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Abstract
Lipschitz decomposition is a useful tool in the design of efficient algorithms involving metric spaces.
While many bounds are known for different families of finite metrics, the optimal parameters for
n-point subsets of ℓp, for p > 2, remained open, see e.g. [Naor, SODA 2017]. We make significant
progress on this question and establish the bound β = O(log1−1/p n). Building on prior work, we
demonstrate applications of this result to two problems, high-dimensional geometric spanners and
distance labeling schemes. In addition, we sharpen a related decomposition bound for 1 < p < 2,
due to Filtser and Neiman [Algorithmica 2022].
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1 Introduction

The pursuit of approximating metric spaces by simpler structures has inspired the development
of fundamental concepts, such as graph spanners [47, 46] and low-distortion embeddings
into various spaces [37, 7], both of which have a wide range of algorithmic applications.
Many of these results, including for instance [7, 48, 17, 30, 6, 19], rely on various notions of
decomposition of a metric space into low-diameter clusters, and these decompositions are
most often randomized. One extensively studied notion, see e.g. [13, 24, 17, 25], is Lipschitz
decomposition (also called separating decomposition), which informally is a random partition
of a metric space into low-diameter clusters, with a guarantee that nearby points are likely
to belong to the same cluster.

▶ Definition 1.1 (Lipschitz decomposition [7]). Let (X, ρ) be a metric space. A distribution
D over partitions of X is called (β, ∆)-Lipschitz if
1. for every partition P ∈ supp(D), all clusters C ∈ P satisfy diam(C) ≤ ∆; and
2. for all x, y ∈ X,

Pr
P ∈D

[P (x) ̸= P (y)] ≤ β · ρ(x,y)
∆ ,

where P (z) denotes the cluster of P containing z ∈ X and diam(C) := supx,y∈C ρ(x, y).
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Typical applications require such decompositions where ∆ is not known in advance, or
even multiple values of ∆ (say for every power of 2). We naturally seek small β and thus
define the (optimal) decomposition parameter of (X, ρ) as

β∗(X) := inf
β≥1

{
β : ∀∆ > 0, every finite X ′ ⊆ X admits a (β, ∆)-Lipschitz decomposition

}
,

and we extend this to a family of metric spaces X , by defining β∗(X ) := supX∈X β∗(X).
Obtaining bounds on the decomposition parameter of various metrics (and families of

metrics) is of significant algorithmic importance, and we list in Table 1 several known bounds.
One fundamental example where we know of (nearly) tight bounds is the metric space
ℓd

p, for p ≥ 1, which stands for Rd equipped with the ℓp norm. For p ∈ [1, 2], we have
β∗(ℓd

p) = Θ(d1/p) due to [13], and for p ∈ [2, ∞] we have β∗(ℓd
p) = Θ̃(d1/2) due to [40] (see

discussion therein about an incorrect claim made in [13]).1 Observe that an upper bound
for X = ℓd

p immediately extends to all subsets of it, implying in particular a bound for the
family X of all finite subsets of ℓd

p. These bounds depend on d, and are thus most suitable
for low-dimensional settings.

We focus on finite metrics X, aiming to bound β∗(X) in terms of n = |X|, which is
often useful in high-dimensional settings. For instance, it is well-known that β∗ = Θ(log n)
the family of all n-point metric spaces [7]. To write this assertion more formally, define
β∗

n(X) := β∗({X ′ ⊆ X : |X| = n}) and then the above asserts that β∗
n(ℓ∞) = Θ(log n),

where we used that every finite metric embeds isometrically in ℓ∞. For the family of n-point
ℓ2 metrics, combining β∗(ℓd

2) = Θ̃(
√

d) with the famous JL Lemma [27] immediately yields
β∗

n(ℓ2) = O(
√

log n), which is tight by [13]. For n-point ℓp metrics, 1 < p < 2, we have
β∗

n(ℓp) = O(log1/p n)
p−1 due to [35, 40], nearly matching the lower bound of β∗

n(ℓp) = Ω(log1/p n)
from [13]. However, for n-point ℓp metrics, p > 2, to the best of our knowledge, the only
known upper bound is β∗

n(ℓp) = O(log n), obtained by trivially applying the results for
general n-point metric spaces. The following question was raised by Naor [40, Question 1],
see also [41, Question 83].

▶ Question 1.2 ([40]). Is it true that for every p ∈ (2, ∞), β∗
n(ℓp) = o(log n)? More

ambitiously, is it true that β∗
n(ℓp) = Op(

√
log n)?

Our main result, in Theorem 1.3, answers the first part of this question in the affirmative.
Additionally, we show in Section 2 an analogous result for another notion of decomposability
that was introduced in [22] (and we call capped decomposition) and is particularly suited for
high-dimensional geometric spanners.

Geometric Spanners. A spanner with stretch t ≥ 1 (in short a t-spanner) for a finite metric
M = (X, ρ) is a graph G = (X, E), that satisfies ρ(x, y) ≤ ρG(x, y) ≤ t · ρ(x, y) for all
x, y ∈ X, meaning that the shortest-path distance ρG in the graph G approximates the
original distance ρ(x, y) within factor t, where by definition every edge {u, v} ∈ E has weight
ρ(u, v). Of particular interest are spanners that are sparse, meaning they contain a small
number of edges, ideally linear in n = |X|. Another important parameter is the lightness
of a spanner, defined as the total weight of its edges divided by the weight of a minimum
spanning tree of X. Clearly, the lightness is at least 1. These spanners are called geometric
because the input is a metric space (rather than a graph). They are natural and useful

1 Throughout, the notation Õ(f) hides poly(log f) factors, and Oα(·) hides a factor that depends only
on α.
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Table 1 Known bounds on the decomposition parameter of some important families of metrics.

Family of Metrics β∗ or β∗
n Reference Comments

ℓd
p spaces 1 ≤ p ≤ 2 Θ(d1/p) [13]

ℓd
p spaces p ≥ 2 Θ̃(

√
d) [40]

finite metrics Θ(log n) [7]
ℓ2 space (Euclidean) Θ(

√
log n) [13]

ℓp spaces 1 ≤ p ≤ 2 Θp(log1/p n) [35, 40]
ℓp spaces p ≥ 2 O(log1−1/p n) Theorem 1.3 conjectured β∗

n = Θ(
√

log n)

doubling constant λ Θ(log λ) [24]
Kr-minor-free graphs O(r) [1, 18] conjectured β∗ = Θ(log r)
graphs with genus g Θ(log g) [36, 1]
graphs with treewidth w Θ(log w) [20]

representations of a metric, and as such, have been studied extensively, see the surveys
[16, 49, 2]. Spanners for n-point metrics in low-dimensional spaces (e.g., in fixed-dimensional
Euclidean space or doubling metrics) are well-studied and well-understood. For instance,
metrics with doubling dimension ddim admit (1 + ε)-spanners with near-optimal sparsity
n(1/ε)O(ddim) and lightness (1/ε)O(ddim) [12, 34].

However, in high-dimensional spaces, our understanding of spanners is rather limited.
Har-Peled, Indyk, and Sidiropoulos [25] showed that every n-point Euclidean metric admits,
an O(t)-spanner with Õ(n1+1/t2) edges for every t ≥ 1. Filtser and Neiman [22] extended
this result to all metric spaces that admit a certain decomposition that we call capped
decomposition (Definition 2.4), showing that in those spaces, it is possible to construct
spanners that are both sparse and light. In particular, they showed that every n-point subset
of ℓp, 1 < p ≤ 2, has an O(t)-spanner with n1+Õ(1/tp) edges and lightness nÕ(1/tp) for every
t ≥ 1. It remained open whether the spaces ℓp for p ∈ (2, ∞) admit the aforementioned
capped decomposition. To the best of our knowledge, all known spanners for these spaces
have a tradeoff of stretch O(t) with sparsity O(n1+1/t).

1.1 Our Results
Our main contribution is the construction of a Lipschitz decomposition for finite ℓp metrics,
p ≥ 2, as follows.

▶ Theorem 1.3. Let p ∈ [2, ∞]. Then β∗
n(ℓp) = O(log1−1/p n). That is, for every n-point

metric X ⊂ ℓp and ∆ > 0, there exists an (O(log1−1/p n), ∆)-Lipschitz decomposition of X.

Previously, this bound was known only for the extreme values p = 2, ∞, and in these
cases it is actually tight. More precisely, for p = 2 our bound coincides with the well-known
result β∗

n(ℓ2) = Θ(
√

log n) [13], and for p = Ω(log n) it is known that β∗
n(ℓp) = Θ(log n),

because all n-point metrics embed into ℓp with O(1)-distortion [38]. For intermediate values,
say fixed p ∈ (2, ∞), our bound is the first one to improve over O(log n), which applies to
all n-point metrics, and leaves a gap from the Ω(

√
log n) lower bound that follows from

Dvoretzky’s Theorem [15].
We compare our bound with those for other metric spaces in Table 1.
The proof of Theorem 1.3 appears in Section 2.1, and has interesting technical features.

It relies on two known decompositions of finite metrics, one for general metrics and one for
Euclidean metrics, that are composed via a metric-embedding tool called the Mazur map.
Our decomposition method is data-dependent, i.e., not oblivious to the data, and we discuss
this intriguing aspect in Sections 2.1 and 5.

SoCG 2025
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Note added in proof. Shortly after this work was posted online, two groups working in
parallel to each other [31, 42] improved our result in Theorem 1.3 to β∗

n(ℓp) = Op(
√

log n) for
every 2 < p < ∞, thereby resolving in the affirmative also the second part of Question 1.2.
These two papers design a recursive process that relies on the technique developed here for
proving Theorem 1.3, see each paper for its dependence on p.

Geometric Spanners for p ≥ 2. We then use similar ideas to obtain a new bound for another
notion of decomposability, that was introduced in [22] and we call capped decomposition; and
this immediately yields geometric spanners in ℓp, for p ≥ 2. While for p = 2 these spanners
coincide with the known bounds from [25, 22], for fixed 2 < p < ∞, our spanners are the
first improvement over the trivial bounds that hold for all metric spaces.

▶ Theorem 1.4. Let p ∈ [2, ∞) and t ≥ 1. Then every n-point metric X ⊂ ℓp admits
an O(t)-spanner of size Õ

(
n1+1/tq )

and lightness Õ
(
n1/tq )

, where q ∈ (1, 2) is such that
1
p + 1

q = 1.

The proof of this theorem appears in Section 2.2, and includes both the spanner construction,
which follows [22], and our new bound for capped decomposition, which is the main technical
result.

Geometric Spanners for p ≤ 2. We also sharpen the known spanner results for ℓp

spaces with 1 < p < 2, which say that every n-point subset admits an O(t)-spanner with
n1+O(log2 t/tp) edges and lightness nO(log2 t/tp) for every t ≥ 1 [22]. We improve upon this
result by eliminating the log2 t factor in the exponent.

▶ Theorem 1.5. Let p ∈ (1, 2] and t ≥ 1. Then every n-point metric X ⊂ ℓp admits an
O(t)-spanner of size Õ(n1+1/tp) and lightness Õ(n1/tp).

The proof of this theorem, presented in Section 3, follows the construction of [22], but
replacing a key step, in which they rely on results from [43], with results from [4]. Interestingly,
our improved spanner bound “matches” the bounds of Theorem 1.4, up to duality between p

and q.

Distance Labeling Schemes. Distance labeling for a metric space (X, ρ) assigns to each
point x ∈ X a label l(x), so that one can later recover (perhaps approximately) the distance
between any two points in X based only on their labels (without knowledge of the metric
space). It was formulated in [45], motivated by applications in distributed computing, and
has been studied intensively, see e.g. [23, 21]. An immediate corollary of our main result in
Theorem 1.3 is a distance labeling scheme for finite metrics in ℓp for p > 2, as follows.

▶ Theorem 1.6. Let p ∈ (2, ∞). Then the family of n-point metrics in ℓp with pairwise dis-
tances in the range [1, ∆max] admits a distance labeling scheme with approximation O(log1/q n)
and label size O(log n log ∆max) bits, where q ∈ (1, 2) is such that 1

p + 1
q = 1.

A formal definition of the distance labeling model and a proof of Theorem 1.6 appear in
Section 4.

1.2 Related Work
We focus on Lipschitz decomposition and on capped decomposition, that was introduced
in [22], but the literature studies several different decompositions of metric spaces into low-
diameter clusters, see e.g. [39, 19]. In particular, the notion of padded decomposition [48, 29]
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is closely related and was used extensively, see for example [48, 8, 35, 39, 30]. While a
Lipschitz decomposition guarantees that nearby points are likely to be clustered together,
a padded decomposition guarantees that each point is, with good probability, together
with all its nearby points in the same cluster. Remarkably, if a metric space admits a
padded decomposition then it admits also a Lipschitz decomposition with almost the same
parameters [35], however the other direction is not true, as demonstrated by ℓd

2.
The problem of computing efficiently the optimal decomposition parameters for an input

metric space (X, ρ) was studied in [32]. Specifically for Lipschitz decomposition, they show
that β∗(X) can be O(1)-approximated in polynomial time (in n).

2 Decompositions and Spanners in ℓp for p > 2

In this section we consider finite subsets of ℓp for p ∈ (2, ∞). We first present (in Section 2.1)
a new Lipschitz decomposition, which proves Theorem 1.3. Next, we show (in Section 2.2)
a new construction of capped decomposition, which is a related notion of decomposability
that was introduced in [22] without a concrete name. Finally we obtain (in Section 2.3) new
spanners, which prove Theorem 1.4. This is actually an immediate corollary of our capped
decomposition, by following the spanner construction of [22].

2.1 Lipschitz Decomposition in ℓp for p ∈ (2, ∞)

Before presenting the proof of Theorem 1.3, we first provide the intuition behind the proof.
A common approach in many algorithms for metric spaces is to embed the given metric
into a simpler one (e.g., a tree metric), solve the problem in the target metric, and then
pull back this solution to the original metric. For our purpose, of constructing a Lipschitz
decomposition of X ⊂ ℓp, p > 2, a natural idea is to seek a low-distortion embedding of X

into ℓ2, because we already have decompositions for that space, namely, β∗
n(ℓ2) = O(

√
log n).

Ideally, the embedding into ℓ2 would be oblivious, meaning that it embeds the entire ℓp (not
only X) into ℓ2, but unfortunately such an embedding does not exist (it would imply oblivious
dimension reduction in ℓp for p > 2, which is provably impossible [14]). We get around this
limitation by employing a data-dependent approach, where the decomposition depends on the
input set X. More precisely, we use Mazur maps, which provide a low-distortion embedding
from ℓp to ℓ2, but only for sets of bounded diameter (see Corollary 2.3). We thus first
decompose X into bounded-diameter subsets by applying a standard Lipschitz decomposition
(that is applicable for every n-point metric). The final decomposition is obtained by pulling
back the solution (clusters) we found in ℓ2.

We proceed to introduce some technical results needed for our proof of Theorem 1.3. The
first one is a well-known bound for Lipschitz decomposition of a finite metric.

▶ Theorem 2.1 ([7]). Every n-point metric (X, ρ) admits an (O (log n) , ∆)-Lipschitz decom-
position for every ∆ > 0.

Next, we define the Mazur map, which is an explicit embedding Mp,q : ℓm
p → lm

q for
1 < q < p < ∞. The image of an input vector v is computed in each coordinate separately,
by raising the absolute value to power p/q while keeping the original sign. The next theorem
appears in [10], where it is stated as an adaptation of [11], and we will actually need the
immediate corollary that follows it.

SoCG 2025
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▶ Theorem 2.2 ([11, 10]). Let 1 ≤ q < p < ∞ and C0 > 0, and let M be the Mazur map
Mp,q scaled down by factor p

q C0
p/q−1. Then for all x, y ∈ ℓp such that ||x||p, ||y||p ≤ C0,

q
p (2C0)1−p/q||x − y||p/q

p ≤ ||M(x) − M(y)||q ≤ ||x − y||p.

▶ Corollary 2.3. Let 2 < p < ∞. Every n-point set X ⊂ ℓp with diameter at most C0 > 0
admits an embedding f : X → ℓ2 such that

∀x, y ∈ X, 2
p (2C0)1−p/2∥x − y∥p/2

p ≤ ∥f(x) − f(y)∥2 ≤ ∥x − y∥p.

Proof of Theorem 1.3. Let ∆ > 0, and let X ⊂ ℓp be an n-point metric space for p ∈ (2, ∞).
Construct a partition of X in the following steps:
1. Construct for X an (O(log n), log1/p n·∆/4)-Lipschitz decomposition Pinit = {K1, . . . , Kt}

using Theorem 2.1.
2. Embed each cluster Ki ⊂ ℓp into ℓ2 using the embedding fKi provided by Corollary 2.3

for C0 := log1/p n · ∆/4.
3. For each embedded cluster fKi(Ki), construct an (O(

√
log n), 1

2 ∆/ log1/2−1/p n)-Lipschitz
decomposition Pi = {K1

i , . . . , Kki
i } using [13] and the JL Lemma [27].

4. The final decomposition Pout is obtained by taking the preimage of every cluster of
every Pi.

It is easy to see that Pout is indeed a partition of X, consisting of
∑t

i=1 ki clusters. Next,
consider x, y ∈ X and let us bound Pr[Pout(x) ̸= Pout(y)]. Observe that a pair of points can
be separated only in steps 1 or 3. Therefore,

Pr
[
Pout(x) ̸= Pout(y)

]
≤ Pr

[
Pinit(x) ̸= Pinit(y)

]
+ Pr

[
Pi(fKi(x)) ̸= Pi(fKi(y)) | Pinit(x) = Pinit(y) = Ki

]
≤ O(log n) ∥x − y∥p

log1/p n · ∆/4
+ O(

√
log n)∥fKi(x) − fKi(y)∥2

1
2 ∆/ log1/2−1/p n

≤ O(log1−1/p n)∥x − y∥p

∆ ,

where the last inequality follows because each fKi is non-expanding on its cluster Ki ⊂ ℓp.
It remains to show that the final clusters all have diameter at most ∆. Let x, y ∈ X be

in the same cluster, i.e., Pout(x) = Pout(y). Then Pinit(x) = Pinit(y) = Ki and Pi(fKi(x)) =
Pi(fKi(y)). Combining the maximum possible diameter of Pinit(x) and Pi(fKi(x)) with the
contraction guarantees of f = fKi , we get

2
p

(
2(log1/p n)∆

4

)1−p/2
∥x − y∥p/2

p ≤ ∥f(x) − f(y)∥2 ≤ ∆
2 log1/p−1/2 n.

Rearranging this, we obtain ∥x − y∥p ≤
p/2

√
p/2

2 ∆ ≤ ∆, which completes the proof. ◀

2.2 Capped Decomposition in ℓp for p ∈ (2, ∞)
We now present our construction of capped decomposition, which is a notion of decompos-
ability that was introduced in [22] without a concrete name. We start with its definition,
and then present our construction.
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▶ Definition 2.4. Let (X, ρ) be a metric space. A distribution D over partitions of X is
called (t, ∆, η)-capped if
1. for every partition P ∈ supp(D), all clusters C ∈ P have diam(C) ≤ ∆; and
2. for every x, y ∈ X such that ρ(x, y) ≤ ∆

t ,

Pr
P ∈D

[P (x) = P (y)] ≥ η.

Observe that here, unlike in Lipschitz decomposition, we have a guarantee on the
probability that points x, y ∈ X are clustered together only if they are within distance ∆

t

of each other, hence the name “capped decomposition”. Moreover, the probability bound
does not depend on the exact value of ρ(x, y). We say that (X, ρ) admits a (t, η)-capped
decomposition, where η = η(|X|, t), if it admits a (t, ∆, η)-capped decomposition for every
∆ > 0. A family of metrics admits a (t, η)-capped decomposition if every metric in the family
admits a (t, η)-capped decomposition.

▶ Theorem 2.5. Let p ∈ (2, ∞). Then every n-point metric in ℓp admits a (t, n−O(1/tq))-
capped decomposition for all t ≥ 1, where q ∈ (1, 2) is such that 1

p + 1
q = 1.

Previously, such a decomposition was known only for the extreme case p = 2 by [22], see
Proposition 2.6, and our bound above in fact converges to their bound when p → 2. Our proof
of Theorem 2.5 is similar to Theorem 1.3, and relies on two known capped decompositions,
that we introduce next, together with the Mazur map Corollary 2.3.

▶ Proposition 2.6 ([22]). Every n-point subset of ℓ2 admits a (t, n−O(1/t2))-capped decompo-
sition for all t ≥ 1.

▶ Proposition 2.7 (Implicit in [39]). Every n-point metric space admits a (t, n−O(1/t))-capped
decomposition for all t ≥ 1.

Proof of Theorem 2.5. Let ∆ > 0 and t ≥ 1. Let X ⊂ ℓp be an n-point subset of p ∈ (2, ∞),
where q is such that 1

p + 1
q = 1. Construct a partition of X in the following steps:

1. Construct for X a (t1 := tq/4, ∆1 := ∆/4t1−q, n−O(1/tq))-capped decomposition Pinit =
{K1, . . . , Kt} using Proposition 2.7.

2. Embed each cluster Ki ⊂ ℓp into ℓ2 using the embedding fKi provided by Corollary 2.3
for C0 := ∆1.

3. For each embedded cluster fKi(Ki) construct a (t2 := tq/2/2, ∆2 := ∆/2t1−q/2, n−O(1/tq))-
capped decomposition Pi = {K1

i , . . . , Kki
i } using Proposition 2.6.

4. The final decomposition Pout is obtained by taking the preimage of every cluster of every
Pi.

It is easy to see that that Pout is indeed a partition of X, consisting of
∑t

i=1 ki clusters.
Next, consider x, y ∈ X with ∥x − y∥p ≤ ∆/t and let us bound Pr[Pout(x) = Pout(y)].
Observe that ∆1/t1 = ∆2/t2 = ∆/t, and therefore

Pr
[
Pout(x) = Pout(y)

]
= Pr

[
Pinit(x) = Pinit(y)

]
· Pr

[
Pi(fKi(x)) = Pi(fKi(y)) | Pinit(x) = Pinit(y) = Ki

]
≥ n−O(1/tq) · n−O(1/tq) = n−O(1/tq),

where the inequality follows because each fKi is non-expanding on its cluster Ki ⊂ ℓp.

SoCG 2025
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It remains to show that each cluster has diameter at most ∆. Let x, y ∈ X be in the same
cluster, i.e., Pout(x) = Pout(y). Then Pinit(x) = Pinit(y) = Ki and Pi(fKi(x)) = Pi(fKi(y)).
Combining the maximum possible diameter of Pinit(x) and Pi(fKi(x)) with the contraction
guarantees of f = fKi , we get

2
p

(
2 ∆

4t1−q

)1−p/2
∥x − y∥p/2

p ≤ ∥f(x) − f(y)∥2 ≤ ∆
2t1−q/2 .

Rearranging this, we obtain ∥x − y∥p ≤
p/2

√
p/2

2 ∆ ≤ ∆, which completes the proof. ◀

2.3 Spanners in ℓp for p ∈ (2, ∞)
We can now prove Theorem 1.4, by applying the following spanner construction of [22].

▶ Theorem 2.8 ([22]). Let (X, ρ) be an n-point metric space admitting a (t, η)-capped
decomposition for some t ≥ 1. Then, for every ϵ ∈ (0, 1/8), there exists a (2 + ϵ)t-spanner
for X with Oϵ( n

η · log n · log t) edges and lightness Oϵ( t
η · log2 n).

Proof of Theorem 1.4. The proof follows directly by combining Theorem 2.5 and Theo-
rem 2.8, as we can assume t = O(log n) without loss of generality. ◀

3 Spanners in ℓp for p ∈ (1, 2)

This section presents an improved construction of geometric spanners in ℓp for p ∈ (1, 2).
Previously, O(t)-spanners of size O(n1+log2 t/tp) for all t ≥ 1 were constructed in [22]; in
particular, setting t = (log n log log n)1/p yields an O(t)-spanner of near-linear size Õ(n). We
first present in Section 3.1 two different constructions of near-linear-size spanners with a
slightly better stretch. Then in Section 3.2 we use yet another technique, namely Locality
Sensitive Hashing (LSH), to slightly improve the construction of [22] of spanners with general
stretch O(t).

3.1 Spanners of Near-Linear Size
We slightly improve the near-linear size spanner construction of [22] by shaving the
(log log n)1/p factor from the stretch, as follows.

▶ Theorem 3.1. For every fixed p ∈ (1, 2), every n-point metric X ⊂ ℓp admits an
O(log1/p n)-spanner of size Õ(n).

We present two related but different proofs for this theorem. Both are based on modifying
the spanner algorithm for ℓ2 from [25], and therefore we start with an overview of that
algorithm. Given an input set X ⊆ ℓ2, the algorithm begins by constructing a hierarchical
set of 2i-nets X = N0 ⊇ N1 ⊇ · · · ⊇ Nlog ∆X

, where we assume that the minimum and
maximum distances in X are 1 and ∆X , respectively. Then, for each level i, it constructs an
(O(

√
log n), O(

√
log n) ·2i+1)-Lipschitz decomposition of Ni by combining the JL Lemma [27]

with the Lipschitz decomposition of [13]. For each cluster in it, the algorithm add to the
spanner edges in a star-like fashion, meaning that all cluster points are connected to one
arbitrary point within the cluster. The last two steps are repeated O(log n) times to ensure
that with high probability, for each level i, every x, y ∈ Ni with ∥x − y∥2 ≤ 2i+1 are clustered
together in at least one of the O(log n) repetitions. It is shown in [25] that this algorithm
constructs an (O(

√
log n))-spanner of size Õ(n).
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Proof of Theorem 3.1 via Lipschitz Decomposition. Observe that the above algorithm of
[25] uses the fact that the points lie in ℓ2 only for the construction of Lipschitz Decompositions,
and relies on an optimal decomposition for finite ℓ2 metrics to conclude that the spanner’s
stretch is O(β∗

n(ℓ2)). For finite ℓp metrics, p ∈ (1, 2), we can use instead a Lipschitz
decomposition from [35, 40], which has β = O(log1/p n)

p−1 , to conclude the claimed stretch. ◀

We next present a proof that modifies the algorithm of [25] differently, and relies on a
decomposition that is similar to a Lipschitz decomposition but has slightly weaker guarantees.
Interestingly, this technique yields a slightly stronger result than Theorem 3.1, where p need
not to be fixed and can depend on n (e.g., p → 1). We proceed to introduce some technical
results from [9] regarding a weak form of dimensionality reduction in ℓp, for p ∈ [1, 2], which
are needed for our proof.

▶ Definition 3.2 ([44]). Let (X, ρ), (Y, τ) be metric spaces and [a, b] be a real interval. An
embedding f : X → Y is called [a, b]-range preserving with distortion D ≥ 1 if there exists
c > 0 such that for all x, x′ ∈ X:
1. If a ≤ ρ(x, x′) ≤ b, then ρ(x, x′) ≤ c · τ(f(x), f(x′)) ≤ D · ρ(x, x′).
2. If ρ(x, x′) > b, then c · τ(f(x), f(x′)) ≥ b.
3. If ρ(x, x′) < a, then c · τ(f(x), f(x′)) ≤ D · a.
We say that (X, ρ) admits an R-range preserving embedding into (Y, τ) with distortion D, if
for all u > 0, there exists a [u, uR]-range preserving embedding into Y with distortion D.

▶ Theorem 3.3 ([9]). Let 1 ≤ p ≤ 2. For every n-point set S ⊂ ℓp, and for every range
parameter R > 1, there exists an R-range preserving embedding f : S → ℓk

p with distortion
1 + ϵ, such that k = O

(
RO(1/ϵ)·log n

ϵ

)
.

Proof of Theorem 3.1 via Weak Dimension Reduction. Observe that the above algorithm
of [25] only requires the decomposition of each net Ni to ensure that points x, y ∈ Ni with
∥x − y∥2 ≤ 2i+1 are clustered together with constant probability, and that the diameter of all
clusters is at most O(

√
log n) · 2i; of course, for X ⊂ ℓp, p ∈ (1, 2), we replace the O(

√
log n)

factor with O(log1/p n). A careful examination shows that these properties are preserved by
first reducing the dimension using the range-preserving embedding provided by Theorem 3.3
with ε = 1

2 and R = 2, and then constructing a Lipschitz decomposition for the image points
in ℓ

O(log n)
p using [13]. ◀

3.2 Spanners with Stretch-Size Tradeoff
We now present, in Theorem 1.5, a construction of O(t)-spanners in ℓp, where p ∈ (1, 2),
of size Õ(n1+1/tp) for all t ≥ 1, which slightly improves over the O(t)-spanners of size
Õ(n1+log2 t/tp) from [22]. It is worth noting that Theorem 1.5 generalizes the results of
Theorem 3.1, and thus provides an alternative proof for it.

▶ Definition 3.4 (LSH [26]). Let H be a family of hash functions mapping a metric (X, ρ) to
some universe U . We say that H is (r, tr, p1, p2)-sensitive if for every x, y ∈ X, the following
is satisfied:
1. If ρ(x, y) ≤ r, then Prh∈H[h(x) = h(y)] ≥ p1.
2. If ρ(x, y) > tr, then Prh∈H[h(x) = h(y)] ≤ p2.
Such H is called an LSH family with parameter γ := log(1/p1)

log(1/p2) .

▶ Lemma 3.5 ([22]). Let (X, ρ) be a metric space such that for every r > 0, there exists a
(r, tr, p1, p2)-sensitive LSH family with parameter γ. Then (X, ρ) admits a (t, n−O(γ))-capped
decomposition.

SoCG 2025
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For p = 2, the LSH family constructed in [3] can be used in Lemma 3.5 to conclude
that ℓ2 admits a (t, n−O(1/t2))-capped decomposition for every t ≥ 1 [22], thereby proving
Theorem 1.5 for this case of p = 2. In a similar fashion, an LSH family constructed in [43]
for p ∈ (1, 2) was used in [22] to show that these spaces admit a (t, n−O(log2 t/tp))-capped
decomposition. We observe that this result can be improved by replacing the LSH family
from [43], with an alternative one that is briefly mentioned in [4], and consequently prove
Theorem 1.5. For completeness, we reproduce this LSH family for ℓp, where p ∈ (1, 2).

▶ Lemma 3.6 ([4]). Let p ∈ (1, 2), r > 0, and large enough t > 1. Then there exists a
(r, tr, p1, p2)-sensitive LSH family for ℓp with parameter γ = 1

tp + o(1).

Proof. Let p ∈ (1, 2), r > 0, and sufficiently large t > 1. Let f : ℓp → ℓ2 be the isometric
embedding of the (p/2)-snowflake of ℓp into ℓ2 from [28, Theorem 4.1]. Take r′ = rp/2

and t′ = tp/2, and let H be the (r′, t′r′, p1, p2)-sensitive LSH family for ℓ2 with parameter
γ = 1

t′2 +o(1) from [3]. Observe that, for every x, y ∈ ℓp, if ∥x−y∥p ≤ r, then ∥f(x)−f(y)∥2 =
∥x − y∥p/2

p ≤ rp/2 = r′, and thus

Pr
h∈H

[h(f(x)) = h(f(y))] ≥ p1.

Similarly, if ∥x − y∥p > tr, then ∥f(x) − f(y)∥2 = ∥x − y∥p/2
p > (tr)p/2 = t′r′, and hence

Pr
h∈H

[h(f(x)) = h(f(y))] ≤ p2.

We therefore conclude that H◦f is an (r, tr, p1, p2)-sensitive LSH family for ℓp with parameter
γ = 1

tp + o(1). ◀

Proof of Theorem 1.5. The proof follows immediately by constructing a capped decomposi-
tion based on Lemma 3.5 and Lemma 3.6, and using it in the spanner construction from
Theorem 2.8. ◀

▶ Remark 3.7. While [28, Theorem 4.1] does not provide an efficiently computable embedding,
one can compute such an embedding for a finite set of points in polynomial time by [37].

4 Distance Labeling

In the distance labeling model, a scheme is designed for an entire a family X of n-point
metrics (and in some scenarios, all these metrics have the same point set X, e.g., different
graphs on the same vertex set). A scheme is an algorithm that preprocesses each metric X

in X and assigns to each point x ∈ X a label l(x).

▶ Definition 4.1. A scheme is a distance labeling with approximation D ≥ 1 and label size
of k if
1. every label (for every point in every metric in X ) consists of at most k bits; and
2. there is an algorithm A that, given the labels l(x), l(y) of two points x, y in a metric

(X, ρ) ∈ X (but not given (X, ρ) or the points x, y), outputs an estimate A(l(x), l(y)) that
satisfies

ρ(x, y) ≤ A(l(x), l(y)) ≤ D · ρ(x, y).

The following theorem was presented in [24] with limited details, and we include a proof
of it below for completeness.
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▶ Theorem 4.2 ([24]). Let X be a family of n-point metrics, and assume that all the
pairwise distances in all metrics (X, ρ) in X are in the range [1, ∆max]. Then X admits a
distance-labeling scheme with approximation O(β∗(X )) and label size O(log n log ∆max) bits.

It is straightforward to see that Theorem 1.6 follows by combining Theorem 4.2 and
Theorem 1.3.

Proof of Theorem 4.2. We first describe the preprocessing algorithm, denoting β := β∗(X ).
Perform the following steps for all levels i = 0, . . . , log ∆max. Begin by constructing a
(β, ∆i := 4β2i)-Lipschitz decomposition, and observe that every two points x, y ∈ X with
ρ(x, y) ≤ 2i are separated with probability at most 1

4 . Then, assign a random bit to each
cluster, and observe that if two points are at distance greater than ∆i, they always fall in
different clusters, hence, the probability that they are assigned the same bit is exactly 1

2 , and
if they are at distance at most 2i = ∆i/(4β) they are assigned the same bit with probability
at least 3

4 . Repeat the last two steps k = O(log n) times, and then with high probability,
every two points x, y are assigned the same bit at least 5

8 k times if ρ(x, y) ≤ ∆i/(4β) and
fewer than 5

8 k times if ρ(x, y) > ∆i. Finally, label each point by concatenating the bit
assigned to its cluster in all the repetitions at all levels.

The label-size analysis is straightforward. It remains to show that, given two labels
l(x), l(y), it is possible to approximate the distance ρ(x, y) within factor O(β). This can
be achieved by identifying the smallest level i such that x and y are assigned the same bit
at least 5

8 k times, and then the above analysis (used in contrapositive form) implies that
∆i−1/(4β) < ρ(x, y) ≤ ∆i, where by convention ∆−1 := 1. ◀

5 Future Directions

Lipschitz Decompositions. We stress that our decomposition in Theorem 1.3 employs a
data-dependent approach, and is not oblivious to the input set X (as, say, the decomposition
for ℓ2 in [13], even when applied together with the JL Lemma). In retrospect, this feature is
perhaps not very surprising, because data-dependent approaches have been already shown to
be effective for central problems, such as nearest neighbor search [5, 33]. We thus mention
that a major open problem in the field is whether dimension reduction is possible in ℓp for
p ̸= 1, 2, ∞; we know that for p > 2 this is not possible via an oblivious mapping [14], raising
the question whether data-dependent mappings can overcome this limitation.

Geometric Spanners. The geometric spanners in [25, 22] for ℓp, 1 < p ≤ 2, are not known
to be optimal, i.e., we do not know of matching lower bounds, except for the more restricted
case of 2-hop spanners [25]. We conjecture that tight instances exist in these spaces, i.e., the
spanner bounds obtained in [25, 22] are optimal for every stretch t. We similarly do not
know of matching lower bounds for the geometric spanners in ℓp, for fixed 2 ≤ p < ∞, that
we obtain in Theorem 1.4, and it is quite plausible that our upper bounds are not tight. We
do know however, based on known results, that for every n, there exist tight instances in ℓp

for p = Ω(log n).
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