENTAL RESULTS

We validate the practical value of our algorithm via an
empirical evaluation that addresses two questions:
1. How does the algorithm perform in the presence of correla-

tions? In particular, is it really more resilient to correlations
than the common heuristic, and if so, is the performance
improvement substantial?

2. Is the sampling overhead negligible? Specifically, under
what circumstances can this algorithm be less efficient than
the common heuristic, and by how much.

To answer these question we conducted experiments that
compare the performance of the two algorithms in various
synthetic situations, including a variety of data distributions
(especially different correlations and soft functional dependen-
cies), and various query patterns. The theoretical analysis sug-
gests that our algorithm will outperform the common heuristic
by picking up correlations in the data, namely, by avoiding
positive correlations and embracing negative correlations. Fur-
thermore, the sampling procedure has been shown to use very
few samples, and is thus expected to have a rather negligible
impact when the data is even moderately large. However, our
theoretical analysis only counts certain operations and thus
ignores a multitude of important implementation issues, like
disk and memory operations, together with their access pattern
(sequential/random) and their caching policies, and so forth.

A. Basic Setup

We implemented (a simple variant of) the first example
mentioned in the Introduction, namely, conjunctive queries
over a fact table. In all the experiments, there is a fact table
with 107 rows, each identified by a unique row id (RID). The
fact table has 8 columns, denoted by the letter A to H , that are
partitioned into 3 groups: (1) A− E, (2) F −G, and (3) H;
columns from different groups are generated independently,
and columns within a group are correlated in a controlled
manner, as they are generated by soft functional dependencies.
The fact table is accompanied by an index for each of the
columns. All our queries are conjunctions of 5 predicates,
where each predicate is specified by an attribute and a range

of values, e.g. B ∈ [7, 407]. Each predicate in our experiments
typically has selectivity of 10%, but their ranges may be
correlated. It is important to note that both the fact table and
the indices were written onto disk, and all query procedures
rely on direct access to the disk (but with a warm start). A
more detailed description of the data and queries generation
is given below.

B. Machine Info

All experiments were carried out on an IBM POWER4
machine running AIX 5.2. The machine has one CPU and
8Gb of internal memory and, unless stated otherwise, the data
(fact tables and indexes) was written on a local disk. We note
however that our programs perform a query using relatively
small amount of memory, and rely mostly on disk access.

C. Data Generation

As mentioned above, our fact table has 107 rows and 8
columns. Its basic setup is as follows (some variations will
be discussed later): For each row, attribute A was generated
uniformly at random from the domain {1, 2, . . . , 105}. Then,
attributes B through E were each generated from the previous
one using a soft functional dependency: with probability p ∈
[0, 1] its value was chosen to be a deterministic function of
the previous attribute, and with probability 1−p its value was
uniform at random. Attributes B, C, D have domain sizes
104, 103, and 102, respectively, and for each one the functional
dependency is simply the previous attribute divided by 10 (i.e.,
B = A/10, C = B/10 and D = C/10). Attribute E has the
same domain as attribute A and its functional dependency is
that of complementarity, i.e. E = 105 −A. Attributes F −G
were generated similarly to A − B, but independent of A
and B, and attribute H was generated similarly to A but
again independently of all others. This model of correlations
aims to capture common instances; for example, a car’s make
(e.g. Toyota) is often a function of the car’s model (in this
case, Camry, Corolla, etc.). The single parameter p gives us a
convenient handle on the amount of correlation in the data.

Our queries are all a conjunction of 5 predicates, for
example

A ∈ [1500, 2499] ∧ B ∈ [150, 200] ∧ C ∈ [15, 20]
∧ E ∈ [2001, 3000] ∧ F ∈ [1, 999]

which leads to various selectivities and correlations, depending
on the choice of attributes. For example, in this query the
first predicate have selectivity 1%, and the third one has
selectivity 0.6%. Furthermore, attributes A and B are posi-
tively correlated, attributes A and E are negatively correlated,
and attributed A and F are not correlated. Note that the
correlations take effect in the query only if their ranges are
compatible. It’s important to note that incompatible ranges are
less likely to occur, as it corresponds (continuing our earlier
example) to querying abouts cars whose model is Civic and
their make is Toyota (rather than Honda).

