

The Power of Recursive Embeddings for ℓ_p Metrics

(Full version available at [arXiv:2503.18508](https://arxiv.org/abs/2503.18508))

Robert Krauthgamer
Weizmann Institute of Science
robert.krauthgamer@weizmann.ac.il

Nir Petruschka
Weizmann Institute of Science
nir.petruschka@weizmann.ac.il

Shay Sapir
Weizmann Institute of Science
shay.sapir@weizmann.ac.il

Abstract—Metric embedding is a powerful tool used extensively in mathematics and computer science. We devise a new method of using metric embeddings recursively, which turns out to be particularly effective in ℓ_p spaces, $p > 2$, yielding state-of-the-art results for Lipschitz decomposition, for Nearest Neighbor Search, and for embedding into ℓ_2 . In a nutshell, our method composes metric embeddings by viewing them as reductions between problems, and thereby obtains a new reduction that is substantially more effective than the known reduction that employs a single embedding. We in fact apply this method recursively, oftentimes using double recursion, which further amplifies the gap from a single embedding.

Index Terms—Metric Embedding, Lipschitz Decomposition, Nearest Neighbor Search, ℓ_p norm

I. INTRODUCTION

Metric embeddings represent points in one metric space using another metric space, often one that is simpler or easier, while preserving pairwise distances within some distortion bounds. This mathematical tool is very powerful at transferring properties between the two metric spaces, and is thus used extensively in many areas of mathematics and computer science. Its huge impact over the past decades is easily demonstrated by fundamental results, such as John’s ellipsoid theorem [Joh48], the Johnson-Lindenstrauss (JL) Lemma [JL84], Bourgain’s embedding [Bou85], and probabilistic tree embedding [Bar96].

We devise a new method of using metric embeddings *recursively*, in a manner that is particularly effective for ℓ_p spaces, $p > 2$. Our method is based on the well-known approach of embedding ℓ_p into ℓ_2 (via the so-called Mazur map), but leverages a new form of recursion that goes through intermediate spaces $\ell_p \rightarrow \ell_{q_1} \rightarrow \dots \rightarrow \ell_{q_k} \rightarrow \ell_2$, to beat a direct embedding from ℓ_p into ℓ_2 .

Our method is inspired by the concept of reduction between (computational) problems, which is fundamental in computer science and has been used extensively to design algorithms and/or to prove conditional hardness. Many known reductions use metric embeddings in a straightforward manner, without harnessing the full power of reductions, which allow further manipulation, like employing multiple embeddings and taking

Work partially supported by the Israel Science Foundation grant #1336/23, by the Israeli Council for Higher Education (CHE) via the Weizmann Data Science Research Center, and by a research grant from the Estate of Harry Schutzman.

the majority (or best) solution.¹ To see this gap between embeddings and reductions, consider a composition of multiple embeddings, which yields overall an embedding from the first metric space to the last one. While going through intermediate metric spaces may simplify the exposition, it can only restrict the overall embedding. In contrast, composing metric embeddings by way of reductions, can create new reductions that are substantially richer than any single direct embedding. Our method actually composes reductions *recursively*, which makes this gap even more pronounced. We emphasize that the application of this method is problem-specific, unlike a metric embedding which is very general and thus applies to many problems at once. On the flip side, tailoring our recursive method to a specific problem opens the door to embeddings that are non-oblivious to the problem/data, which is reminiscent of data-dependent space partitioning used in recent nearest neighbor search (NNS) algorithms [ANN⁺18a], [ANN⁺18b], [KNT21]. To the best of our knowledge, this recursive method is new, i.e., related to but different from variants that have been used in prior work.

Our method yields several state-of-the-art results: (i) Lipschitz decomposition for finite subsets of ℓ_p spaces, $p > 2$; (ii) consequently, also Lipschitz decomposition for ℓ_∞^d ; and (iii) algorithms for NNS in ℓ_p spaces, $p > 2$. After obtaining these results, we noticed the online posting of parallel work [NR25a], and realized that our method can also (iv) improve some of its results about embedding into ℓ_2 .

A. Lipschitz Decomposition

A standard approach in many metric embeddings and algorithms is to partition a metric space into low-diameter (so-called) clusters, and the following probabilistic variant is commonly used and highly studied (sometimes called a separating decomposition).

Definition I.1 (Lipschitz decomposition [Bar96]). Let $(\mathcal{M}, d_{\mathcal{M}})$ be a metric space. A distribution \mathcal{D} over partitions of \mathcal{M} is called a (β, Δ) -Lipschitz decomposition if

- for every partition $P \in \text{supp}(\mathcal{D})$, all clusters $C \in P$ satisfy $\text{diam}(C) \leq \Delta$; and

¹This is perhaps analogous to the difference between Cook reductions and Karp reductions. The former allows the use of a subroutine that solves the said problem, while the latter applies only a single transformation on the input, and is thereby restricted to a single subroutine call.

- for every $x, y \in \mathcal{M}$,

$$\Pr_{P \sim \mathcal{D}}[P(x) \neq P(y)] \leq \beta \frac{d_{\mathcal{M}}(x, y)}{\Delta},$$

where $P(z)$ denotes the cluster of P containing $z \in \mathcal{M}$ and $\text{diam}(C) := \sup_{x, y \in C} d_{\mathcal{M}}(x, y)$.

Our first use of recursive embedding yields the following theorem, whose proof appears in Section III.

Theorem I.2. *Let $p \geq 2$ and $d \geq 1$. Then for every n -point metric $\mathcal{C} \subset \ell_p^d$ and $\Delta > 0$, there exists an $(O(p^4 \sqrt{\min\{\log n, d\}}), \Delta)$ -Lipschitz decomposition.*

Typically, Δ is not known in advance or one needs multiple values of Δ (e.g., every power of 2). We naturally seek the smallest possible β in this setting, and thus define the (optimal) *decomposition parameter* of a metric space (\mathcal{M}, ρ) as

$$\beta^*(\mathcal{M}) := \inf_{\beta \geq 1} \left\{ \beta : \forall \Delta > 0, \text{ every finite } \mathcal{M}' \subseteq \mathcal{M} \text{ admits a } (\beta, \Delta)\text{-Lipschitz decomposition} \right\},$$

and further define $\beta_n^*(\mathcal{M}) := \sup \{ \beta^*(\mathcal{M}') : \mathcal{M}' \subseteq \mathcal{M}, |\mathcal{M}'| \leq n \}$. The following two corollaries of Theorem I.2 bound these quantities and delineate the asymptotic dependence on n and on d .

Corollary I.3. *For every $p \in [2, \infty)$ and $n \geq 1$, we have $\beta_n^*(\ell_p) = O(p^4 \sqrt{\log n})$.*

Proof. It follows directly from Theorem I.2 and the result from [Bal90], that every finite set $X \subset \ell_p$ embeds isometrically into ℓ_p^d for some d . \square

This result significantly improves the previous bound $\beta_n^*(\ell_p) = O(\log^{1-1/p} n)$ from [KP25], and fully resolves [Nao17, Question 1] (see also [Nao24, Question 83]), which asked for an $O_p(\sqrt{\log n})$ bound. (Throughout, the notation $O_\alpha(\cdot)$ hides a factor that depends only on α .) In parallel to our work, a slightly weaker bound $\beta_n^*(\ell_p) \leq O(2^p \sqrt{\log n})$ was obtained in [NR25a]. Both our improvement and that of [NR25a] rely on the technique developed in [KP25], and essentially apply it iteratively/recursively instead of once, and ours actually applies double recursion.

