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Abstract

We consider the k-balanced partitioning problem, where
the goal is to partition the vertices of an input graph G
into k equally sized components, while minimizing the
total weight of the edges connecting different compo-
nents. We allow k to be part of the input and denote
the cardinality of the vertex set by n. This problem is
a natural and important generalization of well-known
graph partitioning problems, including minimum bisec-
tion and minimum balanced cut.

We present a (bi-criteria) approximation algorithm
achieving an approximation of O(

√
log n log k), which

matches or improves over previous algorithms for all
relevant values of k. Our algorithm uses a semidefi-
nite relaxation which combines `22 metrics with spread-
ing metrics. Surprisingly, we show that the integrality
gap of the semidefinite relaxation is Ω(log k) even for
large values of k (e.g., k = nΩ(1)), implying that the de-
pendence on k of the approximation factor is necessary.
This is in contrast to previous approximation algorithms
for k-balanced partitioning, which are based on linear
programming relaxations and their approximation fac-
tor is independent of k.

1 Introduction

Graph partitioning is a family of optimization problems,
where we wish to break an input graph into pieces (sat-
isfying certain constraints), while minimizing the to-
tal weight of the edges (or vertices) connecting differ-
ent parts. A prototypical problem in this family is k-
balanced partitioning: given an input graph G = (V,E)
with edge weights w : E → R+ and an integer k, par-
tition the graph vertices into k parts of equal size, so
as to minimize the total weight of the edges connect-
ing different parts. Here and throughout, we denote
|V | = n, and note that k may be a function of n. The
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special case k = 2 is the famous minimum bisection
problem, which is already known to be NP-hard [14].
Consequently, a long line of research has been devoted
to polynomial-time approximation of various graph par-
titioning problems.

Work on approximation algorithms for the min-
imum bisection problem has proved to be extremely
fruitful, exhibiting strong and intrinsic connections to
mathematical disciplines such as metric geometry and
functional analysis, as well as to computational com-
plexity. It is best illustrated by briefly mentioning a few
key results regarding minimum bisection: The O(log n)
bi-criteria approximation by Leighton and Rao [22], as
well as the improvement to O(

√
log n) by Arora, Rao

and Vazirani [3], are seminal papers. They approxi-
mate minimum bisection via the closely related prob-
lem of sparsest cuts. Very recently, Räcke [23] obtained
a remarkable O(log n) (true) approximation, which
improves over the previous O(log1.5 n) by Feige and
Krauthgamer [12]. Finally, different inapproximability
results shown in the sequence of papers [6, 18, 19, 8] and
in [11], relate minimum bisection to the unique games
conjecture [17] and to refuting random 3SAT formulas,
and have transformed the area.

The k-balanced partitioning problem is motivated
by a wide range of applications in areas including scien-
tific computing, VLSI design, parallel computing, data
mining (clustering), social network analysis (commu-
nity discovery), and pattern recognition. For example,
in VLSI design it is often required to split designs too
large to fit in a single chip into many smaller parts of
(roughly) equal size, where each part is mapped onto a
separate chip. Compared to connections within a chip,
connections between chips are costly, slow, and power
consuming. Hence, it is desirable to reduce the capacity
of the cut defined by a partition. In parallel computa-
tion applications, a computation is modeled by a graph
(i.e., dataflow graph); a vertex models a computation
of an expression and an edge models communication of
a result of one expression to an operand of another ex-
pression. Partitioning determines the mapping of com-
putations to processors. As opposed to cut edges, edges
between vertices mapped to the same processor do not
require communication between processors. Since com-
munication between processors is slow, it is again desir-



able to reduce the cut.
Three types of approximation algorithms are known

for k-balanced partitioning, and they all provide bi-
criteria approximation. Formally, let a (k, ν)-balanced
partition be a partition of the vertices into k parts,
each of size at most νn/k. Then a bi-criteria algorithm
produces a (k, ν)-balanced partition for a fixed ν > 1,
but its value is compared against the optimal (k, 1)-
balanced partition. In fact, Andreev and Räcke [2]
proved that bi-criteria approximation is inevitable in the
sense that, unless P=NP, k-balanced partitioning has no
polynomial time (true) approximation within any finite
factor.