0 500000 1000000

Standard Greedy (#lookups)

0

500000

1000000
O

ur
 a

lg
or

it
hm

 (
#l

oo
ku

ps
)

Single queries (#Runs=10*3 #Predicates=4+1 tbl7.U.p=0)

0 5000 10000 15000 20000 25000

Standard greedy (msec)

0

5000

10000

15000

20000

25000

O
ur

 a
lg

or
it

hm
 (

m
se

c)

Single queries (#Runs=10*3 #Predicates=4+1 tbl7.U.p=0)

Fig. 2. No degradation in performance, even with no correlations.

0.1 0.3 0.5 0.7 0.9

data correlation

0

1000000

2000000

3000000

nu
m

be
r

of
 lo

ok
up

s

#rows=10^7 #predicates=4+1 #queries=10

Standard greedy
Our algorithm

0.1 0.3 0.5 0.7 0.9

data correlation

0

10000

20000

30000

el
ap

se
d

ti
m

e
(m

se
c/

qu
er

y)

#rows=10^7 #predicates=4+1 #queries=10

Standard greedy
Our algorithm

Fig. 3. Our algorithm offers improved performance by detecting and exploiting correlations.

We need a methodology for repeating the same (actually
similar) query several times, so that our experimental evalua-
tion can report the average/maximum/minimum runtime for
processing a query. We do this by using the same query
“structure” but with different values. For instance, in the query
displayed above, the range of A could be chosen at random,
but then the ranges of B and C are derived from it as a
linear function. Whenever we report an aggregate for n > 1
repetitions of a query, we use the notion of a warm start,
which means that n+1 queries are run, one immediately after
the other, and the aggregate is computed on all but the first
query.

D. Experiments on Independent Data

The first experiment is designed to tackle the second ques-
tion raised at the beginning of Section V. We compare the per-
formance of our algorithm with that of the common heuristic
in the absence of any correlations in data. In this experiment,
the attributes are generated independently of each other, by
setting the correlation parameter p to 0. Our algorithm will
expend some amount of computation and data lookups towards
estimating intersection sizes (via sampling), but we expect it
will find no correlations to exploit. The results are depicted
in Fig. 2. The chart on the left measures the number of
table lookups, i.e. calls to the method contains(), and the

one of the right measures the total elapsed time measured
in milliseconds. (The former is the main ingredient of our
theoretical guarantees.) Each point in the plot represents a run
of the same query under the two algorithms; the point’s x
coordinate represents the performance of the common heuris-
tic, and its y coordinate represents the performance of our
algorithm. We generated 30 points by running 10 different
queries with predicate selectivities ranging from 1/10 to 1/20
(for all predicates), and repeating each such query 3 times at
random. The predicates used were A−D and F (but it should
not matter in this plot because p = 0).

Notice that all points are very close to the line y = x (i.e. at
45 degrees), shown by a dashed line. This is true both in terms
of lookups operations and in terms of elapsed time. Thus,
the two algorithms have essentially the same performance,
showing that the sampling overhead is negligible.

E. Experiments on Correlated Data

The next experiment is designed to compare our algorithm
with the common heuristic in the presence of correlation
in data. The data is generated according to the distribution
described in Section V-C, with the correlation parameter p
varying from 10% to 90%. The results are depicts in Fig 3.
The chart on the left shows the number of table lookups, i.e.
calls to the method contains(), and the one of the right shows

the total elapsed time measured in milliseconds. (The former
is the main ingredient of our theoretical guarantees.) The wide
bars represent the average over 10 queries, and the thin lines
plot the entire range (minimum to maximum). All queries had
the same structure, namely 4 correlated attributes (A−D) and
1 independent attribute (E). The selectivity of each of these
5 predicates is the same, 10%.