Corollary I.4. *For every $p \in [2, \infty]$ and $d \geq 1$, we have $\beta^*(\ell_p^d) = O((\min\{p, \log d\})^4 \cdot \sqrt{d})$.*

Proof. For $p \leq \log d$, it follows from Theorem I.2. For larger p , use Hölder's inequality to reduce the problem from ℓ_p^d to $\ell_{\log d}^d$ with $O(1)$ distortion.² \square

Corollary I.4 is slightly weaker than Naor's main result in [Nao17], which was later slightly improved in [Nao24]. Naor showed that $\beta^*(\ell_p^d) = \Theta(\sqrt{d})$ for all $p \in [2, \infty]$, matching the lower bound that follows from [CCG⁺98]. Our proof is fundamentally different from, and arguably simpler

²A metric space $(\mathcal{M}, d_{\mathcal{M}})$ embeds into a metric space $(\mathcal{N}, d_{\mathcal{N}})$ with distortion $D \geq 1$ iff there exists $s > 0$ and a function $f : \mathcal{M} \rightarrow \mathcal{N}$ such that for all $x, y \in \mathcal{M}$, $\frac{s}{D} \cdot d_{\mathcal{M}}(x, y) \leq d_{\mathcal{N}}(f(x), f(y)) \leq s \cdot d_{\mathcal{M}}(x, y)$.

than, Naor's proof, which relies on a deep understanding of the geometry of ℓ_p^d spaces. One may hope that our proof could be enhanced to match the exact asymptotics of $\beta^*(\ell_{\infty}^d)$, perhaps by simply optimizing the constants in our recursion that yield the p^4 factor in Theorem I.2. Unfortunately, this approach has a serious barrier. For $\ell_{\log n}$, we have $\beta_n^*(\ell_{\log n}) = \Omega(\log n)$, since every n -point metric embeds into $\ell_{\log n}$ with $O(1)$ distortion by [Mat97], and there is an $\Omega(\log n)$ lower bound for Lipschitz decomposition of general n -point metrics [Bar96]. Improving the p^4 factor in our analysis to $o(\sqrt{p})$ would imply that $\beta_n^*(\ell_{\log n}) = o(\log n)$, contradicting the known lower bound.

Remark I.5. Naor [Nao17] shows that his upper bound on $\beta^*(\ell_{\infty}^d)$ has an important application to the Lipschitz extension problem. More precisely, he proves an infinitary variant of his upper bound, and that it implies a similar bound on $e(\ell_{\infty}^d)$, which is the Lipschitz extension modulus of ℓ_{∞}^d . He thus concludes that $e(\ell_{\infty}^d) \leq O(\sqrt{d \log d})$, which almost matches (up to lower order factors), the lower bound $e(\ell_{\infty}^d) \geq \Omega(\sqrt{d})$ that follows from [BB05], [BB06]. We have not attempted to extend Corollary I.4 to the infinitary variant, as Naor notes that it is required only for extension theorems into certain exotic Banach spaces [Nao17, Appendix A, Remark 4].

Remark I.6. The result of Theorem I.2 extends to a related notion of decomposition, that was introduced in [FN22] and immediately implies geometric spanners. This yields spanners for ℓ_p spaces, $p > 2$, whose stretch-size tradeoff is comparable to that known for ℓ_2 . Previously, weaker bounds for such decompositions, and consequently also weaker spanners for ℓ_p , were proved in [KP25]. The details, which are similar to Theorem I.2, are omitted.

B. Nearest Neighbor Search

The Nearest Neighbor Search (NNS) problem is to design a data structure that preprocesses an n -point dataset V residing in a metric \mathcal{M} , so that given a query point $q \in \mathcal{M}$, the data structure reports a point in V that is closest to q (and approximately closest to q in approximate NNS). The main measures for efficiency are the data structure's space complexity and the time it takes to answer a query; a secondary measure is the preprocessing time, which is often proportional to the space. The problem has a wide range of applications in machine learning, computer vision and other fields, and has thus been studied extensively, including from theoretical perspective, see e.g. the survey [AI17]. It is well known that approximate NNS reduces to solving polylog(n) instances of the approximate near neighbor problem [IM98], hence we consider the latter.

Definition I.7 (Approximate Near Neighbor). The Approximate Near Neighbor problem for a metric space $(\mathcal{M}, d_{\mathcal{M}})$ and parameters $c \geq 1$, $r > 0$, abbreviated (c, r) -ANN, is the following. Design a data structure that preprocesses an n -point subset $V \subseteq \mathcal{M}$, so that given a query $q \in \mathcal{M}$ with

$d_{\mathcal{M}}(q, V) \leq r$,³ it reports $x \in V$ such that

$$d_{\mathcal{M}}(q, x) \leq cr.$$

In a randomized data structure, the reported x satisfies this with probability at least $2/3$.

We prove the following theorem, whose proof appears in Section IV and is similar in spirit to that of Theorem I.2. It applies our method of recursive embedding, using Mazur maps for n -point subsets of ℓ_p^d .

Theorem I.8. *Let $p > 2$, $d \geq 1$ and $0 < \varepsilon < 1$. Then for $c = O(p^{1+\ln 4+\varepsilon})$ and every $r > 0$, there is a randomized data structure for (c, r) -ANN in ℓ_p^d , that has query time $\text{poly}(\varepsilon^{-1} d \log n)$, and has space and preprocessing time $\text{poly}(dn^{\varepsilon^{-1} \log p})$.*

Remark. Picking $\varepsilon = \frac{1}{\log p}$ is sufficient to get approximation $O(p^{1+\ln 4}) \leq O(p^{2.387})$.

Most prior work on ANN in ℓ_p spaces studies the case $1 \leq p \leq 2$, where $(O(1), r)$ -ANN can be solved using query time $\text{poly}(d \log n)$ and space $\text{poly}(n)$ [KOR00], [IM98], [HIM12]. For $p > 2$, such a bound is not known, and we list in Table I all the known results (ours and previous ones), which are often incomparable. The results of [And09], [AIK09] and of [ANRW21] are based on Indyk's [Ind01] result for ℓ_∞ , and are most suitable for large values of p ; note though that the *pre-processing time* of [ANRW21] is exponential in d . The other results are more suited for small values of $p > 2$, and they all have different downsides: one result [BG19] has a large approximation $2^{O(p)}$; another one [ANN⁺18a], [ANN⁺18b], [KNT21] has a large query time $n^\varepsilon \cdot \text{poly}(d \log n)$, which can be mitigated by picking $\varepsilon = \frac{1}{\log n}$, at the cost of increasing the approximation to $O(p \log n)$; ours (Theorem I.8) has a large space $n^{O(\log p)}$; and lastly, [BBM⁺24] and [AIK09], [And09] can achieve $O(1)$ -approximation but this requires an even larger space $d \cdot n^{2^{O(p)} \log(1/\varepsilon)}$ and $n^{O(\log d)}$, respectively. The bottom line is that the regime of $p > 2$ is notoriously difficult. It remains open to bridge the gap between small p and large p , and specifically to obtain $O(p)$ -approximation using $\text{poly}(d \log n)$ query time and $\text{poly}(n)$ space.

Our result for ANN provides yet another illustration for the power of recursive embedding. Bartal and Gottlieb [BG19] mentioned that Assaf Naor noted, in personal communication regarding improving their $2^{O(p)}$ -approximation, that all uniform embeddings of ℓ_p to ℓ_2 (like Mazur maps) have distortion exponential in p [Nao14, Lemma 5.2]. Our use of recursive embeddings breaks this barrier, and essentially provides a black-box reduction from ℓ_p to ℓ_2 , that still uses Mazur maps but achieves $\text{poly}(p)$ -approximation. We note that the improved approximation of [ANN⁺18a], [ANN⁺18b], [KNT21] uses embedding into ℓ_2 with small average distortion, however this approach is not known to provide a black-box reduction for ANN, and its specialized solution increases the query time.

³If $d_{\mathcal{M}}(q, V) > r$, it may report anything, where as usual, $d_{\mathcal{M}}(q, V) := \min_{x^* \in V} d_{\mathcal{M}}(x^*, q)$.

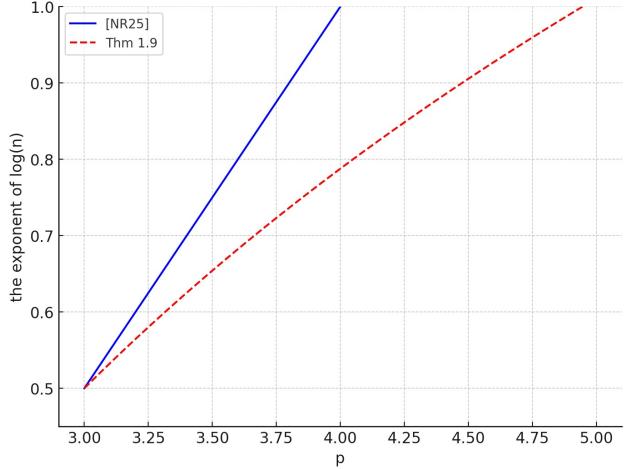


Fig. 1. The distortion of embedding from ℓ_p , $p > 3$ into ℓ_2 shown by depicting the exponent of $\log n$ in [NR25a, Theorem 1] (blue) compared with our bound in Theorem I.9 (red).

C. Low-Distortion Embeddings

After we obtained our aforementioned results for Lipschitz decomposition and NNS, we noticed the online posting of [NR25a] on the distortion required for embedding ℓ_p space ($p > 2$) into Euclidean space, and used our technique to extend their result. The study of the distortion required for embedding metrics into Euclidean space has a decades-long history for general metrics [Joh48], [Bou85], [LLR95] and for ℓ_p space [Lee05], [CGR05], [ALN08], [CNR24], [BG14], [NR25a]. For an infinite metric space $(\mathcal{M}, d_{\mathcal{M}})$, define $c_2^n(\mathcal{M}) := \sup_{\mathcal{C} \subseteq \mathcal{M}, |\mathcal{C}| \leq n} c_2(\mathcal{C})$, where $c_2(\mathcal{C})$ denotes the minimal distortion needed to embed \mathcal{C} into ℓ_2 . We prove the following in Section V.

Theorem I.9. *If $3 < p < 3\sqrt{e}$, then for every fixed $0 < \varepsilon \leq 1$,*

$$c_2^n(\ell_p) \leq O(\log^{\frac{1}{2} + \ln \frac{p}{3} + \varepsilon} n).$$

Previously, for $p > 2$, non-trivial distortion was only known in the range $2 < p < 4$ [BG14], [NR25a], where non-trivial means distortion asymptotically smaller than $O(\log n)$, which holds for every n -point metric space [Bou85]. Bartal and Gottlieb [BG14] established that $c_2^n(\ell_p) = O(\log^{p/4} n)$ for every $p \in (2, 4)$, and Naor and Ren [NR25a] proved a better bound $c_2^n(\ell_p) = O(\sqrt{\log n} \cdot \log \log n)$ for $p \in (2, 3]$ and $c_2^n(\ell_p) = O(\log^{p/2-1} n \cdot \log \log n)$ for $p \in (3, 4)$. Theorem I.9 improves these bounds further in the range $3 < p < 3\sqrt{e}$. Since it may not be immediate that Theorem I.9 indeed improves the bounds on $c_2^n(\ell_p)$ for all $3 < p < 3\sqrt{e}$, we plot the corresponding exponents of the $\log n$ factor in Figure 1.

Remark I.10. Every finite metric embeds isometrically in ℓ_∞ , and thus $c_2^n(\ell_\infty) = \Theta(\log n)$ by [Bou85] and [LLR95]. For ℓ_p , $p \in (2, \infty)$, a lower bound of

$$c_2^n(\ell_p) \geq \Omega(\log^{1/2-1/p} n)$$

Approximation	Query time	Space	Reference
$O(\varepsilon^{-1} \log \log d)$	n^{ε^p}	$n^{1+\varepsilon}$	[AIK09], [And09]
$O_\varepsilon(\log p \cdot (\log d)^{2/p})$	n^ε	$n^{1+\varepsilon}$	[ANRW21]
$2^{O(p)}$	$(d \log n)^{O(1)}$	$n^{O(1)}$	[BG19]
$p^{O(1)}$	$(d \log n)^{O(1)}$	$n^{O(\log p)}$	Thm 1.8
$O(p/\varepsilon)$	n^ε	$n^{1+\varepsilon}$	[ANN ⁺ 18a], [ANN ⁺ 18b], [KNT21]
c	n^ε	$n^{O(p/c) \cdot \log(1/\varepsilon)}$	[BBM ⁺ 24]

TABLE I

KNOWN DATA STRUCTURES FOR ANN IN ℓ_p , $p > 2$. FOR BREVITY, WE OMIT HERE $\text{poly}(d \log n)$ FACTORS WHEN THE COMPLEXITY IS POLYNOMIAL IN n . THE TOP-LISTED TWO RESULTS ARE PARTICULARLY SUITED FOR LARGE VALUES OF p , AND THE OTHERS ARE SUITED FOR SMALL VALUES OF p .

follows from [LN13, Theorem 1.3].

Note added in proof: Shortly after our work was posted online, a new version of [NR25a] that was posted as [NR25b], improved our Theorem I.9 and showed that for every $p > 2$,

$$c_2^n(\ell_p) = O(p^3 \sqrt{\log n} \log \log n).$$

Additionally, it used a different technique to improve the dependence on p in our Corollary I.3 to p^2 .

II. PRELIMINARIES

The main tool we use for recursive embeddings between ℓ_p spaces is a classical embedding, commonly known as the Mazur map. For every $p, q \in [1, \infty)$, the Mazur map $M_{p,q} : \ell_p^m \rightarrow \ell_q^m$ is computed by raising the absolute value of each coordinate to the power p/q while preserving the original signs. The following key property of this map is central to all our results.

Theorem II.1 ([BL98], [BG19]). *Let $1 \leq q < p < \infty$ and $C_0 > 0$, and let M be the Mazur map $M_{p,q}$ scaled down by factor $\frac{p}{q} C_0^{p/q-1}$. Then for all $x, y \in \ell_p$ such that $\|x\|_p, \|y\|_p \leq C_0$,*

$$\frac{q}{p} (2C_0)^{1-p/q} \|x - y\|_p^{p/q} \leq \|M(x) - M(y)\|_q \leq \|x - y\|_p.$$

III. LIPSCHITZ DECOMPOSITION OF ℓ_p METRICS

In this section, we prove Theorem I.2. We first outline the proof. Our approach uses a double recursion, where each recursion is an instance of recursive embedding. The first recursion takes a Lipschitz decomposition of a finite subset $\mathcal{M} \subset \ell_p^d$ with decomposition parameter β and produces a Lipschitz decomposition with (ideally smaller) decomposition parameter β_{new} . Each iteration in this recursion is as follows. We first use the given decomposition to decompose \mathcal{M} into bounded-diameter subsets, embed each subset into ℓ_q for $q < p$ using Mazur maps, employ Lipschitz decomposition for ℓ_q , and pull back the solution (clusters) we found. It is natural to choose here $q = 2$, because the known Lipschitz decompositions for ℓ_2 are tight. However, this choice leads to a decomposition parameter with an $\exp(p)$ factor, and we overcome this by picking $q = p/2$. We only then apply a second recursion, which goes from ℓ_p to ℓ_2 gradually, via intermediate values $2 < q < p$.

Lemma III.1. *Let $2 \leq q < p < \infty$ and let $\mathcal{M} \subset \ell_p$ be an n -point metric. Suppose that for every $\Delta' > 0$, there exists a (β, Δ') -Lipschitz decomposition of \mathcal{M} . Then, for every $\Delta > 0$, there exists a $(\beta_{\text{new}}, \Delta)$ -Lipschitz decomposition of \mathcal{M} , with*

$$\beta_{\text{new}} = 4\left(\frac{p}{2q}\right)^{q/p} [\beta_n^*(\ell_q)]^{q/p} \beta^{1-q/p}.$$

Lemma III.1 provides the recursion step for the first recursion from the outline above, and we use it with $q = p/2$. For the natural choice of $q = 2$, the expression in Lemma III.1 equals $\beta_{\text{new}} = 4(p/4)^{2/p} [\beta_n^*(\ell_2)]^{2/p} \beta^{1-2/p}$, hence iterative applications converge to the fixpoint $\beta = \frac{p}{4} 2^p \cdot \beta_n^*(\ell_2)$, which is easily found by setting $\beta = \beta_{\text{new}}$. In contrast, for $q = p/2$, the expression simplifies to $\beta_{\text{new}} = 4\sqrt{\beta_n^*(\ell_{p/2})} \cdot \beta$, the fixpoint is now $\beta = 16\beta_n^*(\ell_{p/2})$, and recursion on p introduces only a $\text{poly}(p)$ factor.

Proof. Let $\Delta > 0, p \in (2, \infty)$, and let $\mathcal{M} \subset \ell_p$ be an n -point metric space. Set $a := \frac{1}{2} \left(\frac{2q\beta}{p\beta_n^*(\ell_q)}\right)^{q/p}$ and $b := \frac{\beta_n^*(\ell_q)a}{\beta}$, chosen to satisfy

$$\frac{\beta}{a} = \frac{\beta_n^*(\ell_q)}{b} \quad \text{and} \quad \frac{p}{q} (2a)^{p/q-1} b = 1. \quad (1)$$

Construct a partition of \mathcal{M} in the following steps:

- 1) Draw a partition $P_{\text{init}} = \{K_1, \dots, K_t\}$ from a $(\beta, a\Delta)$ -Lipschitz decomposition of \mathcal{M} .
- 2) Embed each cluster $K_i \subset \ell_p$ into ℓ_q using the embedding f^{K_i} provided by Theorem II.1 for $C_0 := a\Delta$.
- 3) For each embedded cluster $f^{K_i}(K_i)$, draw a partition $P_i = \{K_i^1, \dots, K_i^{k_i}\}$ from a $(\beta_n^*(\ell_q), b\Delta)$ -Lipschitz decomposition of $f^{K_i}(K_i)$.
- 4) Obtain a final partition P_{out} by taking the preimage of every cluster of every P_i .

It is easy to see that P_{out} is indeed a partition of \mathcal{M} , consisting of $\sum_{i=1}^t k_i$ clusters. Next, consider $x, y \in \mathcal{M}$ and let us bound $\Pr[P_{\text{out}}(x) \neq P_{\text{out}}(y)]$. Observe that a pair of

points can be separated only in steps 1 or 3. Therefore,

$$\begin{aligned}
& \Pr[P_{\text{out}}(x) \neq P_{\text{out}}(y)] \\
& \leq \Pr[P_{\text{init}}(x) \neq P_{\text{init}}(y)] \\
& \quad + \Pr[P_i(f^{K_i}(x)) \neq P_i(f^{K_i}(y)) \mid P_{\text{init}}(x) = P_{\text{init}}(y) = K_i] \\
& \leq \beta \frac{\|x - y\|_p}{a\Delta} + \beta_n^*(\ell_q) \frac{\|f^{K_i}(x) - f^{K_i}(y)\|_q}{b\Delta} \\
& \leq \left(\frac{\beta}{a} + \frac{\beta_n^*(\ell_q)}{b} \right) \frac{\|x - y\|_p}{\Delta},
\end{aligned}$$

where the last inequality is because by Theorem II.1, each f^{K_i} is a non-expanding map from $K_i \subset \ell_p$ to ℓ_q . Using (1), we obtain $\beta_{\text{new}} = 2\frac{\beta}{a} = 4(\frac{p}{2q})^{q/p} [\beta_n^*(\ell_q)]^{q/p} \beta^{1-q/p}$.

It remains to show that the final clusters all have diameter at most Δ . Let $x, y \in \mathcal{M}$ be in the same final cluster, i.e., $P_{\text{out}}(x) = P_{\text{out}}(y)$. Then $P_{\text{init}}(x) = P_{\text{init}}(y) = K_i$ and $P_i(f^{K_i}(x)) = P_i(f^{K_i}(y))$. Combining the distortion guarantees of f^{K_i} from Theorem II.1 with the diameter bound of P_i , we get

$$\frac{q}{p} \left(2a\Delta \right)^{1-p/q} \|x - y\|_p^{p/q} \leq \|f^{K_i}(x) - f^{K_i}(y)\|_q \leq b\Delta.$$

Rearranging this and using (1), we obtain $\|x - y\|_p^{p/q} \leq \frac{p}{q} (2a)^{p/q-1} b \Delta^{p/q} = \Delta^{p/q}$, which completes the proof. \square

We are now ready to prove the main theorem.

Proof of Theorem I.2. Let $p \in (2, \infty)$, and let $\mathcal{M} \subset \ell_p$ be an n -point metric space. For ease of presentation, we assume for now that p is a power of 2, and resolve this assumption at the end. Denote $\beta_0(\mathcal{M}) = O(\min\{d, \log n\})$, given by [Bar96] and [CCG⁺98]. We now iteratively apply Lemma III.1 with $q = p/2$, and obtain after k iterations,

$$\begin{aligned}
\beta_k(\mathcal{M}) &= 4\sqrt{\beta_n^*(\ell_{p/2}) \cdot \beta_{k-1}(\mathcal{M})} \\
&= 4\sqrt{\beta_n^*(\ell_{p/2}) \cdot 4\sqrt{\beta_n^*(\ell_{p/2}) \cdot \beta_{k-2}(\mathcal{M})}} \\
&= \dots \\
&= 4^{(1+\frac{1}{2}+\dots+\frac{1}{2^{k-1}})} [\beta_n^*(\ell_{p/2})]^{(\frac{1}{2}+\frac{1}{4}+\dots+\frac{1}{2^k})} \beta_0(\mathcal{M})^{\frac{1}{2^k}} \\
&\leq 16\beta_n^*(\ell_{p/2}) \cdot \beta_0(\mathcal{M})^{1/2^k}. \tag{2}
\end{aligned}$$

Picking $k := \lceil \log(\log p \cdot \log \beta_0(\mathcal{M})) \rceil = O(\log(\log p \cdot \log \min\{d, \log n\}))$ yields $\beta_0(\mathcal{M})^{1/2^k} \leq 2^{1/\log p}$, and we obtain $\beta^*(\mathcal{M}) \leq \beta_k(\mathcal{M}) \leq 2^{4+1/\log p} \cdot \beta_n^*(\ell_{p/2})$. Now recursion on p implies

$$\beta^*(\mathcal{M}) \leq 2p^4 \cdot \beta_n^*(\ell_2).$$

Finally, by [CCG⁺98] and the JL Lemma [JL84] we know that $\beta_n^*(\ell_2) \leq O(\min\{\sqrt{d}, \sqrt{\log n}\})$, which concludes the proof when p is a power of 2.

Resolving the case when p is not a power of 2 is straightforward. Let q be the largest power of 2 that is smaller than p , hence $1/2 < q/p < 1$. It suffices to show that $\beta_n^*(\ell_p) = O(\beta_n^*(\ell_q))$, as then we can apply the previous argument since

q is a power of 2. Now apply Lemma III.1 for k iterations, analogously to (2). We may assume that $\beta_n^*(\ell_q) \leq \beta_i(\mathcal{M})$ for all $i \leq k$, as otherwise we can simply abort after the i -th iteration, hence $\beta_k(\mathcal{M}) = 4(\frac{p}{2q})^{q/p} [\beta_n^*(\ell_q)]^{q/p} \beta_{k-1}(\mathcal{M})^{1-q/p} \leq 4\sqrt{\beta_n^*(\ell_q) \beta_{k-1}(\mathcal{M})}$. Now similarly to (2) we get $\beta_n^*(\ell_p) = O(\beta_n^*(\ell_q))$, and the theorem follows. \square

Remark III.2. We suspect that the factor 16 in the recursion (2) is an artifact of the analysis. First, by balancing the separation probabilities over all k iterations, one can perhaps eliminate the factor 2 increase in the probabilities, and thus improve the factor in the recursion to roughly 4. Second, the Mazur maps require sets of bounded *radius*, while the construction guarantees sets of bounded *diameter*. Our proof uses the trivial bound $\text{radius} \leq \text{diam}$, which holds for every metric space, and subsets of ℓ_p may admit a tighter bound. Denote by $J_p \in [\frac{1}{2}, 1]$ the minimum number such that $\text{radius}(\mathcal{M}) \leq J_p \text{diam}(\mathcal{M})$ for all $\mathcal{M} \subset \ell_p$. It is known that $J_\infty = 1/2$ and by Jung's Theorem, $J_2 = \frac{1}{\sqrt{2}}$. Then, the factor above improves to roughly $(2J_p)^2$. Keeping in mind the discussion following Corollary I.4, and aiming for a clear presentation of the main ideas in the solution, we have omitted the above optimizations.

IV. NEAREST NEIGHBOR SEARCH

In this section, we design a data structure for approximate NNS in ℓ_p^d for $p > 2$, proving Theorem I.8. Previously, Bartal and Gottlieb [BG19] devised a data structure that is based on embedding ℓ_p into ℓ_2 , for which good data structures are known (e.g., LSH), and they furthermore employ recursion to improve the approximation factor, from a large trivial factor down to $\exp(p)$. We observe that their embedding and recursion approach is actually analogous to Section III, but using only the special case $q = 2$. We thus use our double recursion approach that goes through intermediate ℓ_q spaces, and obtain an improved approximation factor $\text{poly}(p)$. In the rest of this section, we reserve the letter q for the query point (which is standard in the NNS literature) and denote the intermediate spaces by ℓ_t .

Proof of Theorem I.8. First, we show an analogous claim to Lemma III.1 but for the (c, r) -ANN problem. We take two NNS data structures, one for ℓ_p^d with approximation c_p and one for ℓ_t^d (where $t < p$) with approximation c_t , and construct a new data structure for ℓ_p^d with approximation c_{new} (ideally smaller than c_p).

Given an n -point dataset $V \subset \ell_p^d$, construct a (c_p, r) -ANN A_{base} for V ; and additionally, for every point $x \in V$, apply a Mazur map M^x scaled down by $\frac{p}{t} \cdot (2rc_p)^{p/t-1}$ from ℓ_p^d to ℓ_t^d on $B_p(0, 2rc_p) \cap (V - x)$, where $B_p(x, r) := \{y : \|x - y\|_p \leq r\}$, and construct a (c_t, r) -ANN data structure A_x for the image points. Amplify their success probabilities to 5/6 by standard amplification. Given a query q , with the guarantee that there exists $x^* \in V$ with $\|x^* - q\|_p \leq r$, query A_{base} with q and obtain a point $x \in V$. Then query A_x with $M^x(q - x)$, obtain a point $M^x(z - x) \in M^x(V - x)$ and output z accordingly.

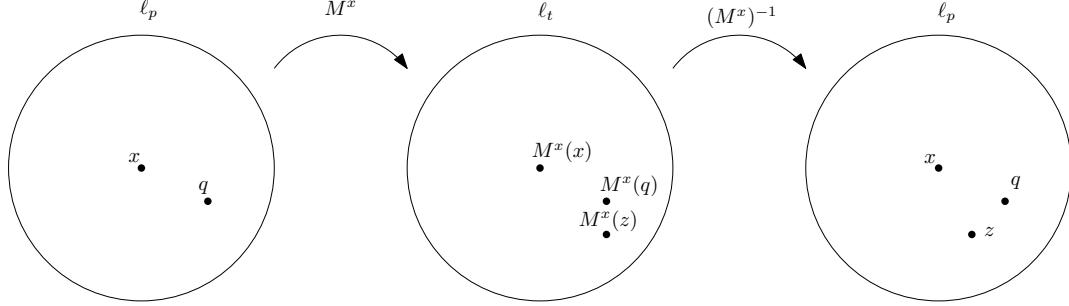


Fig. 2. An illustration of Claim IV.1. For the purpose of this illustration, the ℓ_p and ℓ_t balls are depicted using a Euclidean circle, and x is assumed to lie at the origin of ℓ_p . Given a query point q , an approximated solution x is found in ℓ_p using A_{base} . The Mazur map M^x is then applied, after which a solution $M^x(z)$ is found in ℓ_t using A_x . Finally, the inverse map is applied to obtain an improved solution z in ℓ_p .

Claim IV.1. *With probability $2/3$, we have $\|z - q\|_p \leq c_{new}r$, where $c_{new} = (\frac{p}{t})^{t/p} c_t^{t/p} (4c_p)^{1-t/p}$.*

Proof. With probability at least $\frac{5}{6}$, A_{base} outputs a point x with $\|x - q\|_p \leq rc_p$. By triangle inequality, $\|x^* - x\|_p \leq \|x^* - q\|_p + \|q - x\|_p \leq 2rc_p$, hence $\|M^x(x^*) - M^x(q)\|_t \leq r$. Thus, with probability at least $\frac{5}{6}$, A_x outputs a point $M^x(z)$ with $\|M^x(z) - M^x(q)\|_t \leq rc_t$. By a union bound, both events hold with probability $2/3$. Assume they hold. By Theorem II.1,

$$\frac{t}{p} \cdot (4rc_p)^{1-p/t} \|z - q\|_p^{p/t} \leq \|M^x(z) - M^x(q)\|_t \leq r \cdot c_t,$$

rearranging this we obtain $\|z - q\|_p \leq r \cdot c_{new}$. \square

Remark IV.2. Plugging $t = 2$ into Claim IV.1 and solving the recursion, we obtain a variation of [BG19, Lemma 11].

Now, as in the proof of Theorem I.2, we apply the additional recursive embedding reduction that goes through intermediate ℓ_t spaces. To improve readability, we first provide a simpler proof with $O(p^3)$ -approximation, and then explain the improvement to $O(p^{1+\ln(4)+\varepsilon})$ -approximation. We assume without loss of generality that $p \leq \log d$ by Hölder's inequality.

Assume for now that p is a power of 2. Consider the data structure for ℓ_2^d given by [Cha98], with approximation $c = \text{poly}(d)$, space and processing time $\tilde{O}(n \cdot \text{poly}(d))$ and query time $\text{poly}(d \log n)$. By Hölder's inequality, the same data structure yields $\text{poly}(d)$ approximation also for ℓ_p^d .

Now, we recursively apply Claim IV.1 with $t = p/2$, as follows. Denote by k the number of recursive steps to be determined later, and by \hat{c}_i the approximation guarantee in ℓ_p after the i -th recursive step. Initially, $\hat{c}_0 = \text{poly}(d)$, by using the data structure of [Cha98]. For every $i \in [k]$, we maintain data structures $\{A_x^i\}_{x \in V}$, where the Mazur map is scaled according to the current approximation guarantee (i.e., scaled down by $\frac{p}{t} \cdot (2r\hat{c}_{i-1})^{p/t-1}$). Moreover, we amplify the success probabilities to $1 - \frac{2}{3^k}$ by $O(\log k)$ independent repetitions. Thus, if the $(i-1)$ -th iteration is successful, i.e., it returns a point x solving (\hat{c}_{i-1}, r) -ANN, then the Mazur maps in the i -th iteration are scaled correctly. Hence, by querying A_x^i , we get the approximation given by Claim IV.1. By the law

of total probability, with probability $2/3$, all the k recursive steps return a correct estimate. Therefore,

$$\begin{aligned} \hat{c}_k(V) &\leq \sqrt{8c_{p/2} \cdot \hat{c}_{k-1}(V)} \\ &\leq \sqrt{8c_{p/2} \cdot \sqrt{8c_{p/2} \cdot \hat{c}_{k-2}(V)}} \\ &\leq \dots \\ &\leq (8c_{p/2})^{(1/2+1/4+\dots+1/2^k)} \hat{c}_0(V)^{2^{-k}} \\ &\leq 8c_{p/2} \cdot \hat{c}_0(V)^{2^{-k}}. \end{aligned} \quad (3)$$

Picking $k := \lceil \log(\log p \cdot \log \hat{c}_0(V)) \rceil = O(\log \log d)$ yields $\hat{c}_0(V)^{2^{-k}} \leq 2^{1/\log p}$, and we obtain a data structure with approximation at most $\hat{c}_k(V) \leq 2^{3+1/\log p} \cdot c_{p/2}$.

Before applying a second recursion on p , we amplify the success probabilities to $1 - \frac{2}{3^{\log p}}$ by $O(\log \log p) = O(\log \log \log d)$ independent repetitions. Now a second recursion on p implies $\hat{c}_k(V) \leq 2p^3 \cdot c_2$ with probability at least $2/3$. Finally, we bound c_2 similarly to [BG19], namely, using the JL-lemma to reduce the dimension to $O(\log n)$ together with a $(2, r)$ -ANN data structure of [KOR00], [HIM12] in $\ell_2^{O(\log n)}$, which has query time $T_2 = \text{polylog } n$, and space and preprocessing time $S_2 = Z_2 = n^{O(1)}$. Plugging this as the base case of the second recursion, and we get the desired approximation $\hat{c}_k(V) = O(p^3)$. Each level of the second recursion increases the space and preprocessing time by factor n , resulting in a total of $n^{O(\log p)} \cdot S_2 = n^{\log p + O(1)} \cdot d^{O(1)}$ space and preprocessing time. Answering a query goes through both recursions, but the first recursion only requires $O(k \log k) = \tilde{O}(\log \log d)$ calls to an ANN data structure for ℓ_t , hence the overall running time is $(\log \log d)^{O(\log p)} \cdot T_2 = \text{poly}(d \log n)$. Resolving the case when p is not a power of 2 is straightforward and performed exactly as in the proof of Theorem I.2, and thus omitted.

To improve the approximation, let $\varepsilon > 0$, and pick $t = (1 - \varepsilon)p$ instead of $t = p/2$. We now have that

$$\begin{aligned} \hat{c}_k(V) &\leq (\frac{1}{1-\varepsilon})^{1-\varepsilon} c_t^{1-\varepsilon} (4\hat{c}_{k-1}(V))^\varepsilon \\ &\leq \dots \leq (\frac{c_t}{1-\varepsilon})^{1-\varepsilon^k} 4^{\frac{\varepsilon(1-\varepsilon^k)}{1-\varepsilon}} (\hat{c}_0(V))^{\varepsilon^k}. \end{aligned}$$

For sufficiently large $k = O(\log(\varepsilon^{-1}) \log(\log p \cdot \log d))$, we get $\hat{c}_k(V) \leq \frac{1}{1-\varepsilon} 4^{\frac{\varepsilon}{1-\varepsilon}} c_t$. Now, a recursion on p for $\log_{\frac{1}{1-\varepsilon}} p = O(\varepsilon^{-1} \log p)$ levels implies

$$\hat{c}_k(V) \leq p \cdot \exp(\ln(4)(\frac{\varepsilon}{1-\varepsilon} \cdot \log_{\frac{1}{1-\varepsilon}} p)) c_2 \leq p^{1+\ln(4)+O(\varepsilon)} c_2,$$

where the last step uses the inequalities $\frac{1}{1-\varepsilon} \geq 1+\varepsilon$ and $\ln(1+\varepsilon) \geq \frac{\varepsilon}{1+\varepsilon}$. The rest of the proof is the same, and the space and preprocessing time increase to $\text{poly}(dn^{\varepsilon^{-1} \log p})$. Rescaling ε concludes the proof. \square

V. EMBEDDING FINITE ℓ_p METRICS INTO ℓ_2

In this section, we prove Theorem 1.9 by providing embeddings of finite ℓ_p metrics into ℓ_2 , for $3 < p < 3\sqrt{e}$. We will need the following setup from [NR25a].

Definition V.1 (Definition 4 in [NR25a]). Given $K, D > 1$, we say that a metric space $(\mathcal{M}, d_{\mathcal{M}})$ admits a K -localized weakly bi-Lipschitz embedding into a metric space $(\mathcal{N}, d_{\mathcal{N}})$ with distortion D if for every $\Delta > 0$ and every subset $\mathcal{C} \subseteq \mathcal{M}$ of diameter $\text{diam}_{\mathcal{M}}(\mathcal{C}) \leq K\Delta$, there exists a non-constant Lipschitz function $f_{\Delta}^{\mathcal{C}} : \mathcal{C} \rightarrow \mathcal{N}$ satisfying the following. For every $x, y \in \mathcal{C}$, if $d_{\mathcal{M}}(x, y) > \Delta$, then

$$d_{\mathcal{N}}(f_{\Delta}^{\mathcal{C}}(x), f_{\Delta}^{\mathcal{C}}(y)) > \frac{\|f_{\Delta}^{\mathcal{C}}\|_{\text{Lip}}}{D} \Delta,$$

where $\|\cdot\|_{\text{Lip}}$ is the Lipschitz constant.

We provide the following simple observation, that composing a localized weakly bi-Lipschitz embedding with a low-distortion embedding yields a localized weakly bi-Lipschitz embedding, as follows.

Observation V.2. Let $(\mathcal{M}, d_{\mathcal{M}}), (\mathcal{N}, d_{\mathcal{N}}), (\mathcal{Z}, d_{\mathcal{Z}})$ be metric spaces, such that $(\mathcal{M}, d_{\mathcal{M}})$ admits a K -localized weakly bi-Lipschitz embedding into $(\mathcal{N}, d_{\mathcal{N}})$ with distortion D_1 and $(\mathcal{N}, d_{\mathcal{N}})$ admits an embedding into $(\mathcal{Z}, d_{\mathcal{Z}})$ with distortion D_2 . Then $(\mathcal{M}, d_{\mathcal{M}})$ admits a K -localized weakly bi-Lipschitz embedding into $(\mathcal{Z}, d_{\mathcal{Z}})$ with distortion $D_1 \cdot D_2$.

Proof. Let $\Delta > 0$ and $\mathcal{C} \subseteq \mathcal{M}$ of diameter $\text{diam}_{\mathcal{M}}(\mathcal{C}) \leq K\Delta$. Let $f_{\Delta}^{\mathcal{C}} : \mathcal{C} \rightarrow \mathcal{N}$ be the function promised by Definition V.1, and $g : (\mathcal{N}, d_{\mathcal{N}}) \rightarrow (\mathcal{Z}, d_{\mathcal{Z}})$ be an embedding with distortion D_2 . Consider $\tilde{f}_{\Delta}^{\mathcal{C}} := g \circ f_{\Delta}^{\mathcal{C}}$. Recall that since g has distortion at most D_2 , there exists $s > 0$ such that for every $u, v \in \mathcal{N}$, we have $\frac{s}{D_2} \cdot d_{\mathcal{N}}(u, v) \leq d_{\mathcal{Z}}(g(u), g(v)) \leq s \cdot d_{\mathcal{N}}(u, v)$. Since $f_{\Delta}^{\mathcal{C}}$ is non-constant and g has bounded contraction, $\tilde{f}_{\Delta}^{\mathcal{C}}$ is non-constant. Let $x, y \in \mathcal{C}$ such that $d_{\mathcal{M}}(x, y) > \Delta$. Hence,

$$\begin{aligned} d_{\mathcal{Z}}(\tilde{f}_{\Delta}^{\mathcal{C}}(x), \tilde{f}_{\Delta}^{\mathcal{C}}(y)) &\geq \frac{s}{D_2} \cdot d_{\mathcal{N}}(f_{\Delta}^{\mathcal{C}}(x), f_{\Delta}^{\mathcal{C}}(y)) \\ &> \frac{s \cdot \|f_{\Delta}^{\mathcal{C}}\|_{\text{Lip}}}{D_1 \cdot D_2} \Delta, \end{aligned}$$

where the last inequality follows since $f_{\Delta}^{\mathcal{C}}$ is a K -localized weakly bi-Lipschitz embedding with distortion D_1 . Since g expands distances by at most a factor s , we have $\|\tilde{f}_{\Delta}^{\mathcal{C}}\|_{\text{Lip}} \leq s \cdot \|f_{\Delta}^{\mathcal{C}}\|_{\text{Lip}}$, concluding the proof. \square

Lemma V.3 (Generalization of Lemma 5 in [NR25a]). For every $K > 1$, if $p > q \geq 1$, then ℓ_p admits a K -localized weakly bi-Lipschitz embedding into ℓ_q with distortion $O_{p/q}(K^{p/q-1})$.

Proof. Fixing $K, \Delta > 0$ and a subset $\mathcal{C} \subseteq \ell_p$ whose ℓ_p diameter is at most $K\Delta$, pick an arbitrary point $z \in \mathcal{C}$, and consider the Mazur map $M_{p,q}$ scaled down by $(K\Delta)^{p/q-1}$ on $\mathcal{C} - z$. The lemma follows immediately by Theorem II.1. \square

Definition V.4. The Lipschitz extension modulus $e(\mathcal{M}, \mathcal{N})$ of a pair of metric spaces \mathcal{M}, \mathcal{N} is the infimum over all $L \in [1, \infty)$ such that for every subset $\mathcal{C} \subseteq \mathcal{M}$, every 1-Lipschitz function $f : \mathcal{C} \rightarrow \mathcal{N}$ can be extended to an L -Lipschitz function $F : \mathcal{M} \rightarrow \mathcal{N}$.

Theorem V.5 (Theorem 6 in [NR25a]). There is a universal constant $\kappa > 1$ with the following property. Fix $\theta > 0$, an integer $n \geq 3$, and $\alpha > 1$. Let $(\mathcal{M}, d_{\mathcal{M}})$ be an n -point metric space such that every subset $\mathcal{C} \subseteq \mathcal{M}$ with $|\mathcal{C}| \geq 3$ admits a $\kappa(\log |\mathcal{C}|)$ -localized weakly bi-Lipschitz embedding into ℓ_2 with distortion $\alpha(\log |\mathcal{C}|)^{\theta}$. Then

$$c_2(\mathcal{M}) \leq \alpha \cdot e(\mathcal{M}; \ell_2) \cdot (\log n)^{\max\{\theta, \frac{1}{2}\}} \cdot \log \log n.$$

Next, we show a reduction that takes embeddings of finite ℓ_q metrics into ℓ_2 , and constructs an embedding of finite ℓ_p metric into ℓ_2 , for $p > q$. The proof constructs a localized weakly bi-Lipschitz embedding of ℓ_p into ℓ_q and composes it with the given embedding from ℓ_q into ℓ_2 . By Observation V.2, this yields a localized weakly bi-Lipschitz embedding from ℓ_p into ℓ_2 , and by Theorem V.5, we get a low-distortion embedding into ℓ_2 .

For every $q \in [1, \infty]$, define

$$\xi_q := \inf_{\theta \geq 0} \left\{ \theta : \exists \nu > 0, \forall n \geq 2, \quad c_2^n(\ell_q) \leq \nu \cdot \log^{\theta} n \right\},$$

where $\xi_q \leq 1$ for all $q \in [1, \infty]$ by Bourgain's embedding [Bou85].

Lemma V.6. For every $2 \leq q < p$,

$$\xi_p \leq \max\{\frac{1}{2}, \xi_q\} + \frac{p}{q} - 1.$$

Proof. Let $\delta > 0$ and let $\mathcal{M} \subset \ell_p$ be an n -point metric. If $n \leq 2$, then clearly $c_2^n(\ell_p) = 1$. Otherwise, let $\mathcal{C} \subseteq \mathcal{M}$ with $|\mathcal{C}| \geq 3$. We now construct a weakly bi-Lipschitz embedding of \mathcal{C} into ℓ_2 . By Lemma V.3 and Observation V.2, we have that for every $K \geq 1$, \mathcal{C} admits a K -localized weakly bi-Lipschitz embedding into ℓ_2 with distortion $O(K^{p/q-1} \cdot c_2^{|\mathcal{C}|}(\ell_q))$. Setting $K = \kappa(\log |\mathcal{C}|)$, where κ is the universal constant from Theorem V.5, and using $c_2^{|\mathcal{C}|}(\ell_q) \leq O_{\delta}(\log^{\xi_q+\delta} |\mathcal{C}|)$, we obtain a $\kappa(\log |\mathcal{C}|)$ -localized weakly bi-Lipschitz embedding of \mathcal{C} into ℓ_2 with distortion $O_{p,\delta}(\log^{\frac{p}{q}-1+\xi_q+\delta} |\mathcal{C}|)$.

By Theorem V.5,

$$c_2(\ell_p) \leq O_{p,\delta} \left(e(\ell_p; \ell_2) (\log n)^{\max\{\frac{1}{2}, \frac{p}{q}-1+\xi_q+\delta\}} \log \log n \right)$$

since $e(\ell_p, \ell_2) \leq O(\sqrt{p})$ by [NPSS06],

$$\leq O_{p,\delta} \left((\log n)^{\max\{\frac{1}{2}, \frac{p}{q}-1+\xi_q+\delta\}} \log \log n \right)$$

and since $\frac{p}{q} - 1 + \delta > 0$,

$$\leq O_{p,\delta} \left((\log n)^{\max\{\frac{1}{2}, \xi_q\} + \frac{p}{q}-1+\delta} \log \log n \right)$$

$$\leq O_{p,\delta} \left((\log n)^{\max\{\frac{1}{2}, \xi_q\} + \frac{p}{q}-1+2\delta} \right).$$

Since δ is arbitrary, the lemma follows. \square

The reduction given in the lemma above is a single iteration of recursive embedding, and we repeat it recursively to prove Theorem 1.9.

Proof of Theorem 1.9. Let $3 < p < 3\sqrt{e}$ and $\varepsilon > 0$. Consider a sequence q_0, \dots, q_k , where $q_0 = p$ and $\frac{q_i}{q_{i+1}} = (\frac{p}{3})^{1/k}$ for all $i \in [0, k-1]$. Therefore, $q_k = 3$. By Lemma V.6 we have,

$$\begin{aligned} \xi_p &\leq \max\{\frac{1}{2}, \xi_{q_1}\} + \frac{p}{q_1} - 1 \\ &\leq \max\{\frac{1}{2}, \xi_{q_2}\} + \frac{p}{q_1} - 1 + \frac{q_1}{q_2} - 1 \\ &\dots \\ &\leq \max\{\frac{1}{2}, \xi_3\} + (\frac{p}{q_1} - 1 + \frac{q_1}{q_2} - 1 + \dots + \frac{q_{k-1}}{q_k} - 1). \end{aligned}$$

By [NR25a, Theorem 1], we have $e_2^n(\ell_3) \leq O(\sqrt{\log n} \cdot \log \log n)$, and thus $\xi_3 \leq \frac{1}{2}$. Therefore,

$$\begin{aligned} &= \frac{1}{2} - k + \sum_{i=0}^{k-1} \frac{q_i}{q_{i+1}} \\ &= \frac{1}{2} - k + k(\frac{p}{3})^{1/k} = \frac{1}{2} - k + k \cdot \exp(\frac{1}{k} \ln \frac{p}{3}). \end{aligned}$$

For a suitable choice of $k = O(\varepsilon^{-1})$, and using the useful inequality $e^x \leq 1 + x + x^2$ for $x < 1.79$,

$$\begin{aligned} &\leq \frac{1}{2} - k + k \left(1 + \frac{1}{k} \ln \frac{p}{3} + (\frac{1}{k} \ln \frac{p}{3})^2 \right) \\ &< \frac{1}{2} + \ln \frac{p}{3} + \varepsilon. \end{aligned}$$

The theorem follows from the definition of ξ_p . \square

VI. FUTURE DIRECTIONS

Problems in ℓ_p , $p < 2$: Our results for ℓ_p spaces are all for $p > 2$. For the other case, $p < 2$, there are natural candidates for intermediate spaces, namely, ℓ_q for $p < q < 2$. Can recursive embedding be used in such settings?

Problems in ℓ_∞ : Many problems in ℓ_∞^d can be reduced to ℓ_2^d using John's theorem [Joh48], which incurs $O(\sqrt{d})$ multiplicative distortion and is known to be tight. Our method bypasses this limitation and reduces the Lipschitz decomposition problem from ℓ_∞^d to ℓ_2^d at the cost of only a polylogarithmic (in d) factor. Indeed, the reduction in Theorem 1.2 actually proves (although not stated explicitly) that

$$\beta^*(\ell_\infty^d) \leq \text{polylog}(d) \cdot \beta^*(\ell_2^d). \quad (4)$$

Can other problems in ℓ_∞^d be resolved similarly, i.e., through a recursive embedding to ℓ_2^d that bypasses the $O(\sqrt{d})$ factor of a direct embedding?

Lower Bounds: Our approach of reducing from ℓ_∞^d to ℓ_2^d can also establish lower bounds for problems in ℓ_2^d , which essentially amounts to “pulling” hard instances, from ℓ_∞^d into ℓ_2^d . For $\beta^*(\ell_2^d)$, a tight bound is already known [CCG⁹⁸], and thus (4) cannot yield a new lower bound for it. However, for the extension modulus of ℓ_2^d , the known bounds are not tight, namely, $\Omega(d^{1/4}) \leq e(\ell_2^d) \leq O(\sqrt{d})$ [LN05], [MN13], and it is conjectured that $e(\ell_2^d) = \Theta(\sqrt{d})$ [Nao17]. Can the known lower bound $e(\ell_\infty^d) \geq \Omega(\sqrt{d})$ be pulled to ℓ_2^d , analogously to (4)?

Nearest Neighbor Search: The space and preprocessing time of our data structure in Theorem I.8 are not polynomial in n and d whenever p is non-constant. This increase in preprocessing time and space was somewhat mitigated in [BG19] in the special case of doubling metrics. Can this issue be avoided also in the general case?

Low-Distortion Embeddings: There remains a gap in our understanding of the distortion required to embed finite ℓ_p metrics into ℓ_2 for every $p \in (2, \infty)$. For the special case of doubling metrics, we know from [BG14, Theorem 5.5] that $c_2(\mathcal{C}) \leq O(\sqrt{\text{ddim}(\mathcal{C})^{p/2-1} \log n})$ for every $p \in (2, \infty)$ and every n -point metric $\mathcal{C} \subset \ell_p$, where $\text{ddim}(\mathcal{C})$ denotes its doubling dimension. This upper bound above does not match the $\Omega(\log^{1/2-1/p} n)$ lower bound in Remark I.10, which actually holds for doubling metrics. We thus ask whether the distortion bound in the doubling case can be improved.

REFERENCES

- [AI17] A. Andoni and P. Indyk. Nearest neighbors in high-dimensional spaces. In *Handbook of Discrete and Computational Geometry*, chapter 43, pages 1135–1150. CRC Press, 3rd edition, 2017. [doi:10.1201/9781315119601](https://doi.org/10.1201/9781315119601).
- [AIK09] A. Andoni, P. Indyk, and R. Krauthgamer. Overcoming the l_1 non-embeddability barrier: algorithms for product metrics. In *19th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 865–874. SIAM, 2009.
- [ALN08] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. *J. Amer. Math. Soc.*, 21(1):1–21, 2008.
- [And09] Alexandr Andoni. *NN search : the old, the new, and the impossible*. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2009. URL: <https://hdl.handle.net/1721.1/55090>.
- [ANN⁺18a] Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya P. Razenshteyn, and Erik Waingarten. Data-dependent hashing via nonlinear spectral gaps. In *Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018*, pages 787–800. ACM, 2018. [doi:10.1145/3188745.3188846](https://doi.org/10.1145/3188745.3188846).
- [ANN⁺18b] Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya P. Razenshteyn, and Erik Waingarten. Hölder homeomorphisms and approximate nearest neighbors. In *59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018*, pages 159–169. IEEE Computer Society, 2018. [doi:10.1109/FOCS.2018.00024](https://doi.org/10.1109/FOCS.2018.00024).
- [ANRW21] Alexandr Andoni, Aleksandar Nikolov, Ilya P. Razenshteyn, and Erik Waingarten. Approximate nearest neighbors beyond space partitions. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021*, pages 1171–1190. SIAM, 2021. [doi:10.1137/1.9781611976465.72](https://doi.org/10.1137/1.9781611976465.72).
- [Bal90] K. Ball. Isometric embedding in l_p -spaces. *European J. Combin.*, 11(4):305–311, 1990.
- [Bar96] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In *37th Annual Symposium on Foundations of Computer Science*, pages 184–193. IEEE, 1996.

[BB05] A. Brudnyi and Yu. Brudnyi. Simultaneous extensions of Lipschitz functions. *Uspekhi Matematicheskikh Nauk*, 60(6):53–72, 2005. translation in Russian Math. Surveys 60 (2005), no. 6, 1057–1076. [doi:10.1070/RM2005v06n06ABEH004281](https://doi.org/10.1070/RM2005v06n06ABEH004281).

[BB06] Alexander Brudnyi and Yuri Brudnyi. Extension of Lipschitz functions defined on metric subspaces of homogeneous type. *Revista Matemática Complutense*, 19(2):347–359, 2006. [doi:10.5209/rev_REMA.2006.v19.n2.16596](https://doi.org/10.5209/rev_REMA.2006.v19.n2.16596).

[BBM⁺24] Yiqiao Bao, Anubhav Baweja, Nicolas Menand, Erik Wain-garten, Nathan White, and Tian Zhang. Average-distortion sketching, 2024. arXiv preprint. [arXiv:2411.05156](https://arxiv.org/abs/2411.05156).

[BG14] Yair Bartal and Lee-Ad Gottlieb. Dimension reduction techniques for ℓ_p , $1 \leq p < \infty$, with applications, 2014. arXiv preprint, see version v2. [arXiv:1408.1789v2](https://arxiv.org/abs/1408.1789v2).

[BG19] Yair Bartal and Lee-Ad Gottlieb. Approximate nearest neighbor search for ℓ_p -spaces ($2 < p < \infty$) via embeddings. *Theoretical Computer Science*, 757:27–35, 2019. [doi:10.1016/j.tcs.2018.07.011](https://doi.org/10.1016/j.tcs.2018.07.011).

[BL98] Yoav Benyaminini and Joram Lindenstrauss. *Geometric nonlinear functional analysis*, volume 48. American Mathematical Soc., 1998.

[Bou85] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. *Israel J. Math.*, 52(1-2):46–52, 1985. [doi:10.1007/BF02776078](https://doi.org/10.1007/BF02776078).

[CCG⁺98] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a finite metric by a small number of tree metrics. In *39th Annual Symposium on Foundations of Computer Science*, pages 379–388, 1998. [doi:10.1109/SFCS.1998.743488](https://doi.org/10.1109/SFCS.1998.743488).

[CGR05] S. Chawla, A. Gupta, and H. Räcke. Improved approximations to sparsest cut. In *16th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 102–111, 2005.

[Cha98] Timothy M. Chan. Approximate nearest neighbor queries revisited. *Discret. Comput. Geom.*, 20(3):359–373, 1998. [doi:10.1007/PL000009390](https://doi.org/10.1007/PL000009390).

[CNR24] Alan Chang, Assaf Naor, and Kevin Ren. Random zero sets with local growth guarantees, 2024. arXiv preprint. [arXiv:2410.21931](https://arxiv.org/abs/2410.21931).

[FN22] Arnold Filtser and Ofer Neiman. Light spanners for high dimensional norms via stochastic decompositions. *Algorithmica*, 84(10):2987–3007, 2022. [doi:10.1007/s00453-022-00994-0](https://doi.org/10.1007/s00453-022-00994-0).

[HIM12] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards removing the curse of dimensionality. *Theory Comput.*, 8(1):321–350, 2012. [doi:10.4086/TOC.2012.V008A014](https://doi.org/10.4086/TOC.2012.V008A014).

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In *30th Annual ACM Symposium on Theory of Computing*, pages 604–613, 1998. [doi:10.1145/276698.276876](https://doi.org/10.1145/276698.276876).

[Ind01] Piotr Indyk. On approximate nearest neighbors under ℓ_∞ norm. *J. Comput. Syst. Sci.*, 63(4):627–638, 2001. [doi:10.1006/JCSS.2001.1781](https://doi.org/10.1006/JCSS.2001.1781).

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In *Conference in modern analysis and probability (New Haven, Conn., 1982)*, pages 189–206. Amer. Math. Soc., Providence, RI, 1984.

[Joh48] Fritz John. Extremum problems with inequalities as subsidiary conditions. In *Studies and Essays Presented to R. Courant on his 60th Birthday*. Interscience Publishers, 1948. [doi:10.1007/978-3-0348-0439-4_9](https://doi.org/10.1007/978-3-0348-0439-4_9).

[KNT21] Deepanshu Kush, Aleksandar Nikolov, and Haohua Tang. Near neighbor search via efficient average distortion embeddings. In *37th International Symposium on Computational Geometry, SoCG 2021*, volume 189 of *LIPICS*, pages 50:1–50:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. [doi:10.4230/LIPICS.SOCG.2021.50](https://doi.org/10.4230/LIPICS.SOCG.2021.50).

[KOR00] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor in high dimensional spaces. *SIAM J. Comput.*, 30(2):457–474, 2000. [doi:10.1137/S0097539798347177](https://doi.org/10.1137/S0097539798347177).

[KP25] Robert Krauthgamer and Nir Petruschka. Lipschitz decompositions of finite ℓ_p metrics, 2025. Accepted to SoCG 2025. [arXiv:2502.01120](https://arxiv.org/abs/2502.01120).

[Lee05] James R. Lee. On distance scales, embeddings, and efficient relaxations of the cut cone. In *16th annual ACM-SIAM symposium on Discrete algorithms*, pages 92–101. SIAM, 2005.

[LLR95] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. *Combinatorica*, 15(2):215–245, 1995. [doi:10.1007/BF01200757](https://doi.org/10.1007/BF01200757).

[LN05] James R. Lee and Assaf Naor. Extending Lipschitz functions via random metric partitions. *Inventiones Mathematicae*, 160(1):59–95, 2005. [doi:10.1007/s00222-004-0400-5](https://doi.org/10.1007/s00222-004-0400-5).

[LN13] Vincent Lafforgue and Assaf Naor. A doubling subset of ℓ_p for $p > 2$ that is inherently infinite dimensional. *Geometriae Dedicata*, 172, 2013. [doi:10.1007/s10711-013-9924-4](https://doi.org/10.1007/s10711-013-9924-4).

[Mat97] Jiří Matoušek. On embedding expanders into ℓ_p spaces. *Israel J. Math.*, 102:189–197, 1997. [doi:10.1007/BF02773799](https://doi.org/10.1007/BF02773799).

[MN13] Manor Mendel and Assaf Naor. Spectral calculus and Lipschitz extension for barycentric metric spaces. *Analysis and Geometry in Metric Spaces*, 1(2013):163–199, 2013. [doi:10.2478/agms-2013-0003](https://doi.org/10.2478/agms-2013-0003).

[Nao14] Assaf Naor. Comparison of metric spectral gaps. *Analysis and Geometry in Metric Spaces*, 2(1):1–52, 2014. [doi:10.2478/agms-2014-0001](https://doi.org/10.2478/agms-2014-0001).

[Nao17] Assaf Naor. Probabilistic clustering of high dimensional norms. In *Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017*, pages 690–709. SIAM, 2017. [doi:10.1137/1.9781611974782.44](https://doi.org/10.1137/1.9781611974782.44).

[Nao24] Assaf Naor. *Extension, separation and isomorphic reverse isoperimetry*, volume 11 of *Memoirs of the European Mathematical Society*. EMS, 2024. [doi:10.4171/MEMS/11](https://doi.org/10.4171/MEMS/11).

[NPSS06] Assaf Naor, Yuval Peres, Oded Schramm, and Scott Sheffield. Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces. *Duke Math. J.*, 134(1):165–197, 2006. [doi:10.1215/S0012-7094-06-13415-4](https://doi.org/10.1215/S0012-7094-06-13415-4).

[NR25a] Assaf Naor and Kevin Ren. ℓ_p has nontrivial Euclidean distortion growth when $2 < p < 4$, 2025. arXiv preprint, see version v1. [arXiv:2502.10543v1](https://arxiv.org/abs/2502.10543v1).

[NR25b] Assaf Naor and Kevin Ren. Euclidean embedding, randomized clustering, and Lipschitz extension for finite and doubling subsets of ℓ_p when $p > 2$, 2025. arXiv preprint. [arXiv:2502.10543](https://arxiv.org/abs/2502.10543).