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PRESERVING TERMINAL DISTANCES USING MINORS∗
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Abstract. We introduce the following notion of compressing an undirected graph G with (non-
negative) edge-lengths and terminal vertices R ⊆ V (G). A distance-preserving minor is a minor
G′ (of G) with possibly different edge-lengths, such that R ⊆ V (G′) and the shortest-path distance
between every pair of terminals is exactly the same in G and in G′. We ask: what is the smallest
f∗(k) such that every graph G with k = |R| terminals admits a distance-preserving minor G′ with
at most f∗(k) vertices? Simple analysis shows that f∗(k) ≤ O(k4). Our main result proves that
f∗(k) ≥ Ω(k2), significantly improving on the trivial f∗(k) ≥ k. Our lower bound holds even for
planar graphs G, in contrast to graphs G of constant treewidth, for which we prove that O(k) vertices
suffice.
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1. Introduction. A graph compression of a graph G is a small graph G∗ that
preserves certain features (quantities) of G, such as distances or cut values. This basic
concept was introduced by Feder and Motwani [FM95], although their definition was
slightly different technically. (They require that G∗ has fewer edges than G, and that
each graph can be quickly computed from the other one.) Our paper is concerned
with preserving the selected features of G exactly (i.e., lossless compression), but in
general we may also allow the features to be preserved approximately.

The algorithmic utility of graph compression is readily apparent—the compressed
graph G∗ may be computed as a preprocessing step, and then further processing is
performed on it (instead of on G) with lower runtime or memory requirement. This
approach is clearly beneficial when the compression can be computed very efficiently,
say in linear time, in which case it may be performed on the fly, but it is useful also
when some computations are to be performed (repeatedly) on a machine with limited
resources such as a smartphone, while the preprocessing can be executed in advance
on much more powerful machines.

For many features, graph compression was already studied and many results are
known. For instance, a k-spanner of G is a subgraphG∗ in which all pairwise distances
approximate those in G within a factor of k [PS89]. Another example, closer in spirit
to our own, is a sourcewise distance preserver of G with respect to a set of vertices
R ⊆ V (G); this is a subgraph G∗ of G that preserves (exactly) the distances in G
for all pairs of vertices in R [CE06]. We defer the discussion of further examples and
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related notions to section 1.2, and here point out only two phenomena: First, it is
common to require G∗ to be structurally similar to G (e.g., a spanner is a subgraph
of G), and second, sometimes only the features of a subset R need to be preserved
(e.g., distances between vertices of R).

We consider the problem of compressing a graph so as to maintain the shortest-
path distances among a set R of required vertices. From now on, the required vertices
will be called terminals.

Definition 1.1. Let G be a graph with edge lengths � : E(G) → R+ and a set
of terminals R ⊆ V (G). A distance-preserving minor (of G with respect to R) is a
graph G′ with edge lengths �′ : E(G′)→ R+ satisfying:

1. G′ is a minor of G (which means that a graph isomporphic to G′ can be
obtained from G by a sequence of edge contractions, edge deletions, and vertex
deletions); and

2. dG′(u, v) = dG(u, v) for all u, v ∈ R.
Here and throughout, dH denotes the shortest-path distance in a graph H . It also

goes without saying that the terminals R must survive the minor operations (they
are not removed, but might be merged with nonterminals, due to edge contractions),
and thus dG′(u, v) is well-defined; in particular, R ⊆ V (G′). For illustration, suppose
G is a path of n unit-length edges and the terminals are the path’s endpoints; then
by contracting all the edges, we can obtain G′ that is a single edge of length n.

The above definition basically asks for a minor G′ that preserves all terminal
distances exactly. The minor requirement is a common method to induce structural
similarity between G′ and G, and in general excludes the trivial solution of a complete
graph on the vertex set R (with appropriate edge lengths). The above definition may
be viewed as a conceptual contribution of our paper, and indeed our main motivation is
its mathematical elegance, but for completeness we also present potential algorithmic
applications in section 1.3.

We raise the following question, which to the best of our knowledge was not
studied before. Its main point is to bound the size of G′ independently of the size of
G.

Question 1.2. What is the smallest f∗(k), such that for every graph G with k
terminals, there is a distance-preserving minor G′ with at most f∗(k) vertices?

Before describing our results, let us provide a few initial observations, which may
well be folklore or appear implicitly in literature. There is a naive algorithm which
constructs G′ from G by two simple steps (Algorithm 1 in section 2):

(1) Remove all vertices and edges in G that do not participate in any shortest-
path between terminals.

(2) Repeat while the graph contains a nonterminal v of degree two: merge v with
one of its neighbors (by contracting the appropriate edge), thereby replacing
the 2-path w1 − v −w2 with a single edge (w1, w2) of the same length as the
2-path.

It is straightforward to see that these steps reduce the number of nonterminals without
affecting terminal distances, and a simple analysis proves that this algorithm always
produces a minor with O(k4) vertices and edges (and runs in polynomial time). It
follows that f∗(k) exists, and moreover

f∗(k) ≤ O(k4).

Furthermore, if G is a tree, then G′ has at most 2k−2 vertices, and this last bound is
in fact tight (obtained by a complete binary tree) whenever k is a power of 2. We are
not aware of explicit references for these analyses, and thus review them in section 2.
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1.1. Our results. Our first and main result directly addresses Question 1.2, by
providing the lower bound f∗(k) ≥ Ω(k2). The proof uses a simple planar graph (a
two-dimensional grid), leading us to study the restriction of f∗(k) to specific graph
families, defined as follows.1

Definition 1.3. For a family F of graphs, define f∗(k,F) as the minimum
integer such that every graph G = (V,E, �) ∈ F with k terminals admits a distance-
preserving minor G′ with at most f∗(k,F) vertices.

Theorem 1.4. Let Planar be the family of all planar graphs. Then

f∗(k) ≥ f∗(k,Planar) ≥ Ω(k2).

Moreover, our proof shows that this lower bound extends to the case where dis-
tances are preserved within some approximation (rather than exactly). Specifically,
we prove in section 3 that for every ε ∈ [ 1

4�k/4� ,
1
4 ], there exists a planar graph G

with at most k terminals such that every minor G′ that approximates the terminal
distances within a (1 + ε) factor must have Ω(ε−2) nonterminals. We remark that
aour original proof of this theorem [KZ12, Theorem 3] required all terminal distances
to be preserved exactly (rather than approximately), although it only required G′ to
be planar (rather than a minor of G).

Our proof of Theorem 1.4 uses k× k grid graphs, whose treewidth is k, and thus
not bounded by a constant. (The definition of treewidth, along with basic properties,
can be found in standard texts [Bodlaender06, Kloks94]; our results do not use this
definition directly.) This stands in contrast to graphs of treewidth 1, because we
already mentioned that

f∗(k,Trees) ≤ 2k − 2,

where Trees is the family of all tree graphs. It is thus natural to ask whether bounded-
treewidth graphs behave like trees, for which f∗ ≤ O(k), or like planar graphs, for
which f∗ ≥ Ω(k2). We answer this question as follows.

Theorem 1.5. Let Treewidth(p) be the family of all graphs with treewidth at most
p. Then for all k ≥ p,

Ω(pk) ≤ f∗(k,Treewidth(p)) ≤ O(p3k).

We summarize our results together with some initial observations in the table
below.

Graph family F Bounds on f∗(k,F) Reference
Trees = 2k − 2 Theorems 2.4, 2.3
Treewidth p Ω(pk) O(p3k) Theorem 1.5
Planar graphs Ω(k2) O(k4) Theorems 1.4, 2.1
All graphs Ω(k2) O(k4) Theorems 1.4, 2.1

All our upper bounds are algorithmic and run in polynomial time. In fact, they
can be achieved using the naive algorithm (Algorithm 1 in section 2).

1.2. Related work. Coppersmith and Elkin [CE06] studied a problem similar
to ours, except that they seek subgraphs with few edges (rather than minors). Among
other things, they prove that for every weighted graph G = (V,E) and every set of k =

1We use (V, E, �) to denote a graph with vertex set V , edge set E, and edge lengths � : E → R+.
As usual, the definition of a familyF of graphs refers only to the vertices and edges, and is irrespective
of the edge lengths.
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O(|V |1/4) terminals (sources), there exists a weighted subgraph G′ = (V,E′), called a
sourcewise preserver, that preserves terminal distances exactly and has |E′| ≤ O(|V |)
edges. They also show a nearly matching lower bound on |E′|. The question of
preserving the distances between terminals in G using a small graph G′ that is not
required to be “similar to” (e.g., a minor or subgraph of) G, was studied under the
terminology of Steiner spanners or emulators [ADDJS93, RTZ05, Woodruff06].

Some compression methods preserve cuts and flows in a given graph G rather than
distances. A Gomory–Hu tree [GH61] is a weighted tree that preserves all st-cuts in
G (or just between terminal pairs). A so-called mimicking network preserves all flows
and cuts between subsets of the terminals in G [HKNR98].

Terminal distances can also be approximated instead of preserved exactly. In fact,
allowing a constant factor approximation may be sufficient to obtain a compressionG∗

without any nonterminals. Gupta [Gupta01] introduced this problem and proved that
for every weighted tree T and set of terminals, there exists a weighted tree T ′ without
the nonterminals that approximates all terminal distances within a factor of 8. It was
later observed that this T ′ is in fact a minor of T [CGNRS06], and that the factor 8
is tight [CXKR06]. Basu and Gupta [BG08] claimed that a constant approximation
factor exists for weighted outerplanar graphs as well. It remains an open problem
whether the constant factor approximation extends also to planar graphs (or excluded-
minor graphs in general). Englert et al. [EGKRTT10] proved a randomized version of
this problem for all excluded-minor graph families, with an expected approximation
factor depending only on the size of the excluded minor.

The relevant information (features) in a graph can also be maintained by a data
structure that is not necessarily graphs. A notable example is distance oracles—
low-space data structures that can answer distance queries (often approximately) in
constant time [TZ05]. These structures adhere to our main requirement of “com-
pression” and are designed to answer queries very quickly. However, they might lose
properties that are natural in graphs, such as the triangle inequality or the similarity
of a minor to the given graph, which may be useful for further processing of the graph.

1.3. Potential applications. Our first example application is in the context
of algorithms dealing with graph distances. Often, algorithms that are applicable to
an input graph G are applicable also to a minor of it G′ (e.g., algorithms for planar
graphs). Consider for instance the traveling salesman problem, which is known to
admit a quasi-polynomial time approximation scheme (QPTAS) in excluded-minor
graphs [GS02] (and polynomial time approximation scheme (PTAS) in planar graphs
[Klein08]), even if the input contains a set of clients (a subset of the vertices that must
be visited by the tour). Suppose now that the clients change daily, but they can only
come from a fixed and relatively small set R ⊂ V (G) of potential clients. Obviously,
once a distance-preserving minor G′ of G is computed, the QPTAS can be applied
on a daily basis to the small graph G′ (instead of to G). Notice how important it is
to preserve all terminal distances exactly using G′ that is a minor of G. (A complete
graph on vertex set R would not work, because we do not have a QPTAS for it.)

Our second example application is in the field of metric embeddings. Consider
a known embedding, such as the embedding of a bounded-genus graph G into a dis-
tribution over planar graphs [IS07]. Suppose we want to use this embedding, but
we only care about a small subset of the vertices R ⊂ V (G). We can compute a
distance-preserving minor G′ (and thus with same genus bound) that has at most
f∗(|R|) vertices, and then apply the known embedding to the small graph G′ (in-
stead of to G). The result would be a distribution over planar graphs, each of them
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having at most f∗(|R|) vertices, independently of |V (G)|. In (other) cases where the
embedding’s distortion depends on |V (G)|, this approach may even yield improved
distortion bounds, such as replacing O(log |V (G)|) terms with O(log |R|).

2. Review of straightforward analyses. As described in the introduction,
a naive way to create a minor G′ of G preserving terminal distances is to perform
the steps described in ReduceGraphNaive, depicted below as Algorithm 1. In this
section, we show that for general graphs G, the returned minor has at most O(k4)
vertices, and for trees it has at most 2k − 2 vertices. We assume henceforth that
ties between shortest paths (connecting the same pair of vertices) are broken in a
consistent way, in the sense that whenever Π is the “chosen” shortest path (between
its endpoints), every subpath of Π is also the “chosen” shortest path. Such tie breaking
can be implemented, for example, by applying small perturbations to the edge-weights
to make sure that no two paths in the graph have the exact same length.

Algorithm 1. ReduceGraphNaive (graph G, required vertices R).

1: Compute shortest paths between every pair of terminals, breaking ties consis-
tently.

2: Remove nonterminals and edges that do not participate in any terminal-to-
terminal shortest path.

3: while there exists a nonterminal v incident to only two edges (v, u) and (v, w)
do

4: contract the edge (u, v),
5: set the length of edge (u,w) to be dG(u,w).

It is easy to see that G′ is a distance-preserving minor of G with respect to R. The
time complexity of this algorithm is at most that of k applications of single-source
shortest paths, plus O(|E| + kn) time for reading the resulting k trees, removing
unnecessary edges and vertices and contracting edges connecting vertices with degree
2 with their neighbors in the shortest path.

2.1. f∗(k) ≤ O(k4) for general graphs.
Theorem 2.1. For every graph G and set R ⊆ V of k terminals, the output

G′ of ReduceGraphNaive(G,R) is a distance-preserving minor of G with at most
O(k4) vertices. In particular, f∗(k) ≤ O(k4).

To prove the theorem, we will need the following lemma, whose proof is sketched
below. A more detailed proof is given in [CE06, Lemma 7.5], where the lemma is used
to bound the number of edges in the graph G′ after only performing on a graph the
edge-removals in line 1 of ReduceGraphNaive.

Lemma 2.2. Let G be a graph, and suppose that ties between shortest paths
(connecting the same pair of vertices) are broken in a consistent way. Then every two
distinct shortest paths between terminals in G, denoted Π and Π′, branch in at most
two vertices, i.e., there at most two vertices v ∈ V (Π) ∩ V (Π′) such that |NΠ∪Π′(v)|
(the number of neighbors of v in both paths) is greater than 2.

Proof of Sketch. Using the path Π in some direction to determine the order, denote
by v1 and v2 the first and last vertices on Π such that |NΠ∪Π′(v1)|, |NΠ∪Π′(v2)| > 2.
We call such vertices “branching vertices.” Since Π and Π′ are shortest paths, in
either of them v1 and v2 have at most two neighbors, and hence these vertices appear
in both paths. In fact, both Π and Π′ have a subpath connecting v1 and v2. Since
this subpath in both Π and Π′ is the shortest path between v1 and v2 in G, and we
assumed that the shortest path in G is unique, it must hold that the subpath p(v1, v2)
is shared by both Π and Π′, implying that any other vertex u on that subpath has
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|NΠ∪Π′(u)| = 2, and v1, v2 are the only such vertices on the subpath. Since they are
the first and last vertices on Π, they are in fact the only ones in the whole path, thus
proving the lemma.

Proof of Theorem 2.1. Every nonterminal v ∈ V ′ \R has degree greater or equal
to 3, and hence it is a branching vertex. Every pair of shortest paths contributes at
most two branching vertices to G′. There are O(k4) such pairs, and therefore O(k4)
vertices in V ′. Since G′ is also a distance-preserving minor of G with respect to R,
this completes the proof of Theorem 2.1.

It is interesting to note that G′ is relatively sparse; the number of edges in the
graph is at most O(k4), which matches our bound on the number of vertices. Indeed,
the edges of G′ all lie on shortest paths between terminals, and since there are

(
k
2

)
such

paths, it suffices to prove that every shortest path between two terminals contains at
most O(k2) edges. To this end, fix a shortest path Π(t1, t2) between two terminals
t1, t2. Consider a nonterminal vertex v on this path, which by construction must be a
branching vertex for two or more shortest paths. Assume toward contradiction that
v is a branching vertex for two other shortest paths Π1 and Π2, but not a branching
vertex for Π(t1, t2) with either of Π1 or Π2. The path Π(t1, t2) contains v as an
internal vertex, and hence |NΠ(t1,t2)(v)| = 2. Since v is not a branching vertex for
Π(t1, t2) and Π1, those two edges are shared by both paths, i.e., |NΠ(t1,t2)∪Π1

(v)| = 2.
The same, of course, applies to Π2, and thus |NΠ1∪Π2(v)| = 2, which contradicts v
being a branching vertex for Π1 and Π2. It follows that every nonterminal vertex v on
Π(t1, t2) must be a branching vertex for Π(t1, t2) and another shortest path between
two terminals. Since there are at most two branching vertices for any two shortest
paths, the total number of nonterminal vertices on Π(t1, t2) is at most 2(

(
k
2

)− 1). We
conclude that each path Π(t1, t2) contains at most O(k2) edges, and this proves that
the total number of edges in G′ is O(k4).

2.2. f∗(k,Trees) = 2k − 2.
Theorem 2.3. For every tree G and set R ⊆ V of k terminals, the output G′ of

ReduceGraphNaive(G,R) is a distance-preserving minor of G with at most 2k− 2
vertices. In particular, f∗(k,Trees) ≤ 2k − 2.

Proof. Every nonterminal v ∈ V ′ \ R has degree greater or equal to 3. Let s
denote the number of nonterminals in the tree G′. Then

∑

v∈V ′
degG′(v) ≥ k + 3s.

Since G′ is a tree, the sum of its degrees also equals 2(k+s)−2, and hence 2(k+s)−2 ≥
k + 3s, and s ≤ k − 2, proving the theorem.

This bound is exactly tight. We sketch the proof of the following theorem.
Theorem 2.4. For every i ∈ N there exists a tree G and k = 2i terminals R ⊆ V

such that every distance-preserving minor G′ of G with respect to R has |V ′| ≥ 2k−2.
In particular, f∗(k,Trees) ≥ 2k − 2 for k = 2i.

Proof. Consider the complete binary tree G of depth i with unit edge-lengths.
Let the 2i leaves of the tree be the terminals R. We use induction on i to prove that
for the complete binary tree with level i, the only edge contraction (and indeed the
only minor operation) allowed is the contraction of an edge between the root and one
of its children.

In the tree with depth 1, this is clearly true. Let T be the complete binary tree
with depth i+ 1, and T1, T2 be its two i-depth subtrees. Assume toward contraction
that the distance preserving minor T ′ was created by contraction operations which
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ended up merging a vertex v1 in T1 with a vertex v2 in T2. Denote the merged vertex
as x. From the binary tree structure, x is the only vertex that connects vertices
in T1 with vertices in T2. It is easy to see that v1 participates in some shortest
path between leaves (terminals) t1, t2 ∈ T1 and v2 participates in some shortest path
between terminals s1, s2 ∈ T2. Let t1 and s1 be the vertices within a smaller distance
from x. Then

dT ′(t1, s1) = dT ′(t1, x) + dT ′(x, s1)

≤ 1

2
dT ′(t1, t2) +

1

2
dT ′(s1, s2)

=
1

2
dT1(t1, t2) +

1

2
dT ′(s1, s2) ≤ max{dT1(t1, t2), dT2(s1, s2)}.

However, dT ′(t1, s1) = dT (t1, s1) = 2(i + 1), whereas max{dT1(t1, t2), dT2(s1, s2)} ≤
2i, which contradicts any contractions combining vertices from T1 and T2. Within
(without loss of generality) T1, the induction hypothesis holds; therefore, the only
contraction to be considered is that of the root of T1 with one of its children. However,
such a contraction is not possible while retaining the equal distance 2(i+ 1) between
every terminal t ∈ T1 and s ∈ T2. Therefore, no contractions can occur inside T1

and T2. The root of T can be joined with either of its children (the roots of T1 and
T2), but not both (since they cannot be joined as a single vertex), thus proving the
theorem.

3. A lower bound of Ω(k2). In this section we prove Theorem 1.4, stated with
more details as follows.

Theorem 3.1. For every integer k ≥ 4, there is a planar graph G with k ter-
minals, such that every distance-preserving minor of G has Ω(k2) nonterminals. In
fact, this graph G is just an unweighted O(k) × O(k) grid, with all its terminals on
the boundary.

We actually prove a slightly stronger theorem, allowing distances to be distorted
by a 1 + ε factor, and therefore need the following variant of Definition 1.1.

Definition 3.2. Let G be a graph with edge lengths � : E(G)→ R+ and a set of
terminals R ⊆ V (G), and let α ≥ 1. An α-distance-approximating minor (of G with
respect to R) is a graph G′ with edge lengths �′ : E(G′)→ R+ satisfying

1. G′ is a minor of G; and
2. dG(u, v) ≤ dG′(u, v) ≤ α · dG(u, v) for all u, v ∈ R.

It is easy to check that Theorem 3.1 is a corollary of the following theorem for
ε = 1

4�k/4� .
Theorem 3.3. For every ε > 0 for which 1/(4ε) is an integer, there is a planar

graph G with 1/ε terminals, such that every (1 + ε) distance-approximating minor
of G must have Ω(1/ε2) nonterminals. In fact, this graph G is just an unweighted
O(1/ε)×O(1/ε) grid, with all its terminals on the boundary.

Proof. Let 1/ε = 4r for some integer r ≥ 1. Let G be a two-dimensional grid
of size (r + 2) × (r + 2), and let all the boundary vertices not at the corners be its
terminals. Clearly, there are r = 1/(4ε) terminals on each side of the grid.

Consider an edge-weighted graph G′ that is a (1 + ε) distance-approximating
minor of G. Let x1, . . . , xr denote the terminals on the left side of the grid G ordered
from top to bottom, and similarly y1, . . . , yr for the right side. Recall that G′ also
contains all these terminals, and let P ′

i be a shortest path in G′ between xi and yi.
We shall refer to these r paths as “horizontal.”
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Claim 3.4. The horizontal shortest paths P ′
1, . . . , P

′
r do not intersect each other

(i.e., they are vertex-disjoint).
Proof. Fix i < j, and assume to the contrary that the paths P ′

i , P
′
j intersect at

some vertex z ∈ V (G′). Then by the 1 + ε distance approximation guarantee,

dG′(xi, z) + dG′(z, yi) = dG′(xi, yi) ≤ (1 + ε)(r + 1) < r + 2,(3.1)

dG′(xj , z) + dG′(z, yj) = dG′(xj , yj) ≤ (1 + ε)(r + 1) < r + 2.(3.2)

Now consider the “cross distances” from xi to yj , and similarly from xj to yi (again
in G′). We can bound the two cross distances using the triangle inequality and the
intersection vertex z,

dG′(xi, yj) ≤ dG′(xi, z) + dG′(z, yj),

dG′(xj , yi) ≤ dG′(xj , z) + dG′(z, yi).

Summing these two inequalities and plugging in (3.1) and (3.2), we obtain

dG′(xi, yj) + dG′(xj , yi) < 2(r + 2).

However, we can compute the corresponding distances in G directly

dG(xi, yj) = dG(xj , yi) = r + 1 + |i− j| ≥ r + 2.

The last two inequalities contradict the assumption that dG′ dominates dG, and the
claim follows.

The above argument applies also to the “vertical” paths Q′
1, . . . , Q

′
r. Formally,

let Q′
i be a shortest path in G′ between the ith terminal on the top boundary and the

ith terminal on the bottom boundary (ordered from left to right).
Claim 3.5. The vertical shortest paths Q′

1, . . . , Q
′
r do not intersect each other

(i.e., they are vertex-disjoint).
We next claim that all the horizontal paths must intersect all the vertical paths.
Claim 3.6. Every horizontal path P ′

i and every vertical path Q′
j intersect (in

G′).
Proof. Because G′ is a minor of G, a path in G′ that connects two terminals can

be mapped back to a path in G connecting the same two terminals. Thus, the path
P ′
i is mapped to a path in G, which we denote Pi, and similarly Q′

j is mapped back
to a path in G denoted Qj. It is easy to verify that Pi and Qj must intersect at some
vetex of G, and forward mapping this vertex into the minor G′ gives an intersection
vertex between P ′

i and Q′
j .

We can now complete the proof of Theorem 3.3. Paths P ′
i and Q′

j must intersect
by Claim 3.6, so let us denote the intersection vertex by z′i,j ∈ V (G′) (choosing one
arbitrarily if there are multiple ones). We argue that all these vertices must be distinct.
Indeed, suppose zi1,j1 = zi2,j2 . Then this vertex belongs to both P ′

i1
and P ′

i2
, which,

using Claim 3.4, implies that i1 = i2. A similar argument implies that j1 = j2. We
conclude that zi,j ∈ V (G) for i, j ∈ [r] are all distinct vertices. Moreover, P ′

i and Q′
j

cannot intersect at a terminal, because it implies that dG′(xi, yi) ≥ dG(xi, yi) + 2 =
(1+ 2

r+1 )dG(xi, yi), leading to violation of the 1+ ε approximation. This proves that

G contains at least r2 = 1/(16ε2) nonterminals.
A k × k grid graph has treewidth (exactly) k, and we thus immediately obtain

the following corollary, which we record here for later use in section 4.2.
Corollary 3.7. For every p ∈ N there exists a graph G with treewidth p and p

terminals R ⊆ V , such that every distance-preserving minor G′ of G with respect to
R has |V (G′)| ≥ Ω(p2).
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4. Θ(k) bounds for constant treewidth graphs. In this section we prove
Theorem 1.5, which bounds f∗(k,Treewidth(p)). The upper and the lower bound are
proved separately in Theorems 4.1 and 4.7 below.

4.1. An upper bound of O(p3k).
Theorem 4.1. Every graph G = (V,E, �) with treewidth p and a set R ⊆ V of

k terminals admits a distance-preserving minor G′ = (V ′, E′, �′) with |V ′| ≤ O(p3k).
In other words, f∗(k,Treewidth(p)) ≤ O(p3k).

The graph G′ can in fact be computed in time polynomial in |V | (see Corol-
lary 4.6).

Without loss of generality, we may assume that k ≥ p, since otherwise the O(k4)
bound from Theorem 2.1 applies. To prove Theorem 4.1, we introduce the algorithm
ReduceGraphTW (depicted in Algorithm 2 below), which follows a divide-and-
conquer approach. We use the small separators guaranteed by the treewidth p, to
break the graph recursively until we have small, almost-disjoint subgraphs. We apply
the naive algorithm (ReduceGraphNaive, depicted in Algorithm 1 in section 2) on
each of these subgraphs with an altered set of terminals—the original terminals in the
subgraph, plus the separator (boundary) vertices which disconnect these terminals
from the rest of the graph. We get many small distance-preserving minors, which are
then combined into a distance-preserving minor G′ of the original graph G.

Proof of Theorem 4.1. The divide-and-conquer technique works as follows. Given
a partitioning of V into the sets A1, S, and A2, such that removing S disconnects A1

from A2, the graph G is divided into the two subgraphs G[Ai ∪S] (the subgraph of G
induced on Ai∪S) for i ∈ {1, 2}. For each G[Ai∪S], we compute a distance-preserving

minor with respect to terminals set (R ∩Ai)∪ S, and denote it Ĝi = (V̂i, Êi, �̂i). The
two minors are then combined into a distance-preserving minor of G with respect to
R, according to the following definition.

We define the union H1 ∪ H2 of two (not necessarily disjoint) graphs H1 =
(V1, E1, �1) and H2 = (V2, E2, �2) to be the graph H = (V1 ∪ V2, E1 ∪ E2, �), where
the edge lengths are �(e) = min{�1(e), �2(e)} (assuming infinite length when �i(e) is
undefined). A crucial point here is that H1, H2 need not be disjoint—overlapping
vertices are merged into one vertex in H , and overlapping edges are merged into a
single edge in H .

Lemma 4.2. The graph Ĝ = Ĝ1 ∪ Ĝ2 is a distance-preserving minor of G with
respect to R.

Proof of Lemma 4.2. Note that since the boundary vertices in S exist in both
Ĝ1 and Ĝ2, they are never contracted into other vertices. In fact, the only minor-
operation allowed on vertices in S is the removal of edges (s1, s2) for two vertices
s1, s2 ∈ S, when shorter paths in G[A1 ∪S] or G[A2 ∪S] are found. It is thus possible
to perform both sequences of minor-operations independently, making Ĝ a minor of G.

A path between two vertices t1, t2 ∈ R can be split into subpaths at every visit
to a vertex in R∪S, so that each subpath between v, u ∈ R∪S does not contain any
other vertices in R ∪ S. Since there are no edges between A1 and A2, each of these
subpaths exists completely inside G[A1 ∪ S] or inside G[A2 ∪ S]. Hence, for every
subpath between v, u ∈ R ∪ S, it holds that dG(v, u) = dG[Ai∪S](v, u) = dĜi

(v, u) for
some i ∈ {1, 2}. Applying this argument to a shortest path between t1, t2 ∈ R in G,
we obtain a path between them in Ĝ, and it follows that dĜ(t1, t2) ≤ dG(t1, t2).

A similar argument can be made in the opposite direction, by considering a short-
est path between t1, t2 in Ĝ, splitting it as necessary and eventually obtaining a path
of the same length in G. Hence, Ĝ is a distance-preserving minor of G.
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A well-known consequence of the graph G having bounded treewidth p, see,
e.g., [BGHK95, Lemma 6] for a similar claim,2 is that for every nonnegative vertex-
weights w(·), there exists a set S ⊆ V of at most p+1 vertices (to simplify the analysis,
we assume this number is p) whose removal separates the graph into two parts, A1 and
A2, each with w(Ai) ≤ 2

3w(V ). It is then natural to compute a distance-preserving
minor for each part Ai by recursion, and then combine the two solutions using Lemma
4.2. We can use the weights w(·) to obtain a balanced split of the terminals, and thus
|R∩Ai| is a constant factor smaller than |R|. However, when solving each part Ai, the
boundary vertices S must be counted as “additional” terminals, and to prevent those
from accumulating too rapidly, we compute (à la [Bodlaender89]) a second separator
Si with different weights w(·) to obtain a balanced split of the boundary vertices
accumulated so far.

Algorithm ReduceGraphTW receives, in addition to a graph H and a set of
terminals R ⊆ V (H), a set of boundary vertices B ⊆ V (H). Note that a terminal
that is also on the boundary is counted only in B and not in R, so that R ∩B = ∅.

The procedure Separator(H,U) returns the triple 〈A1, S, A2〉 of a separator S
and two sets A1 and A2 such that |S| ≤ p, no edges between A1 and A2 exist in G,
and |A1 ∩ U |, |A2 ∩ U | ≤ 2

3 |U |, i.e., using w(·) that is unit-weight inside U , and 0
otherwise.

The algorithm works as follows. In Line 3 the separator is computed in such a
way that the terminals are balanced between the two sets A1 and A2. In lines 4–10,
distance-preserving minors Ĝ1 and Ĝ2 are generated for the subgraphs H [A1 ∪ S]
and H [A2 ∪ S]. In line 11 the two distance-preserving minors are combined. Looking
further into lines 4–10, in line 5 the second separation is performed; in this case the
balance is over the boundary vertices. Lines 6–7 establish the required vertices and
boundary vertices in the resulting two subgraphs of H [Ai∪S]. In line 9 a recursive call
is made to ReduceGraphTW with these subgraphs. In line 10 these subgraphs are
combined to form Ĝi. The recursion is terminated at the stop condition on lines 1–2,
where a distance preserving minor is computed by algorithm ReduceGraphNaive.

Algorithm 2. ReduceGraphTW (graph H , required vertices R, boundary vertices
B).

1: if |R ∪B| ≤ 18p then
2: return ReduceGraphNaive(H,R ∪B) (see Algorithm 1)
3: 〈A1, S, A2〉 ← Separator(H,R)
4: for i = 1, 2 do
5: 〈A1

i , S
i, A2

i 〉 ← Separator(H [Ai ∪ S], (B ∩ Ai) ∪ S)
6: Ri ← R \ (S ∪ Si)
7: Bi ← B ∪ S ∪ Si

8: for j = 1, 2 do
9: Ĝj

i ← ReduceGraphTW(H [Aj
i ∪ Si], Ri ∩ Aj

i , B
i ∩ (Aj

i ∪ Si))

10: Ĝi ← Ĝ1
i ∪ Ĝ2

i

11: return Ĝ1 ∪ Ĝ2.

See Figure 1 for an illustration of a single execution. Consider the recursion tree
T on this process, starting with the invocation of ReduceGraphTW(G,R, ∅). A

2The claim there is slightly different. First, it is for 0− 1 weights, but the proof extends immedi-
ately to arbitrary nonnegative weights. Second, it proves that every connected component of G \ S
has weight at most 1

2
w(V ); our assertion above follows by repeatedly aggregating the two parts of

least weight.
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Fig. 1. The separators S (from line 3) and S1 (from line 5), and the subgraph H[A1
1 ∪ S1] to

be processed recursively (in line 9).

node a ∈ V (T ) corresponds to an invocation ReduceGraphTW(Ha, Ra, Ba). The
execution either terminates at line 2 (the stop condition) or performs 4 additional
invocations bi for i ∈ [1, 4], each with |Rbi | ≤ 2

3 |Ra|. As the process continues, the
number of terminals in Ra decreases, whereas the number of boundary vertices may
increase. We show the following upper bound on the number of boundary vertices Ba.

Lemma 4.3. For every a ∈ V (T ), the number of boundary vertices |Ba| < 6p.
Proof of Lemma 4.3. Proceed by induction on the depth of the node in the

recursion tree. The lemma clearly holds for the root of the recursion-tree, since
initially B = ∅. Suppose it holds for an execution with values Ha, Ra, Ba. When
partitioning V (Ha) into A1, S, and A2, the separator S has at most p vertices. From
the induction hypothesis, |Ba| < 6p, making |Ba ∪ S| < 7p.

The algorithm constructs another separator, this time separating the boundary
vertices Ba ∪ S. For i = 1, 2 and j = 1, 2, it holds that |Si| ≤ p, |Aj

i | ≤ 2
3 · |Ba ∪ S| ≤

2
3 · 7p = 14

3 p, and so |Aj
i ∪ Si| ≤ 14

3 p + p < 6p. The execution corresponding to the

node a either terminates in line 2 or invokes executions with the values Aj
i ∪ Si for

i, j = 1, 2; hence all new invocations have less than 6p boundary vertices.
We also prove the following lower bound on the number of terminals Ra.
Lemma 4.4. Every a ∈ V (T ) is either a leaf of the tree T or it has at least two

children, denoted b1, b2, such that |Rb1 |, |Rb2 | ≥ p.
Proof of Lemma 4.4. Consider a node a ∈ V (T ). If this execution terminates at

line 2, a is a leaf and the lemma is true. Otherwise it holds that |Ra ∪ Ba| ≥ 18p.
Since Lemma 4.3 states that |Ba| ≤ 6p, it must hold that |Ra| ≥ 12p.

When performing the separation of V (Ha) into A1, S, and A2, the vertices Ra

are distributed between A1, S, and A2, such that |Ra ∩ (Ai ∪ S)| ≥ 1
3 |Ra| = 4p for

i = 1, 2. Since |S| ≤ p, it must hold that |(Ra \ S) ∩Ai| = |(Ra ∩ (Ai ∪ S)) \ S| ≥ 3p.
When the next separation is performed, at most p of these 3p terminals belong to Si,
while the remaining terminals belong to Ri and are distributed between A1

i and A2
i .

At least one of these sets, without loss of generality A1
i , gets |Ri ∩ A1

i | ≥ 1
22p = p.

This is a value of Rb for a child b of a in the recursion tree. Since this holds for both
A1 and A2, at least two invocations b1, b2 with |Rbi | ≥ p are made.

The following observation is immediate from Lemma 4.3.
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Observation 4.5. Every node a ∈ V (T ) such that |Ra| < p has |Ra ∪Ba| ≤ 7p,
and thus it is a leaf in T .

To bound the size of the overall combined graph G′ returned by the first call to
ReduceGraphTW, we must bound the number of leaves in T . To do that, we first
consider the recursion tree T ′ created by removing those nodes a with |Ra| < p; these
are leaves from Observation 4.5. From Lemma 4.4, every node in this tree (except
the root) is either a leaf (with degree 1) or has at least two children (with degree at
least 3). Since the average degree in a tree is less than 2, the number of nodes with
degree at least 3 is bounded by the number of leaves. Every leaf b in the tree T ′ has
|Rb| ≥ p. These terminals do not belong to any boundary, so for every other leaf b′

in T ′ it holds that Rb ∩ (Rb′ ∪ Bb′) = ∅ and these p terminals are unique. There are
k terminals in G, so there are O(k/p) such leaves, and O(k/p) internal nodes.

From Lemma 4.4, invocations are performed only by internal vertices in T ′. Each
internal vertex has four children; hence there are O(k/p) invocations overall. Each leaf
in T has |Ra∪Ba| ≤ O(p); hence the graph returned from ReduceGraphNaive(Ha)
is a distance-preserving minor with O(p4) vertices (see section 2). Using Lemma 4.2,
the combination of these graphs is a distance-preserving minor Ĝ of G with respect
to R. The minor Ĝ has O(k/p · p4) = O(k · p3) vertices, proving Theorem 4.1.

Corollary 4.6. Given a graph with treewidth p, the naive algorithm returns a
distance-preserving minor of size O(k · p3).

Proof. If p > k, this statement holds by the O(k4) bound. Otherwise, consider
the algortihm ReduceGraphTW. All the operations performed on the graph by this
algorithm—edge or vertex removals, and edge contractions—are performed during a
call to ReduceGraphNaive on subgraphs independent of the entire graph structure,
with added constraints regarding the boundary vertices.

If a vertex or an edge is removed, it exists entirely in one component of the
separator and does not participate in any shortest path in that component between
terminals or boundary vertices. No shortest path between two terminals in the original
graph could contain this edge, or in particular it would contain a (shortest) subpath
between terminals or boundary vertices, completely contained in the component, that
contains this edge. Hence this vertex or edge would have been removed also in a
regular execution of the naive algorithm given the terminals. A similar argument
also applies for edge contractions—if a vertex has degree 2 inside its component when
considering all shortest paths between the terminals and boundary vertices, then no
other edge adjacent to it can participate in any shortest path between terminals in the
original graph. Hence the edge contraction, or perhaps even deletion of this vertex,
would have occurred in a regular execution of the naive algorithm on the original
graph with respect to the terminals.

Hence, the naive algorithm obtains a similar or smaller graph than algorithm
ReduceGraphTW.

4.2. A lower bound of Ω(pk).
Theorem 4.7. For every p and k ≥ p, there is a graph G = (V,E, �) with

treewidth p and k terminals R ⊆ V , such that every distance-preserving minor G′ of
G with respect to R has |V ′| ≥ Ω(k ·p). In other words, f∗(k,Treewidth(p)) ≥ Ω(pk).

Proof. Fix k ≥ p, and assume without loss of generality that p divides k. Let
the graph G consist of k/p disjoint graphs G1, . . . , Gk/p, where each Gi is the graph
from Corollary 3.7, which has p terminals, treewidth p, and every distance-preserving
minor of it has at least Ω(p2) vertices. Any distance-preserving minor of the graph
G must preserve the distances between the terminals in each Gi, but this can only



PRESERVING TERMINAL DISTANCES USING MINORS 139

be achieved by a minor of the respective Gi, because the different Gi’s are disjoint
components. It follows that any distance-preserving minor of G must have at least
(k/p) · Ω(p2) ≥ Ω(k · p) vertices.

5. Minors with dominating distances. Another view of a contraction of an
edge (u, v) is an assymetrical contraction where one of the vertices is contracted into
the other (i.e., vertex u is contracted into vertex v). The direction of contractions in
the naive algorithm is easy to see—the vertex v is chosen as a vertex with degree 2
in the shortest-paths graph, and the edge (u, v) is contracted—and distances are set
with respect to the vertex u. In other words, this is the contraction of the vertex v
into the vertex u.

When the edge contractions are observed as such, we see that the algorithms in
this paper actually satisfy a stronger property: They output a minor G′ = (V ′, E′, �′)
where in effect V ′ ⊆ V (formally, our algorithms actually map every vertex v′ ∈ V ′

to a specific “pre-image” v ∈ V , i.e., one of the vertices in V whose merging forms v′)
and the length of edges in the graph correspond to the original distance between its
endpoints. An immediate result of this is that distances in G′ dominate those in G,
namely,

(5.1) dG′(u, v) ≥ dG(u, v) ∀u, v ∈ V ′.

This additional property of distance preserving minors with dominating distances
ensures sparsifications that are more closely related to the original graphs. In particu-
lar, we may view the sparsification as a simple removal of existing redundant elements,
as no information is artificially added in the sparsification process. Such sparsifiers
may be more easily applicable.

The following theorem proves that under this stronger property, the O(k4) bound
of Theorem 2.1 is tight.

Theorem 5.1. For every k there exists a graph G and a set of terminals R ⊆ V ,
for which every distance-preserving minor G′ where V ′ ⊆ V and property (5.1) holds
has Ω(k4) vertices.

Proof. Fix k; we construct G probabilistically as follows. Consider the unit square
[0, 1] × [0, 1] in the two-dimensional Euclidean plane, and on each of its edges place
terminals at �k4 � points chosen at random. Connect by a straight line the terminals on
the top edge with those on the bottom edge, and similarly connect the terminals on
the right edge with those on the left edge. There are now Θ(k2) “horizontal” lines each
meeting Θ(k2) “vertical” lines, and with probability 1 the horizontal lines intersect
the vertical lines at Θ(k4) intersection points (because the probability that three lines
meet at a single point is 0). Additional intersection points might exist between pairs
of horizontal lines and pairs of vertical lines. See Figure 2 for an illustration.

Let the graphG have both the terminals and the intersection points as its vertices,
and their connecting line segments as its edges. Set every edge length to be the Eu-
clidean distance between its endpoints; hence shortest-path distances in G dominate
the Euclidean metric between the respective points.

Let v be an intersection point between the top-to-bottom (vertical) shortest path
ΠG(t1, t2) and the right-to-left (horizontal) shortest path ΠG(t3, t4) in G. Let G′

be a distance-preserving minor of G satisfying property (5.1) and assume toward
contradiction that v /∈ V ′. Since G′ is a minor of G, it can be drawn in the two-
dimensional Euclidean plane such that the surviving vertices remain in the same
location as they were in G and all edges are drawn inside the unit square with no
crossings. Since every pair of top-to-bottom path and right-to-left path (both inside
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Fig. 2. The graph constructed in the unit square, with its terminals denoted by rectangles, and
showing only a few of the straight lines. Intersections between “horizontal” and “vertical” lines are
denoted by a circle, and those between two “horizontal” lines are denoted by a triangle. The latter
are not counted in our analysis.

the unit square) must intersect, the shortest paths ΠG′(t1, t2) and ΠG′(t3, t4) intersect
in some point v′ ∈ V ′, which must be different from v (because v /∈ V ′). But since v is
the only vertex in V ⊃ V ′ placed on both the straight line between t1 and t2, and the
straight line between t3 and t4, one of the paths in G′, say, without loss of generality
ΠG′(t1, t2), visits the point v′ and goes outside of its straight line. From property
(5.1) all distances in G′ dominate those in G, and from the construction of G they
also dominate the Euclidean metric. Hence, the length of the shortest path ΠG′(t1, t2)
is at least the sum of Euclidean distances ‖t1− v′‖2 + ‖v′− t2‖2 > ‖t1− t2‖2, making
dG′(t1, t2) > dG(t1, t2) in contradiction to the distance-preserving property of G′. We
conclude that every intersection point between a vertical and a horizontal line in G
exists also in G′; hence |V ′| ≥ Ω(k4).

Theorem 5.1 suggests that narrowing the gap between the current bounds Ω(k2) ≤
f∗(k) ≤ O(k4) might require, even for planar graphs, breaking away from the above
paradigm and not satisfying property (5.1).
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