Observe that our algorithm consistently performs better
than the common heuristic even in the presence of moder-
ate correlations. The improvement offered by our algorithm
becomes more substantial as the correlation p increases. In
fact, the performance of the common heuristic degrades as the
correlation increases, while our algorithm maintains a rather
steady performance level– this is strong evidence that our
algorithm successfully detects and overcomes the correlations
in the data. This gives a positive answer to the first question
raised at the beginning of Section V, at least in a basic setup;
later, we will examine this phenomenon under other variants
of correlations in the data and queries.

The improvement in elapsed time is smaller than in the
number of lookups; for example, at p = 0.9, the average
number of lookups per query decreases by 42%, and the
average elapsed time decreases by 25%. The reason is that
the runtime is affected by the overhead of iterating over the
lists (especially the first one); this overhead tends to be a small,
but non-negligible, portion of the computational effort.

Finally, the errors in both algorithms are mostly similar,
except that the common heuristic tends to have minima that are
smaller (when compared to the respective average). The reason
is simple– the heuristic essentially chooses a random ordering
of the predicates (since they all have the same selectivity) and
thus it every once in a while it happens to be lucky in choosing
an ordering that exploits the correlations.

b) Varied Selectivity.: In this experiment we test the
dependence of our results above on the selectivity of the
predicates (i.e. on the size of the lists). Recall that in the
base experiment we used a standard selectivity parameter to
get lists which are about 10% of the domain size, for each
attribute A,B, C,D and F . Here we increase the selectivity of
predicates B, C and D in the following manner: the selectivity
of B, C and D go up to 0.8−1, 0.8−2 and 0.8−3 respectively,
causing the corresponding list sizes to shrink by factors of
0.8, 0.82 and 0.83 respectively. We observe (see Fig 4) that
our algorithm continues to give improved performance over
greedy, and essentially with the same factors as before (the
only difference being that now both algorithms perform faster
than before, since the list sizes are smaller).

c) Negative Correlation.: In the next experiment we
confirm the intuition that our algorithm does well in leveraging
negative correlations in data. Here we replace the predicate
based on attribute F by a predicate based on attribute E.
Recall that F was independent of A, while E is negatively
correlated with A, via the soft functional dependency of
inversion. We observe in the experiments that the algorithm
continues to perform much better than the standard greedy,
both in terms of running time and number of lookups (see

Fig 5). In fact we also observe that with a high correlation
parameter, the improvement in performance obtained by our
algorithm is much greater than in the case when we had only
positive correlations. Indeed, the algorithm seems to find the
correct negatively correlated predicates (A and E) to intersect
in the first step, which immediately reduces the size of the
intersection by a large amount, and results in savings later
too. We see that in the case of very high correlations (90%),
the standard greedy algorithm takes about 1.35 times as much
processing time on the average, and makes about 2.5 times
as many lookups as our algorithm on the average. Also we
observe that the spread in the processing time and in the
number of lookups is consistently smaller for our algorithm,
with the spread being close to 0 as the correlation parameter
increases. With correlation 90%, the maximum number of
lookups made by the standard greedy is almost 3.5 times those
made by our algorithm.

d) Skewed Data.: In the next set of experiments we
change the distribution from which the data is drawn. Instead
of a uniform distribution, as in the previous experiments, now
we pick our data from a very skewed distribution, namely a
Zipf (Power-Law) Distribution. Again, we vary our correlation
parameter from 10% to 90%. Our experimental results (see
Fig 6) show that the performance of our algorithm remains
significantly better than that of the common heuristic, confirm-
ing the hypothesis that the improved performance comes from
correlations in data and is independent of the base distribution.

e) Sample Size.: Next, we test the dependence of our
algorithm on the number of samples it takes in order to esti-
mate the intersection sizes. Theoretically we have guaranteed
that a small sample size (polynomial in k, the number of
lists) suffices to get good enough estimates. In the previous
experiments we have verified that indeed such small samples
can lead to significant improvement in efficiency, via our
algorithm. In this experiment, we observe the dependence on
the sample size, by varying the sample size from 1/128 to
64 times the standard value. As expected, Fig. 7 shows that
when the sample size is too small, the estimates are not good
enough, and the maximum as well as the average times and
number of lookups are large. In fact, the smallest run times
and lookups occur when the sample size factor is the one used
in our previous experiments.