The first approximation algorithms for the k-
balanced partitioning problem were designed by
Leighton, Makedon, and Tragoudas [21] and by Simon
and Teng [24], based on recursively finding a minimum
bisection. This algorithm achieves an O(log k

√
log n)

approximation with ν = 2, when using the minimum
bisection algorithm due to [3]. (The original paper ob-
tained an O(log k log n) approximation with ν = 2 based
on Leighton and Rao [22], but the approximation factor
improves to O(log k

√
log n) by replacing [22] by [3].)

A second algorithm, which was designed by Even,
Naor, Rao and Schieber [9], uses a more direct linear
programming (LP) relaxation of partitioning problems
called spreading metrics. A spreading metric is used to
repeatedly cut out of the graph small parts, achieving
an approximation factor of O(log n), again with ν = 2.
Prior to our work, this was the best approximation ratio
when k is at least k∗ = 2

√
log n, but it is inferior to the

first approach when k ¿ k∗.
The third algorithm, given by Andreev and Räcke

[2], uses a more sophisticated recursive partitioning
together with dynamic programming to obtain an
O(ε−2 log1.5 n) approximation with ν = 1 + ε for any
desired (but fixed) ε > 0. This is the first result for
k-balanced partitioning for which ν < 2.

We note that due to the practical importance of the
balanced k-partitioning problem, many fast heuristics
have been designed for it. In particular, a multi-level
graph partitioning heuristic called Metis [16] has been
very successful in quickly finding good partitions of
small graphs. However, these heuristics do not provide
any guarantee on the quality of the solutions computed.

1.1 Results

Theorem 1.1. (Main) The k-balanced partitioning
problem admits polynomial time (bi-criteria) approxi-
mation with factor O(

√
log k log n) and ν = 2.

Our approximation factor improves over or matches pre-
vious algorithms for all relevant values of k. In particu-

lar, our bound degrades gracefully with k, thus offering
a smooth transition between the performance previously
known for small k (the first algorithm mentioned above)
and for large k (the second algorithm above).

It is natural to ask whether the approximation fac-
tor in Theorem 1.1 is optimal. Recalling that the case
k = 2 is minimum bisection, we observe that improving
the

√
log n term in the approximation factor is simply an

established open problem of improving the approxima-
tion factor of [3], and would be a breakthrough result.
Thus, the main question is whether the dependence on
k in our approximation factor is indeed necessary. Past
experience has suggested the answer is negative, since
Even et al. [9] managed to obtain for general k the same
approximation factor as was known at the time for k = 2
from [22]. Somewhat surprisingly, we show the converse;
we prove that the semidefinite programming (SDP) re-
laxation of spreading metrics used by our algorithm has
an integrality gap that exceeds O(

√
log n), when k is

sufficiently large.

Theorem 1.2. For every k ≤ n1−Ω(1), the SDP relax-
ation in Theorem 1.1 has integrality gap Ω(log k).

We remark that the remaining gap between the two
theorems above falls into a typically hard gray area, and
the correct answer might differ from both bounds, e.g.
Θ(log k +

√
log n).

1.2 Techniques We formulate a semidefinite pro-
gramming relaxation for k-balanced partitioning us-
ing two well-known ideas. The first one is `22 (a.k.a.
negative-type) metrics, which were first used in approx-
imation algorithms by [3], and the second one is spread-
ing metrics (a.k.a spreading constraints), which were
introduced by Even, Naor, Rao, and Schieber [10] in
the context of approximation algorithms that employ
a divide-and-conquer approach. The main challenge
we face is designing a rounding procedure that exploits
these two types of constraints simultaneously.

A natural approach is to repeatedly cut from the
graph small pieces by relying on the spreading con-
straints, similarly to [9]. They implemented this ap-
proach using region growing in the LP relaxation, which
can be guaranteed to cut out a piece whose size is not
too large, while paying proportionally to the part that
was actually cut out; hence, their overall approximation
factor matches that of a single cut [22]. In contrast, the
basic tool for `22 metrics, the random projection proce-
dure of [3], operates globally and (apparently) cannot
cut out only a small piece while paying proportionally
to that piece. Hence, using this tool directly requires
recursion which introduces a factor of O(log k) on top
of the factor of O(

√
log n) from [3]. We mitigate this



problem using an idea of Chlamtac, Makarychev and
Makarychev [7]; we first preprocess the entire SDP so-
lution using [3] to exploit the `22 metric, and only then
we repeatedly cut out pieces from the graph, using the
spreading constraints to control the size of the pieces.

As it turns out, our first step can use the specific
preprocessing step of [7] which, roughly speaking, maps
the `22 metric space into `2 (with some distortion). Our
second step repeatedly cuts out pieces from the graph
using a random projection procedure that is normalized
so that each vertex is cut with probability of at most
1/k. The probability of separating two vertices (an
edge) is proportional to their `2 distance after the
preprocessing, and in turn to their contribution to the
SDP value. Since the preprocessing is guaranteed not
to shrink too much one scale of distances, we can
use the spreading constraints to bound the expected
size of the piece cut out from the graph. However,
the piece size might not be concentrated around its
expectation, and we thus face the problem of dealing
with deviations from the expectation. Our solution is
to “reject” cuts that separate too large a piece. This
might adversely affect the probability of cutting an edge
(since we must condition on additional information),
but fortunately this probability can still be bounded by
a careful calculation of all the dependencies.

Our algorithm is inspired by the notion of m-
orthogonal separators which was introduced by [7] for
the purpose of approximating the unique game problem.
An m-orthogonal separator of a given `22 metric is
a distribution over its subsets that has the following
three properties. First, the probability that a vector
is chosen is proportional to its `22 norm. Second,
the probability that two vectors are separated by the
random subset is bounded by their `22 distance times a
factor dependent on m and the total number of vectors.
Third, the probability that two orthogonal vectors are
chosen simultaneously is relatively small – the precise
bound also depends on m.

However, our SDP relaxation does not guarantee
any orthogonal vectors, thus the third property is
irrelevant. Additionally, we need some control over
the size of the pieces cut out from the graph, yet m-
orthogonal separators do not provide such a guarantee
on the random subsets. Thus, using m-orthogonal
separators as a black box does not seem a possibility.
Nevertheless, a simplified version of the mechanics of
m-orthogonal separators, with the additional analysis
of the dependencies generated by random projections,
suffice to prove our result.

Remark. Our algorithm can be easily seen to solve
also the ρ-separator problem, which was introduced
in [9]. The goal in this problem is to partition the

vertices of G into parts of size at most ρn, for some
0 < ρ < 1 which is part of the input, so as to
minimize the total weight of edges connecting different
parts. For any desired ε > 0, the algorithm of [9]
finds a (1 + ε)ρ-separator of G whose value is at
most O( 1+ε

ε log n) times the optimal ρ-separator. Our
algorithm similarly obtains a bi-criteria approximation
factor of O( 1+ε

ε

√
log(1/ερ) log n), which matches or

improves over [9] for all relevant values of ε and ρ.

1.3 Related Work `22 metrics play a key role in a
sequence of approximation algorithms, starting with
the minimum bisection algorithm of [3]. The main
technical contribution of [3] is an ingenious analysis
of the projection of respective vectors on a random
line, and subsequent work refined and built upon that
technical tool. At an abstract level, our work may
be viewed as continuing this direction of examining
the power of `22 metrics and developing appropriate
algorithmic tools.

Spreading metrics were introduced by Even, Naor,
Rao, and Schieber [10] in the context of divide-and-
conquer approximation algorithms. They were subse-
quently used for several problems, including k-balanced
partitioning [9], but they were computed via an LP re-
laxation. Spreading metrics were also used in conjunc-
tion with semi-definite programming and `22 metrics for
minimum linear arrangement [4, 13], although the use of
the spreading constraint therein was very different from
ours.

2 Preliminaries

2.1 SDP Relaxation We formulate the problem as
a semidefinite program. Each vertex u is associated with
a vector in Rd, denoted also by u (the dimension d is
finite but otherwise unrestricted), and the program finds
an `22 semi-metric on V , as follows.

min
∑

(u,v)∈E

w(u, v) · 1
2 ||u− v||22 (SDP-SM)

s.t.

||u−v||22 + ||v−w||22 ≥ ||u−w||22 ∀u, v, w ∈ V (2.1)
∑

v∈S

1
2 ||u− v||22 ≥ |S| − n

k ∀S ⊆ V, u ∈ S (2.2)

Constraints of type (2.1) are the triangle inequality
for `22. They imply that

(
V, ||u− v||22

)
is a semi-metric.

Constraints of type (2.2) are the spreading constraints.
Such constraints forbid too many vertices to be close to
each other. The following lemmas prove that (SDP-SM)
is indeed a relaxation solvable in polynomial time.



Lemma 2.1. The value of an optimal solution to (SDP-
SM) is a lower bound on the cost of an optimal solution
to the k-partitioning problem.

Proof. Let C∗1 , C∗2 , . . . C∗k be an optimal partitioning of
G. For each vertex u ∈ V , let the corresponding vector
u ∈ Rk be all 0’s except for one coordinate j, where Cj is
the component to which u belongs, and that coordinate
is set to 1. It can be seen that 1

2 ||u− v||22 = 0 if u and v
belong to the same component, and that 1

2 ||u− v||22 = 1
if u and v belong to different components. Thus, it
can be verified that constraints of types (2.1) and (2.2)
are not violated. It can be easily seen that the value
of the objective function of the relaxation for the given
solution, equals the value of the optimal partitioning
C∗1 , C∗2 , . . . C∗k . ¥

Lemma 2.2. An optimal solution to (SDP-SM) is com-
putable in polynomial time.

Proof. There is a polynomial number of constraints of
type (2.1). We focus on constraints of type (2.2) (the
spreading constraints). Fix a vertex u and a cardinality
m of subset S. Arrange all vertices v according to
increasing distance from u, with respect to the `22 semi-
metric of the relaxation. The subset S defined by the
first m vertices in this ordering minimizes

∑
v∈S

1
2 ||u−

v||22 (over all subsets of cardinality m). Therefore, for
every size m and vertex u, we only need to check that
the subset S above satisfies the constraint. This gives a
separation oracle, which finishes the proof. ¥

2.2 Spreading Constraints We now show that ev-
ery feasible solution to (SDP-SM) has the property that
not too many vertices are close to each other.

Lemma 2.3. Assume that V ⊂ Rd satisfies constraints
of type (2.2). Given ε > 0, a subset S ⊆ V and a
vertex u ∈ S, if 1

2 ||u− v||22 ≤ ε
1+ε for every v ∈ S, then

|S| ≤ (1 + ε)n
k .

Proof. Given ε > 0, S ⊆ V and u ∈ S, the spreading
constraints (2.2) imply that there exists a vertex v ∈ S
such that 1

2 ||u−v||22 ≥ 1− n
k|S| . Assume to the contrary

that |S| > (1+ε)n
k . Thus, we get that 1

2 ||u−v||22 > ε
1+ε ,

which is a contradiction ¥

2.3 Transforming `22 into `2 Our algorithm uses
a transformation that changes `22 distances to `2 (Eu-
clidean) distances, while incurring a loss of O(

√
log n)

in the distances. This single scale embedding of `22 met-
rics into `2 comes from [3] and the followup works of
[5, 20]. The transformation is stated in the next lemma
from [7].

Lemma 2.4. Assume that V ⊂ Rd, |V | = n, satisfies
constraints of type (2.1). There are absolute constants
δ > 0 and A > 0, such that for every ∆ > 0, there exists
a transformation g∆ : V → Rn (which can be computed
efficiently) with the following properties for all u, v ∈ V :

1. ||g∆(u)− g∆(v)||2 ≤ A
√

log n
∆ ||u− v||22.

2. ||g∆(u)− g∆(v)||2 ≥ δ whenever ||u− v||22 ≥ ∆.

3. ||g∆(u)||2 = 1.

Notice that the transformation g∆ does not preserve the
spreading constraints completely, since distances might
decrease. However, large `22 distances, specifically `22
distances of at least ∆, are guaranteed to be at least
some absolute constant δ in `2. The analysis of the
algorithm shows that this property is all that is needed,
since we are only interested in the number of vertices
that can be close to any specific vertex.

2.4 Thresholds of Correlated Gaussians Our
analysis of the approximation algorithm uses two events
involving correlated Gaussians. Set αm such that
Pr[X ≥ αm] = 1

m , for a normally distributed random
variable X ∼ N(0, 1). Denote Φ(t) =

∫ t

x=−∞ ϕ(x)dx,

where ϕ(x) = (2π)−1/2
e−x2/2 (these are the cumula-

tive density function and probability density function,
respectively, of the standard normal distribution). We
wish to estimate the probability of the following two
events. First, the event that two (correlated) standard
normal variables both exceed the threshold αm. Sec-
ond, the event that two (correlated) standard normal
variables are separated by the threshold αm in the sense
that one exceeds αm and the other does not. The esti-
mates are stated in the following lemma, whose part 1
is proved in [15], and part 2 proved in [7]).

Lemma 2.5. Let (X, Y ) be drawn from a bivariate nor-
mal distribution where the expectation of each coordinate
is 0, the standard deviation of each coordinate is 1, and
the correlation of the two coordinates is ρ. Then:

1. Pr [X ≥ αm, Y ≥ αm] ≤ 2
m ·

(
1− Φ

(
αm

√
1−ρ
1+ρ

))
.

2. If m > 3, then Pr [X ≥ αm, Y < αm] ≤ B
√

log m
m ·√

1− ρ , for some absolute constant B.

3 The Rounding Procedure

3.1 Description of the Procedure We set ε > 0
and ∆ = 2ε

1+ε . Let δ > 0 be the absolute constant
guaranteed in Lemma 2.4. Also let C > 0 be an absolute
constant that will be determined later.

The rounding procedure, which we shall call k-
Partition, iteratively chooses clusters and removes



them from the graph, until the current remaining sub-
graph is small enough to be a cluster. More specifically,
the procedure works as follows. First, it applies g∆ to
transform the metric from `22 to `2. Second, it chooses
a random vector and assigns all vertices that are close
to this vector to a new potential cluster. If the poten-
tial cluster is empty, or contains too many vertices, it
is discarded and a new random cluster is chosen by the
same method. This is repeated until a good cluster is
found. It is then removed from the graph. A detailed
description follows.

Procedure k-Partition.

1. S ← V .

2. While |S| > (1 + 2ε)n
k :

3. Choose r ∈ Rn where ri ∼ N(0, 1) and i.i.d.

4. Let Sr ←
{
u : u ∈ S, g∆(u) · r ≥ αCk/ε

}
.

5. If 0 < |Sr| ≤ (1 + 2ε)n
k then:

6. Output Sr as a cluster and let S ← S \ Sr.

3.2 Analysis of the Procedure The analysis is
composed of two stages. The first stage consists shows
that given that a vertex u belongs to Sr, hence with
constant probability not more than εn

k vertices that
are far from u also belong to Sr. Thus, with constant
probability, given that u is in Sr, no more than (1 +
2ε)n

k vertices belong to Sr. The second stage consists
of bounding the total cost of the procedure over all
iterations. Finally, in order to prove Theorem 1.1, we
show that the procedure runs in expected polynomial
time.

Define the following random variables:

• Y - the current subgraph.

• Yr - the random subset of Y chosen by the proce-
dure:

{
u : u ∈ Y, g∆(u) · r ≥ αCk/ε

}
.

A component Yr is good if it is not empty and
does not contain too many vertices. The following
lemma shows that conditioning on u ∈ Yr (for any
u ∈ S), then with constant probability Yr is good.
In order to prove the lemma we take into account
the dependencies between u and all other vertices in
S. These dependencies are related to the distances.
Recall that the `2 distances do not satisfy the spreading
constraints, but only a weakened version of them.

Lemma 3.1. For every S ⊆ V , u ∈ S, and ε > 0,

Pr
[
|Yr| ≤ (1 + 2ε)

n

k

∣∣∣ u ∈ Yr, Y = S
]
≥ 1

2
.

Proof. Let Iv be an indicator for the event that v ∈ Yr.
Therefore, |Yr| =

∑
v∈S Iv. The random variables

g∆(u) · r and g∆(v) · r, for any u, v ∈ S, are cor-
related normal variables. Specifically, using Property
(3) of Lemma 2.4 and the choice of r, we get that
(g∆(u) · r, g∆(v) · r) is a bivariate normal random vari-
ables where the expectation of each coordinate is 0, the
standard deviation of each coordinate is 1, and the cor-
relation of the two coordinates is g∆(u) · g∆(v).

Let us choose a vertex v ∈ S such that ||g∆(u) −
g∆(v)||2 ≥ δ. This implies that g∆(u) · g∆(v) ≤ 1− 1

2δ2.
By part (1) of Lemma 2.5, we get that:

Pr
[
v ∈ Yr

∣∣∣ u ∈ Yr, Y = S
]

=

= Pr
[
g∆(v) · r ≥ αCk/ε

∣∣∣ g∆(u) · r ≥ αCk/ε, Y = S
]

≤ 2 ·
(

1− Φ

(
αCk/ε

√
1− g∆(u) · g∆(v)
1 + g∆(u) · g∆(v)

))

≤ 2 ·
(

1− Φ

(
αCk/ε

√
δ2

4− δ2

))
,

where the last inequality is due to the fact that the
function 1−Φ

(
α
√

1−x
1+x

)
is an increasing function in x,

for any α > 0. By choosing a sufficiently large constant
C (recall that by Lemma 2.4, δ is an absolute constant),
we get that:

2 ·
(

1− Φ

(
αCk/ε

√
δ2

4− δ2

))
≤ ε

2k
.

Hence, we can conclude that:

E
[ ∑

v∈S: δ≤||g∆(u)−g∆(v)||2
Iv

∣∣∣ u ∈ Yr, Y = S
]
≤

≤ ε|S|
2k

≤ εn

2k
.

By Markov’s inequality, we get that:

Pr


 ∑

v∈S: δ≤||g∆(u)−g∆(v)||2
Iv ≤ εn

k

∣∣∣ u ∈ Yr, Y = S




is at least 1
2 .

By Lemma 2.3, there are at most (1 + ε)n
k vertices

at `22 distance of ∆ = 2ε
1+ε from u. By Property (2) of

Lemma 2.4, there are at most (1 + ε)n
k vertices at `2

distance of δ from g∆(u). Thus,
∑

v∈S: δ>||g∆(u)−g∆(v)||2
Iv ≤ (1 + ε)

n

k
.



Taking into account both cases, we can conclude
that:

Pr

[∑

v∈S

Iv ≤ (1 + 2ε)
n

k

∣∣∣ u ∈ Yr, Y = S

]
≥ 1

2
.

¥
Define the following events:

• Au,v - u and v are separated by k-Partition.

• Bu,v - u and v are separated in the current iteration:
{u ∈ Yr, v /∈ Yr} or {u /∈ Yr, v ∈ Yr}.

• Cu,v - both u and v remain: {u, v /∈ Yr}.
• D - the cluster is good: {Yr 6= φ, |Yr| ≤ (1 + 2ε)n

k }.
The following theorem proves the required approxima-
tion factor of k-Partition, as it bounds the probability,
over all iterations, that u and v are in different compo-
nents.

Theorem 3.1. For every subset S ⊆ V where u, v ∈ S,

Pr
[Au,v

∣∣Y = S
] ≤

≤ (1+ε)AB
ε

√
2 log (Ck/ε) log n·||u− v||22.

Proof. The proof is by induction on |S|.
Base case: Given a subset S ⊆ V , where |S| ≤ (1+2ε)n

k
and u, v ∈ S, the desired probability is:

Pr
[Au,v

∣∣Y = S
]

= 0.

This is true since the procedure stops when the remain-
ing subgraph contains at most (1+2ε)n

k vertices, hence
u and v are not separated by k-Partition.
Inductive step: Let S ⊆ V , where u, v ∈ S, and assume
correctness for all subsets of S that contain u and v. We
use the following recursive formula:

Pr
[Au,v

∣∣Y = S
]

=

= Pr
[Bu,v

∣∣D, Y = S
]
+

+Pr
[Cu,v

∣∣D, Y = S
] · Pr

[Au,v

∣∣Cu,v,D, Y = S
]
.

Using Property (3) of Lemma 2.4 and the choice of r, we
get that (g∆(u) · r, g∆(v) · r) is a bivariate normal ran-
dom variable, where the expectation of each coordinate
is 0, the standard deviation of each coordinate is 1, and
the correlation of the two coordinates is g∆(u) · g∆(v).
Therefore, notice that:

Pr
[Bu,v

∣∣D, Y = S
] ≤ Pr

[Bu,v

∣∣Y = S
]

Pr
[D

∣∣Y = S
] ≤

≤ 2B
√

log (Ck/ε)
Ck/ε

·
√

1− g∆(u) · g∆(v)
Pr

[D∣∣Y = S
]

≤ B
√

2 log (Ck/ε)
Ck/ε

· A
√

log n

∆
· ||u− v||22
Pr

[D
∣∣Y = S

] .

The second inequality is by part (2) of Lemma 2.5.
The last inequality is derived from Property (1) of
Lemma 2.4 and the fact that

√
1− g∆(u) · g∆(v) =

1√
2
||g∆(u)− g∆(v)||2. Additionally,

Pr
[Cu,v

∣∣D, Y = S
] ≤

≤ 1− Pr
[
u ∈ Yr

∣∣D, Y = S
]

= 1− Pr
[D∣∣u ∈ Yr, Y = S

] · Pr
[
u ∈ Yr

∣∣Y = S
]

Pr
[D∣∣Y = S

]

≤ 1− 1
2Ck/ε

· 1
Pr

[D∣∣Y = S
] .

The first inequality is derived from the definition of the
event Cu,v. The last inequality is derived from Lemma
3.1 and the fact that: Pr

[
u ∈ Yr

∣∣Y = S
]

= 1
Ck/ε .

By the inductive hypothesis we get that:

Pr
[Au,v

∣∣Cu,v,D, Y = S
] ≤

≤ (1 + ε)AB

ε

√
2 log (Ck/ε) log n · ||u− v||22.

Using the recursive formula and plugging in all of the
above (recall that ∆ = 2ε

1+ε ) completes the proof. ¥

Proof. [Proof of Theorem 1.1.] Procedure k-Partition
outputs components of size at most (1 + 2ε)n

k . The
expected cost of separating these components, by The-
orem 3.1 and Lemma 2.1, is at most

(1 + ε)AB
√

2 log (Ck/ε) log n

ε

times the value of an optimal solution to (SDP-SM).
We bound the expected number of iterations of

k-Partition. The number of random choices of r
needed to find a single good cluster is a geometric
random variable with parameter Pr

[D
∣∣Y = S

]
. Notice

that for any subset S ⊆ V and for any u ∈ S,
Pr

[
u ∈ Yr

∣∣Y = S
]

= 1
Ck/ε . Additionally, by Lemma

3.1 Pr
[D∣∣u ∈ Yr, Y = S

] ≥ 1
2 . This implies that:

Pr
[D∣∣Y = S

] ≥ 1
2Ck/ε . Thus, the expected number of

choices of r needed to find a single good cluster is upper
bounded by 2Ck/ε. Therefore, the expected number
of iterations made throughout the procedure is upper
bounded by 2Cnk/ε.

The theorem now follows by setting ε = 1
2 . Notice

that k-Partition might not output exactly k compo-
nents. This can be easily resolved by standard methods,
see [9] for further details. ¥

4 Integrality Gap of Ω(log k)
We present an integrality gap example for (SDP-SM).
Specifically, we show that for the d-dimensional hy-
percube the integrality gap is Ω(log k). Denote by



H(p) = −p log (p)− (1− p) log (1− p) the entropy func-
tion. We remark that the hypercube is also an Ω(log n)
integrality gap example for another cut problem, namely
minimum multicut [25, 1].

Theorem 4.1. For every d > 1, α > 1 and k ≤
2d(1−H( 1

2α2 )), the integrality gap of (SDP-SM) for the d-
dimensional hypercube graph (on 2d vertices) is at least

1
2α2 log k.

Proof. First, we lower bound the cost of any integral
solution. By the edge isoperimetric inequality for the
hypercube, for any subset S ⊆ {±1}d (which is not too
large), the number of edges that cross the cut defined
by S is at least |S|(d− log |S|). The size of S is at most
2d

k , which implies that the number of edges in the cut
defined by S is at least |S| log k. Let C∗1 , C∗2 , . . . C∗k be
an optimal solution for the problem. Then its cost is at
least:

1
2

(|C∗1 |+ |C∗2 |+ · · ·+ |C∗k |) log k = 2d−1 log k.

Second, we present a solution to (SDP-SM) which
costs α22d. For any u ∈ {±1}d, define a vector ū = α√

d
u.

We show that the vectors {ū}u∈{±1}d define a feasible
solution. First, notice that

dH(u, v) =
d

2α2

(
1
2
||ū− v̄||22

)
,

where dH is the Hamming distance. Hence, the vec-
tors {ū}u∈{±1}d do not violate the triangle inequality,
implying that constraints of type (2.1) are satisfied.

We focus our attention on constraints of type (2.2).
Notice that we only need to prove that:

2α2

d

∑

v∈S

dH(u, v) ≥ |S| − 2d

k
, (4.3)

for any subset S ⊆ {±1}d and vertex u ∈ S. The subset
S of size m which minimizes the LHS of (4.3) contains
the m closest vertices to u with respect to the Hamming
metric.

Assume to the contrary that (4.3) is incorrect for
some subset S of size m. Without loss of generality,
assume that S minimizes the LHS of (4.3). Choose a
vertex v in S. If dH(u, v) < d

2α2 , then v’s contribution
to the LHS of (4.3) is strictly smaller than 1. If
dH(u, v) = d

2α2 , then v’s contribution to the LHS of
(4.3) is 1. If dH(u, v) > d

2α2 , then v’s contribution to
the LHS of (4.3) is strictly greater than 1. However, in
all cases, each v ∈ S contributes an additional 1 to the
RHS of (4.3).

Thus, without loss of generality assume that m is
such that the maximal Hamming distance from u in S is

d
2α2 . Arbitrarily choose m =

∑ d
2α2

j=0
d!

j!(d−j)! . Therefore,
according to the assumption,

2α2

d

∑

v∈S

dH(u, v) <

d/2α2∑

j=0

d!
j!(d− j)!

− 2d

k
.

However, the LHS is nonnegative, therefore we get that
k > 2d/

∑d/2α2

j=0
d!

j!(d−j)! . The bound
∑d/2α2

j=0
d!

j!(d−j)! ≤
2dH( 1

2α2 ) implies that k > 2d(1−H( 1
2α2 )), which is a

contradiction. Hence, constraints of type (2.2) are
satisfied and {ū}u∈{±1}d is a feasible solution.

We calculate the cost of the given solution to (SDP-
SM) as follows:

∑

u,v|dH(u,v)=1

(
1
2
||ū− v̄||22

)
= 2d · 2α2

d
· d · 1

2
= α22d.

This gives the desired integrality gap of 1
2α2 log k. ¥

Proof. [Proof of Theorem 1.2.] Let c = Ω(1) be an
absolute constant where k ≤ n1−c. Set α such that the
following equality holds: H

(
1

2α2

)
= c. Since 0 < c < 1

there is a (unique) solution in which α > 1. By Theorem
4.1 the integrality gap of (SDP-SM) is at least 1

2α2 log k.
Additionally, by the definition of α, α = O(1). Hence,
we obtain an integrality gap of Ω(log k). ¥
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