f) Latency.: Finally, we evaluate the impact of latency (in
access to the data) on the performance of the two algorithms.
As pointed out earlier, larger latency may arise for various
reasons such as storage specs (e.g. disk arrays) or when
combining data sources (e.g. over the web). We thus compare
the performance of the algorithms in the usual configuration
when the data resides on a local disk, with one where the
data resides on a network file system. Although the number
of lookups is the same in both experiments, Fig. 8 shows that
our improvement in the elapsed time becomes bigger when
data has high latency (resides over the network). The reason
is that high latency has more dramatic effect on random access
to the data (lookup operations) vs. sequential access (iterating
over a list).

0.1 0.3 0.5 0.7 0.9

data correlation

0

500000

1000000

1500000

nu
m

be
r

of
 lo

ok
up

s

#rows=10^7 #predicates=4+1 #queries=10

Standard greedy
Our algorithm

0.1 0.3 0.5 0.7 0.9

data correlation

0

5000

10000

15000

el
ap

se
d

ti
m

e
(m

se
c/

qu
er

y)

#rows=10^7 #predicates=4+1 #queries=10

Standard greedy
Our algorithm

Fig. 4. A comparison using predicates of higher selectivity.

0.1 0.3 0.5 0.7 0.9

data correlation

0

1000000

2000000

3000000

nu
m

be
r

of
 lo

ok
up

s

#rows=10^7 #predicates=4+1 #queries=10

Standard greedy
Our algorithm

0.1 0.3 0.5 0.7 0.9

data correlation

0

10000

20000

30000

el
ap

se
d

ti
m

e
(m

se
c/

qu
er

y)

#rows=10^7 #predicates=4+1 #queries=10

Standard greedy
Our algorithm

Fig. 5. Leveraging negative correlations in data.

0.1 0.3 0.5 0.7 0.9

data correlation

0

1000000

2000000

3000000

nu
m

be
r

of
 lo

ok
up

s

#rows=10^7 #predicates=4+1 #queries=10

Standard greedy
Our algorithm

0.1 0.3 0.5 0.7 0.9

data correlation

0

10000

20000

30000

el
ap

se
d

ti
m

e
(m

se
c/

qu
er

y)

#rows=10^7 #predicates=4+1 #queries=10

Standard greedy
Our algorithm

Fig. 6. Data generated from a Zipf Distribution.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a simple greedy algorithm for the list
intersection problem. Our algorithm is similar in spirit to the
most commonly used heuristic, which orders lists in a left-
deep AND-tree in order of increasing (estimated) size. But
in contrast, our algorithm does have provably good worst-
case performance, and much greater resilience to correlations
between lists. In fact, the intuitive qualities of that common
heuristic can be explained (and even quantified analytically)
via our analysis: if the lists are not correlated, then list size

is a good proxy for intersection size, and hence our analysis
still holds. Our experimentation shows that these features of
the algorithm indeed occur empirically, under a variety of of
data distributions and correlations. In particular, the overhead
of our algorithm is in requiring new estimates after every
intersection operation; overall, this is factor k more overhead
than the heuristic approach, but as we showed, this cost is
worth paying in most practical scenarios.

It is natural to ask for an algorithm whose running time
achieves the “best of both worlds” (without running both the

1/1281/641/321/161/81/41/2 1 2 4 8 16 32 64

sample size (increase factor)

0

500000

1000000

1500000

2000000

2500000
#l

oo
ku

ps

#rows=10^7 #predicates=4+1 #queries=10 corr=0.90

1/1281/641/321/161/81/41/2 1 2 4 8 16 32 64

sample size (increase factor)

0

10000

20000

30000

el
ap

se
d

ti
m

e
(m

se
c/

qu
er

y)

#rows=10^7 #predicates=4+1 #queries=10 corr=0.90

Fig. 7. The dependence on the sample size used for intersection estimation

0 50000

100000

150000

200000

250000

Standard greedy (#lookups)

0

50000

100000

150000

200000

250000

O
ur

 a
lg

or
it

hm
 (

#l
oo

ku
ps

)

Single queries (#Runs=20*3 #Predicates=4+1)

0 1000

2000

3000

4000

Standard greedy (msec)

0

1000

2000

3000

4000

O
ur

 a
lg

or
it

hm
 (

m
se

c)

Single queries (#Runs=20*3 #Predicates=4+1)

0 5000

10000

15000

Standard greedy (msec)

0

5000

10000

15000

O
ur

 a
lg

or
it

hm
 (

m
se

c)

Single queries (#Runs=20*3 #Predicates=4+1)

Fig. 8. Comparison between elapsed time using a local disk (middle chart) and over the network (right). The number of lookups (left chart) is independent
of implementation.

round-robin and the greedy algorithms in parallel until one
of them terminates). Demaine et al. [6] evaluate a few hybrid
methods, but it seems that this question is still open. Another
important question is whether these techniques can be used to
do join ordering.

REFERENCES

[1] I. Ilyas et al., “CORDS: automatic discovery of correlations and soft
functional dependencies,” in SIGMOD, 2004.

[2] V. Markl et al., “Consistent selectivity estimation using maximum
entropy,” The VLDB Journal, vol. 16, 2007.

[3] M. Stonebraker et al., “C-store: A column-oriented dbms.” in VLDB,
2005.

[4] M. Stillger, G. Lohman, V. Markl, and M. Kandil, “LEO: DB2’s
LEarning Optimizer,” in VLDB, 2001.

[5] E. D. Demaine, A. López-Ortiz, and J. I. Munro, “Adaptive set intersec-
tions, unions, and differences,” in 11th Annual ACM-SIAM Symposium
on Discrete Algorithms, 2000.

[6] ——, “Experiments on adaptive set intersections for text retrieval
systems,” in 3rd International Workshop on Algorithm Engineering and
Experimentation (ALENEX), 2001.

[7] C. Mohan et al., “Single table access using multiple indexes: Optimiza-
tion, execution, and concurrency control techniques.” in EDBT, 1990.

[8] J. Barbay and C. Kenyon, “Adaptive intersection and t-threshold prob-
lems,” in SODA, 2002.

[9] J. Barbay, A. López-Ortiz, and T. Lu, “Faster adaptive set intersections
for text searching,” in Intl. Workshop on Experimental Algorithms, 2006.

[10] V. Raman, L. Qiao, et al., “Lazy adaptive rid-list intersection and
application to starjoins,” in SIGMOD, 2007.

[11] N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig joins: Optimal
XML pattern matching.” in SIGMOD, 2002.

[12] A. Balmin, T. Eliaz, J. Hornibrook, L. Lim, G. M. Lohman, D. Simmen,
M. Wang, , and C. Zhang, “Cost-based optimization in DB2 XML,” IBM
Systems Journal, vol. 45, no. 2, 2006.

[13] U. Feige, L. Lovász, and P. Tetali, “Approximating min sum set cover.”
Algorithmica, vol. 40, no. 4, pp. 219–234, 2004.

[14] K. Munagala, S. Babu, R. Motwani, and J. Widom, “The pipelined set
cover problem.” in 10th International Conference on Database Theory
(ICDT), 2005.

[15] R. Krauthgamer, A. Mehta, V. Raman, and A. Rudra, “Greedy
list intersection,” Department of Computer Science and Engineering,
University at Buffalo, Tech. Rep. 2007-11, 2007. [Online]. Available:
http://www.cse.buffalo.edu/tech-reps-listing.shtml

[16] V. Markl et al., “Robust Query Processing through Progressive Opti-
mization,” in SIGMOD, 2004.

http://www.cse.buffalo.edu/tech-reps-listing.shtml�

