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Abstract—Metric embedding is a powerful tool used extensively
in mathematics and computer science. We devise a new method
of using metric embeddings recursively, which turns out to be
particularly effective in ℓp spaces, p > 2, yielding state-of-the-
art results for Lipschitz decomposition, for Nearest Neighbor
Search, and for embedding into ℓ2. In a nutshell, our method
composes metric embeddings by viewing them as reductions
between problems, and thereby obtains a new reduction that
is substantially more effective than the known reduction that
employs a single embedding. We in fact apply this method
recursively, oftentimes using double recursion, which further
amplifies the gap from a single embedding.

Index Terms—Metric Embedding, Lipschitz Decomposition,
Nearest Neighbor Search, ℓp norm

I. INTRODUCTION

Metric embeddings represent points in one metric space
using another metric space, often one that is simpler or easier,
while preserving pairwise distances within some distortion
bounds. This mathematical tool is very powerful at transferring
properties between the two metric spaces, and is thus used ex-
tensively in many areas of mathematics and computer science.
Its huge impact over the past decades is easily demonstrated by
fundamental results, such as John’s ellipsoid theorem [Joh48],
the Johnson-Lindenstrauss (JL) Lemma [JL84], Bourgain’s
embedding [Bou85], and probabilistic tree embedding [Bar96].

We devise a new method of using metric embeddings
recursively, in a manner that is particularly effective for ℓp
spaces, p > 2. Our method is based on the well-known
approach of embedding ℓp into ℓ2 (via the so-called Mazur
map), but leverages a new form of recursion that goes through
intermediate spaces ℓp → ℓq1 → · · · → ℓqk → ℓ2, to beat a
direct embedding from ℓp into ℓ2.

Our method is inspired by the concept of reduction between
(computational) problems, which is fundamental in computer
science and has been used extensively to design algorithms
and/or to prove conditional hardness. Many known reductions
use metric embeddings in a straightforward manner, without
harnessing the full power of reductions, which allow further
manipulation, like employing multiple embeddings and taking
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the majority (or best) solution.1 To see this gap between em-
beddings and reductions, consider a composition of multiple
embeddings, which yields overall an embedding from the first
metric space to the last one. While going through interme-
diate metric spaces may simplify the exposition, it can only
restrict the overall embedding. In contrast, composing metric
embeddings by way of reductions, can create new reductions
that are substantially richer than any single direct embedding.
Our method actually composes reductions recursively, which
makes this gap even more pronounced. We emphasize that
the application of this method is problem-specific, unlike a
metric embedding which is very general and thus applies
to many problems at once. On the flip side, tailoring our
recursive method to a specific problem opens the door to
embeddings that are non-oblivious to the problem/data, which
is reminiscent of data-dependent space partitioning used in
recent nearest neighbor search (NNS) algorithms [ANN+18a],
[ANN+18b], [KNT21]. To the best of our knowledge, this
recursive method is new, i.e., related to but different from
variants that have been used in prior work.

Our method yields several state-of-the-art results: (i) Lip-
schitz decomposition for finite subsets of ℓp spaces, p > 2;
(ii) consequently, also Lipschitz decomposition for ℓd∞; and
(iii) algorithms for NNS in ℓp spaces, p > 2. After obtain-
ing these results, we noticed the online posting of parallel
work [NR25a], and realized that our method can also (iv)
improve some of its results about embedding into ℓ2.

A. Lipschitz Decomposition

A standard approach in many metric embeddings and al-
gorithms is to partition a metric space into low-diameter
(so-called) clusters, and the following probabilistic variant
is commonly used and highly studied (sometimes called a
separating decomposition).

Definition I.1 (Lipschitz decomposition [Bar96]). Let
(M, dM) be a metric space. A distribution D over partitions
of M is called a (β,∆)-Lipschitz decomposition if

• for every partition P ∈ supp(D), all clusters C ∈ P
satisfy diam(C) ≤ ∆; and

1This is perhaps analogous to the difference between Cook reductions and
Karp reductions. The former allows the use of a subroutine that solves the said
problem, while the latter applies only a single transformation on the input,
and is thereby restricted to a single subroutine call.
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• for every x, y ∈ M,

Pr
P∼D

[P (x) ̸= P (y)] ≤ β dM(x,y)
∆ ,

where P (z) denotes the cluster of P containing z ∈ M
and diam(C) := supx,y∈C dM(x, y).

Our first use of recursive embedding yields the following
theorem, whose proof appears in Section III.

Theorem I.2. Let p ≥ 2 and d ≥ 1. Then for every
n-point metric C ⊂ ℓdp and ∆ > 0, there exists an
(O(p4

√
min{log n, d}),∆)-Lipschitz decomposition.

Typically, ∆ is not known in advance or one needs multiple
values of ∆ (e.g., every power of 2). We naturally seek the
smallest possible β in this setting, and thus define the (optimal)
decomposition parameter of a metric space (M, ρ) as

β∗(M) := inf
β≥1

{
β : ∀∆ > 0, every finite M′ ⊆ M

admits a (β,∆)-Lipschitz decomposition
}
,

and further define β∗
n(M) := sup

{
β∗(M′) : M′ ⊆

M, |M′| ≤ n
}

. The following two corollaries of Theorem I.2
bound these quantities and delineate the asymptotic depen-
dence on n and on d.

Corollary I.3. For every p ∈ [2,∞) and n ≥ 1, we have
β∗
n(ℓp) = O(p4

√
log n).

Proof. It follows directly from Theorem I.2 and the result from
[Bal90], that every finite set X ⊂ ℓp embeds isometrically into
ℓdp for some d.

This result significantly improves the previous bound
β∗
n(ℓp) = O(log1−1/p n) from [KP25], and fully resolves

[Nao17, Question 1] (see also [Nao24, Question 83]), which
asked for an Op(

√
log n) bound. (Throughout, the notation

Oα(·) hides a factor that depends only on α.) In parallel to
our work, a slightly weaker bound β∗

n(ℓp) ≤ O(2p
√
log n)

was obtained in [NR25a]. Both our improvement and that
of [NR25a] rely on the technique developed in [KP25], and
essentially apply it iteratively/recursively instead of once, and
ours actually applies double recursion.

Corollary I.4. For every p ∈ [2,∞] and d ≥ 1, we have
β∗(ℓdp) = O((min{p, log d})4 ·

√
d).

Proof. For p ≤ log d, it follows from Theorem I.2. For larger
p, use Hölder’s inequality to reduce the problem from ℓdp to
ℓdlog d with O(1) distortion.2

Corollary I.4 is slightly weaker than Naor’s main result
in [Nao17], which was later slightly improved in [Nao24].
Naor showed that β∗(ℓdp) = Θ(

√
d) for all p ∈ [2,∞],

matching the lower bound that follows from [CCG+98]. Our
proof is fundamentally different from, and arguably simpler

2A metric space (M, dM) embeds into a metric space (N , dN ) with
distortion D ≥ 1 iff there exists s > 0 and a function f : M → N such
that for all x, y ∈ M, s

D
· dM(x, y) ≤ dN (f(x), f(y)) ≤ s · dM(x, y).

than, Naor’s proof, which relies on a deep understanding of the
geometry of ℓdp spaces. One may hope that our proof could be
enhanced to match the exact asymptotics of β∗(ℓd∞), perhaps
by simply optimizing the constants in our recursion that yield
the p4 factor in Theorem I.2. Unfortunately, this approach has
a serious barrier. For ℓlogn, we have β∗

n(ℓlogn) = Ω(logn),
since every n-point metric embeds into ℓlogn with O(1)
distortion by [Mat97], and there is an Ω(log n) lower bound for
Lipschitz decomposition of general n-point metrics [Bar96].
Improving the p4 factor in our analysis to o(

√
p) would imply

that β∗
n(ℓlogn) = o(log n), contradicting the known lower

bound.

Remark I.5. Naor [Nao17] shows that his upper bound on
β∗(ℓd∞) has an important application to the Lipschitz extension
problem. More precisely, he proves an infinitary variant of his
upper bound, and that it implies a similar bound on e(ℓd∞),
which is the Lipschitz extension modulus of ℓd∞. He thus
concludes that e(ℓd∞) ≤ O(

√
d log d), which almost matches

(up to lower order factors), the lower bound e(ℓd∞) ≥ Ω(
√
d)

that follows from [BB05], [BB06]. We have not attempted to
extend Corollary I.4 to the infinitary variant, as Naor notes that
it is required only for extension theorems into certain exotic
Banach spaces [Nao17, Appendix A, Remark 4].

Remark I.6. The result of Theorem I.2 extends to a related
notion of decomposition, that was introduced in [FN22] and
immediately implies geometric spanners. This yields spanners
for ℓp spaces, p > 2, whose stretch-size tradeoff is comparable
to that known for ℓ2. Previously, weaker bounds for such
decompositions, and consequently also weaker spanners for
ℓp, were proved in [KP25]. The details, which are similar to
Theorem I.2, are omitted.

B. Nearest Neighbor Search

The Nearest Neighbor Search (NNS) problem is to design a
data structure that preprocesses an n-point dataset V residing
in a metric M, so that given a query point q ∈ M, the data
structure reports a point in V that is closest to q (and approxi-
mately closest to q in approximate NNS). The main measures
for efficiency are the data structure’s space complexity and the
time it takes to answer a query; a secondary measure is the
preprocessing time, which is often proportional to the space.
The problem has a wide range of applications in machine
learning, computer vision and other fields, and has thus been
studied extensively, including from theoretical perspective, see
e.g. the survey [AI17]. It is well known that approximate NNS
reduces to solving polylog(n) instances of the approximate
near neighbor problem [IM98], hence we consider the latter.

Definition I.7 (Approximate Near Neighbor). The Approx-
imate Near Neighbor problem for a metric space (M, dM)
and parameters c ≥ 1, r > 0, abbreviated (c, r)-ANN, is
the following. Design a data structure that preprocesses an
n-point subset V ⊆ M, so that given a query q ∈ M with
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dM(q, V ) ≤ r,3 it reports x ∈ V such that

dM(q, x) ≤ cr.

In a randomized data structure, the reported x satisfies this
with probability at least 2/3.

We prove the following theorem, whose proof appears in
Section IV and is similar in spirit to that of Theorem I.2. It
applies our method of recursive embedding, using Mazur maps
for n-point subsets of ℓdp.

Theorem I.8. Let p > 2, d ≥ 1 and 0 < ε < 1.
Then for c = O(p1+ln 4+ε) and every r > 0, there is a
randomized data structure for (c, r)-ANN in ℓdp, that has query
time poly(ε−1d log n), and has space and preprocessing time
poly(dnε−1 log p).

Remark. Picking ε = 1
log p is sufficient to get approximation

O(p1+ln 4) ≤ O(p2.387).

Most prior work on ANN in ℓp spaces studies the case
1 ≤ p ≤ 2, where (O(1), r)-ANN can be solved using
query time poly(d log n) and space poly(n) [KOR00], [IM98],
[HIM12]. For p > 2, such a bound is not known, and we list in
Table I all the known results (ours and previous ones), which
are often incomparable. The results of [And09], [AIK09] and
of [ANRW21] are based on Indyk’s [Ind01] result for ℓ∞, and
are most suitable for large values of p; note though that the pre-
processing time of [ANRW21] is exponential in d. The other
results are more suited for small values of p > 2, and they
all have different downsides: one result [BG19] has a large
approximation 2O(p); another one [ANN+18a], [ANN+18b],
[KNT21] has a large query time nε ·poly(d log n), which can
be mitigated by picking ε = 1

logn , at the cost of increasing
the approximation to O(p log n); ours (Theorem I.8) has a
large space nO(log p); and lastly, [BBM+24] and [AIK09],
[And09] can achieve O(1)-approximation but this requires an
even larger space d ·n2O(p) log(1/ε) and nO(log d), respectively.
The bottom line is that the regime of p > 2 is notoriously
difficult. It remains open to bridge the gap between small p and
large p, and specifically to obtain O(p)-approximation using
poly(d log n) query time and poly(n) space.

Our result for ANN provides yet another illustration for the
power of recursive embedding. Bartal and Gottlieb [BG19]
mentioned that Assaf Naor noted, in personal communication
regarding improving their 2O(p)-approximation, that all uni-
form embeddings of ℓp to ℓ2 (like Mazur maps) have distortion
exponential in p [Nao14, Lemma 5.2]. Our use of recursive
embeddings breaks this barrier, and essentially provides a
black-box reduction from ℓp to ℓ2, that still uses Mazur maps
but achieves poly(p)-approximation. We note that the im-
proved approximation of [ANN+18a], [ANN+18b], [KNT21]
uses embedding into ℓ2 with small average distortion, however
this approach is not known to provide a black-box reduction
for ANN, and its specialized solution increases the query time.

3If dM(q, V ) > r, it may report anything, where as usual, dM(q, V ) :=
minx∗∈V dM(x∗, q).

Fig. 1. The distortion of embedding from ℓp, p > 3 into ℓ2 shown by
depicting the exponent of logn in [NR25a, Theorem 1] (blue) compared
with our bound in Theorem I.9 (red).

C. Low-Distortion Embeddings

After we obtained our aforementioned results for Lipschitz
decomposition and NNS, we noticed the online posting of
[NR25a] on the distortion required for embedding ℓp space
(p > 2) into Euclidean space, and used our technique
to extend their result. The study of the distortion required
for embedding metrics into Euclidean space has a decades-
long history for general metrics [Joh48], [Bou85], [LLR95]
and for ℓp space [Lee05], [CGR05], [ALN08], [CNR24],
[BG14], [NR25a]. For an infinite metric space (M, dM),
define cn2 (M) := supC⊆M, |C|≤n c2(C), where c2(C) denotes
the minimal distortion needed to embed C into ℓ2. We prove
the following in Section V.

Theorem I.9. If 3 < p < 3
√
e, then for every fixed 0 < ε ≤ 1,

cn2 (ℓp) ≤ O(log
1
2+ln p

3+ε n).

Previously, for p > 2, non-trivial distortion was only known
in the range 2 < p < 4 [BG14], [NR25a], where non-
trivial means distortion asymptotically smaller than O(log n),
which holds for every n-point metric space [Bou85]. Bartal
and Gottlieb [BG14] established that cn2 (ℓp) = O(logp/4 n)
for every p ∈ (2, 4), and Naor and Ren [NR25a] proved a
better bound cn2 (ℓp) = O(

√
log n · log logn) for p ∈ (2, 3] and

cn2 (ℓp) = O(logp/2−1 n · log logn) for p ∈ (3, 4). Theorem I.9
improves these bounds further in the range 3 < p < 3

√
e.

Since it may not be immediate that Theorem I.9 indeed
improves the bounds on cn2 (ℓp) for all 3 < p < 3

√
e, we plot

the corresponding exponents of the log n factor in Figure 1.

Remark I.10. Every finite metric embeds isometrically in ℓ∞,
and thus cn2 (ℓ∞) = Θ(logn) by [Bou85] and [LLR95]. For
ℓp, p ∈ (2,∞), a lower bound of

cn2 (ℓp) ≥ Ω(log1/2−1/p n)
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Approximation Query time Space Reference

O(ε−1 log log d) nεp n1+ε [AIK09], [And09]
Oε(log p · (log d)2/p) nε n1+ε [ANRW21]

2O(p) (d logn)O(1) nO(1) [BG19]
pO(1) (d logn)O(1) nO(log p) Thm I.8
O(p/ε) nε n1+ε [ANN+18a], [ANN+18b], [KNT21]
c nε nO(p/c)·log(1/ε) [BBM+24]

TABLE I
KNOWN DATA STRUCTURES FOR ANN IN ℓp , p > 2. FOR BREVITY, WE OMIT HERE poly(d logn) FACTORS WHEN THE COMPLEXITY IS POLYNOMIAL IN
n. THE TOP-LISTED TWO RESULTS ARE PARTICULARLY SUITED FOR LARGE VALUES OF p, AND THE OTHERS ARE SUITED FOR SMALL VALUES OF p.

follows from [LN13, Theorem 1.3].

Note added in proof: Shortly after our work was posted
online, a new version of [NR25a] that was posted as [NR25b],
improved our Theorem I.9 and showed that for every p > 2,

cn2 (ℓp) = O(p3
√

log n log logn).

Additionally, it used a different technique to improve the
dependence on p in our Corollary I.3 to p2.

II. PRELIMINARIES

The main tool we use for recursive embeddings between
ℓp spaces is a classical embedding, commonly known as
the Mazur map. For every p, q ∈ [1,∞), the Mazur map
Mp,q : ℓmp → ℓmq is computed by raising the absolute value of
each coordinate to the power p/q while preserving the original
signs. The following key property of this map is central to all
our results.

Theorem II.1 ( [BL98], [BG19]). Let 1 ≤ q < p < ∞
and C0 > 0, and let M be the Mazur map Mp,q scaled
down by factor p

qC0
p/q−1. Then for all x, y ∈ ℓp such that

||x||p, ||y||p ≤ C0,

q
p (2C0)

1−p/q||x− y||p/qp ≤ ||M(x)−M(y)||q ≤ ||x− y||p.

III. LIPSCHITZ DECOMPOSITION OF ℓp METRICS

In this section, we prove Theorem I.2. We first outline
the proof. Our approach uses a double recursion, where each
recursion is an instance of recursive embedding. The first
recursion takes a Lipschitz decomposition of a finite subset
M ⊂ ℓdp with decomposition parameter β and produces a
Lipschitz decomposition with (ideally smaller) decomposition
parameter βnew. Each iteration in this recursion is as follows.
We first use the given decomposition to decompose M into
bounded-diameter subsets, embed each subset into ℓq for
q < p using Mazur maps, employ Lipschitz decomposition
for ℓq , and pull back the solution (clusters) we found. It is
natural to choose here q = 2, because the known Lipschitz
decompositions for ℓ2 are tight. However, this choice leads
to a decomposition parameter with an exp(p) factor, and we
overcome this by picking q = p/2. We only then apply a
second recursion, which goes from ℓp to ℓ2 gradually, via
intermediate values 2 < q < p.

Lemma III.1. Let 2 ≤ q < p < ∞ and let M ⊂ ℓp be an
n-point metric. Suppose that for every ∆′ > 0, there exists a
(β,∆′)-Lipschitz decomposition of M. Then, for every ∆ > 0,
there exists a (βnew,∆)-Lipschitz decomposition of M, with

βnew = 4( p
2q )

q/p [β∗
n(ℓq)]

q/p β1−q/p.

Lemma III.1 provides the recursion step for the first recur-
sion from the outline above, and we use it with q = p/2. For
the natural choice of q = 2, the expression in Lemma III.1
equals βnew = 4(p/4)2/p [β∗

n(ℓ2)]
2/p β1−2/p, hence iterative

applications converge to the fixpoint β = p
42

p·β∗
n(ℓ2), which is

easily found by setting β = βnew. In contrast, for q = p/2, the
expression simplifies to βnew = 4

√
β∗
n(ℓp/2) · β, the fixpoint

is now β = 16β∗
n(ℓp/2), and recursion on p introduces only a

poly(p) factor.

Proof. Let ∆ > 0, p ∈ (2,∞), and let M ⊂ ℓp be an n-point
metric space. Set a := 1

2

(
2qβ

pβ∗
n(ℓq)

)q/p
and b :=

β∗
n(ℓq)a
β , chosen

to satisfy

β
a =

β∗
n(ℓq)
b and p

q (2a)
p/q−1b = 1. (1)

Construct a partition of M in the following steps:

1) Draw a partition Pinit = {K1, . . . ,Kt} from a (β, a∆)-
Lipschitz decomposition of M.

2) Embed each cluster Ki ⊂ ℓp into ℓq using the embed-
ding fKi provided by Theorem II.1 for C0 := a∆.

3) For each embedded cluster fKi(Ki), draw a partition
Pi = {K1

i , . . . ,K
ki
i } from a (β∗

n(ℓq), b∆)-Lipschitz
decomposition of fKi(Ki).

4) Obtain a final partition Pout by taking the preimage of
every cluster of every Pi.

It is easy to see that Pout is indeed a partition of M,
consisting of

∑t
i=1 ki clusters. Next, consider x, y ∈ M and

let us bound Pr[Pout(x) ̸= Pout(y)]. Observe that a pair of
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points can be separated only in steps 1 or 3. Therefore,

Pr
[
Pout(x) ̸= Pout(y)

]
≤Pr

[
Pinit(x) ̸= Pinit(y)

]
+ Pr

[
Pi(f

Ki(x)) ̸= Pi(f
Ki(y)) | Pinit(x) = Pinit(y) = Ki

]
≤β

∥x− y∥p
a∆

+ β∗
n(ℓq)

∥fKi(x)− fKi(y)∥q
b∆

≤
(

β
a +

β∗
n(ℓq)
b

)∥x− y∥p
∆

,

where the last inequality is because by Theorem II.1, each fKi

is a non-expanding map from Ki ⊂ ℓp to ℓq . Using (1), we
obtain βnew = 2β

a = 4( p
2q )

q/p[β∗
n(ℓq)]

q/pβ1−q/p.
It remains to show that the final clusters all have diameter

at most ∆. Let x, y ∈ M be in the same final cluster,
i.e., Pout(x) = Pout(y). Then Pinit(x) = Pinit(y) = Ki

and Pi(f
Ki(x)) = Pi(f

Ki(y)). Combining the distortion
guarantees of fKi from Theorem II.1 with the diameter bound
of Pi, we get

q

p

(
2a∆

)1−p/q

∥x− y∥p/qp ≤ ∥fKi(x)− fKi(y)∥q ≤ b∆.

Rearranging this and using (1), we obtain ∥x − y∥p/qp ≤
p
q (2a)

p/q−1b∆p/q = ∆p/q , which completes the proof.

We are now ready to prove the main theorem.

Proof of Theorem I.2. Let p ∈ (2,∞), and let M ⊂ ℓp be an
n-point metric space. For ease of presentation, we assume for
now that p is a power of 2, and resolve this assumption at the
end. Denote β0(M) = O(min{d, log n}), given by [Bar96]
and [CCG+98]. We now iteratively apply Lemma III.1 with
q = p/2, and obtain after k iterations,

βk(M) = 4
√

β∗
n(ℓp/2) · βk−1(M)

= 4

√
β∗
n(ℓp/2) · 4

√
β∗
n(ℓp/2) · βk−2(M)

= · · ·

= 4(1+
1
2+...+ 1

2k−1 ) [β∗
n(ℓp/2)]

( 1
2+

1
4+...+ 1

2k
) β0(M)

1

2k

≤ 16β∗
n(ℓp/2) · β0(M)1/2

k

. (2)

Picking k := ⌈log(log p · log β0(M))⌉ = O(log(log p ·
logmin{d, log n})) yields β0(M)1/2

k ≤ 21/ log p, and we
obtain β∗(M) ≤ βk(M) ≤ 24+1/ log p · β∗

n(ℓp/2). Now
recursion on p implies

β∗(M) ≤ 2p4 · β∗
n(ℓ2).

Finally, by [CCG+98] and the JL Lemma [JL84] we know that
β∗
n(ℓ

d
2) ≤ O(min{

√
d,
√
log n}), which concludes the proof

when p is a power of 2.
Resolving the case when p is not a power of 2 is straight-

forward. Let q be the largest power of 2 that is smaller than
p, hence 1/2 < q/p < 1. It suffices to show that β∗

n(ℓp) =
O(β∗

n(ℓq)), as then we can apply the previous argument since

q is a power of 2. Now apply Lemma III.1 for k iterations,
analogously to (2). We may assume that β∗

n(ℓq) ≤ βi(M) for
all i ≤ k, as otherwise we can simply abort after the i-th itera-
tion, hence βk(M) = 4( p

2q )
q/p [β∗

n(ℓq)]
q/p βk−1(M)1−q/p ≤

4
√

β∗
n(ℓq) βk−1(M). Now similarly to (2) we get β∗

n(ℓp) =
O(β∗

n(ℓq)), and the theorem follows.

Remark III.2. We suspect that the factor 16 in the recursion (2)
is an artifact of the analysis. First, by balancing the separation
probabilities over all k iterations, one can perhaps eliminate
the factor 2 increase in the probabilities, and thus improve
the factor in the recursion to roughly 4. Second, the Mazur
maps require sets of bounded radius, while the construction
guarantees sets of bounded diameter. Our proof uses the trivial
bound radius ≤ diam, which holds for every metric space, and
subsets of ℓp may admit a tighter bound. Denote by Jp ∈ [ 12 , 1]
the minimum number such that radius(M) ≤ Jp diam(M)
for all M ⊂ ℓp. It is known that J∞ = 1/2 and by Jung’s
Theorem, J2 = 1√

2
. Then, the factor above improves to

roughly (2Jp)
2. Keeping in mind the discussion following

Corollary I.4, and aiming for a clear presentation of the main
ideas in the solution, we have omitted the above optimizations.

IV. NEAREST NEIGHBOR SEARCH

In this section, we design a data structure for approximate
NNS in ℓdp for p > 2, proving Theorem I.8. Previously, Bartal
and Gottlieb [BG19] devised a data structure that is based
on embedding ℓp into ℓ2, for which good data structures are
known (e.g., LSH), and they furthermore employ recursion
to improve the approximation factor, from a large trivial
factor down to exp(p). We observe that their embedding and
recursion approach is actually analogous to Section III, but
using only the special case q = 2. We thus use our double
recursion approach that goes through intermediate ℓq spaces,
and obtain an improved approximation factor poly(p). In the
rest of this section, we reserve the letter q for the query
point (which is standard in the NNS literature) and denote
the intermediate spaces by ℓt.

Proof of Theorem I.8. First, we show an analogous claim to
Lemma III.1 but for the (c, r)-ANN problem. We take two
NNS data structures, one for ℓdp with approximation cp and
one for ℓdt (where t < p) with approximation ct, and construct
a new data structure for ℓdp with approximation cnew (ideally
smaller than cp).

Given an n-point dataset V ⊂ ℓdp, construct a (cp, r)-ANN
Abase for V ; and additionally, for every point x ∈ V , apply
a Mazur map Mx scaled down by p

t · (2rcp)
p/t−1 from ℓdp to

ℓdt on Bp(0, 2rcp) ∩ (V − x), where Bp(x, r) := {y : ∥x −
y∥p ≤ r}, and construct a (ct, r)-ANN data structure Ax for
the image points. Amplify their success probabilities to 5/6
by standard amplification. Given a query q, with the guarantee
that there exists x∗ ∈ V with ∥x∗−q∥p ≤ r, query Abase with
q and obtain a point x ∈ V . Then query Ax with Mx(q −
x), obtain a point Mx(z − x) ∈ Mx(V − x) and output z
accordingly.

2553



x xMx(x)

q Mx(q)

Mx(z)

q

z

Mx
(Mx)−1`p `t `p

Fig. 2. An illustration of Claim IV.1. For the purpose of this illustration, the ℓp and ℓt balls are depicted using a Euclidean circle, and x is assumed to lie at
the origin of ℓp. Given a query point q, an approximated solution x is found in ℓp using Abase. The Mazur map Mx is then applied, after which a solution
Mx(z) is found in ℓt using Ax. Finally, the inverse map is applied to obtain an improved solution z in ℓp.

Claim IV.1. With probability 2/3, we have ∥z−q∥p ≤ cnewr,
where cnew = (pt )

t/p c
t/p
t (4cp)

1−t/p.

Proof. With probability at least 5
6 , Abase outputs a point x

with ∥x − q∥p ≤ rcp. By triangle inequality, ∥x∗ − x∥p ≤
∥x∗−q∥p+∥q−x∥p ≤ 2rcp, hence ∥Mx(x∗)−Mx(q)∥t ≤ r.
Thus, with probability at least 5

6 , Ax outputs a point Mx(z)
with ∥Mx(z)−Mx(q)∥t ≤ rct. By a union bound, both events
hold with probability 2/3. Assume they hold. By Theorem II.1,

t

p
· (4rcp)1−p/t∥z − q∥p/tp ≤ ∥Mx(z)−Mx(q)∥t ≤ r · ct,

rearranging this we obtain ∥z − q∥p ≤
r(pt )

t/p c
t/p
t (4cp)

1−t/p ≡ r · cnew.

Remark IV.2. Plugging t = 2 into Claim IV.1 and solving the
recursion, we obtain a variation of [BG19, Lemma 11].

Now, as in the proof of Theorem I.2, we apply the additional
recursive embedding reduction that goes through intermediate
ℓt spaces. To improve readability, we first provide a simpler
proof with O(p3)-approximation, and then explain the im-
provement to O(p1+ln(4)+ε)-approximation. We assume with-
out loss of generality that p ≤ log d by Hölder’s inequality.

Assume for now that p is a power of 2. Consider the
data structure for ℓd2 given by [Cha98], with approximation
c = poly(d), space and processing time Õ(n · poly(d)) and
query time poly(d log n). By Hölder’s inequality, the same
data structure yields poly(d) approximation also for ℓdp.

Now, we recursively apply Claim IV.1 with t = p/2, as
follows. Denote by k the number of recursive steps to be
determined later, and by ĉi the approximation guarantee in
ℓp after the i-th recursive step. Initially, ĉ0 = poly(d), by
using the data structure of [Cha98]. For every i ∈ [k], we
maintain data structures {Ai

x}x∈V , where the Mazur map is
scaled according to the current approximation guarantee (i.e.,
scaled down by p

t · (2rĉi−1)
p/t−1). Moreover, we amplify

the success probabilities to 1 − 2
3k by O(log k) independent

repetitions. Thus, if the (i−1)-th iteration is successful, i.e., it
returns a point x solving (ĉi−1, r)-ANN, then the Mazur maps
in the i-th iteration are scaled correctly. Hence, by querying
Ai

x, we get the approximation given by Claim IV.1. By the law

of total probability, with probability 2/3, all the k recursive
steps return a correct estimate. Therefore,

ĉk(V ) ≤
√

8cp/2 · ĉk−1(V )

≤
√

8cp/2 ·
√
8cp/2 · ĉk−2(V )

≤ · · ·

≤ (8cp/2)
(1/2+1/4+...+1/2k) ĉ0(V )2

−k

≤ 8cp/2 · ĉ0(V )2
−k

. (3)

Picking k := ⌈log(log p · log ĉ0(V ))⌉ = O(log log d) yields
ĉ0(V )2

−k ≤ 21/ log p, and we obtain a data structure with
approximation at most ĉk(V ) ≤ 23+1/ log p · cp/2.

Before applying a second recursion on p, we amplify
the success probabilities to 1 − 2

3 log p by O(log log p) =
O(log log log d) independent repetitions. Now a second recur-
sion on p implies ĉk(V ) ≤ 2p3·c2 with probability at least 2/3.
Finally, we bound c2 similarly to [BG19], namely, using the
JL-lemma to reduce the dimension to O(log n) together with a
(2, r)-ANN data structure of [KOR00], [HIM12] in ℓ

O(logn)
2 ,

which has query time T2 = polylog n, and space and prepro-
cessing time S2 = Z2 = nO(1). Plugging this as the base case
of the second recursion, and we get the desired approximation
ĉk(V ) = O(p3). Each level of the second recursion increases
the space and preprocessing time by factor n, resulting in a
total of nO(log p) · S2 = nlog p+O(1) · dO(1) space and prepro-
cessing time. Answering a query goes through both recursions,
but the first recursion only requires O(k log k) = Õ(log log d)
calls to an ANN data structure for ℓt, hence the overall running
time is (log log d)O(log p) · T2 = poly(d log n). Resolving
the case when p is not a power of 2 is straightforward and
performed exactly as in the proof of Theorem I.2, and thus
omitted.

To improve the approximation, let ε > 0, and pick t =
(1− ε)p instead of t = p/2. We now have that

ĉk(V ) ≤ ( 1
1−ε )

1−ε c1−ε
t (4ĉk−1(V ))ε

≤ . . . ≤ ( ct
1−ε )

1−εk4
ε(1−εk)

1−ε (ĉ0(V ))ε
k

.
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For sufficiently large k = O(log(ε−1) log(log p·log d)), we get
ĉk(V ) ≤ 1

1−ε4
ε

1−ε ct. Now, a recursion on p for log 1
1−ε

p =

O(ε−1 log p) levels implies

ĉk(V ) ≤ p ·exp
(
ln(4)( ε

1−ε · log 1
1−ε

p)
)
c2 ≤ p1+ln(4)+O(ε)c2,

where the last step uses the inequalities 1
1−ε ≥ 1+ε and ln(1+

ε) ≥ ε
1+ε . The rest of the proof is the same, and the space and

preprocessing time increase to poly(dnε−1 log p). Rescaling ε
concludes the proof.

V. EMBEDDING FINITE ℓp METRICS INTO ℓ2

In this section, we prove Theorem I.9 by providing embed-
dings of finite ℓp metrics into ℓ2, for 3 < p < 3

√
e. We will

need the following setup from [NR25a].

Definition V.1 (Definition 4 in [NR25a]). Given K,D > 1,
we say that a metric space (M, dM) admits a K-localized
weakly bi-Lipschitz embedding into a metric space (N , dN )
with distortion D if for every ∆ > 0 and every subset C ⊆ M
of diameter diamM(C) ≤ K∆, there exists a non-constant
Lipschitz function fC

∆ : C → N satisfying the following. For
every x, y ∈ C, if dM(x, y) > ∆, then

dN
(
fC
∆(x), f

C
∆(y)

)
>

∥fC
∆∥Lip

D
∆,

where ∥ · ∥Lip is the Lipschitz constant.

We provide the following simple observation, that compos-
ing a localized weakly bi-Lipschitz embedding with a low-
distortion embedding yields a localized weakly bi-Lipschitz
embedding, as follows.

Observation V.2. Let (M, dM), (N , dN ), (Z, dZ) be metric
spaces, such that (M, dM) admits a K-localized weakly bi-
Lipschitz embedding into (N , dN ) with distortion D1 and
(N , dN ) admits an embedding into (Z, dZ) with distortion
D2. Then (M, dM) admits a K-localized weakly bi-Lipschitz
embedding into (Z, dZ) with distortion D1 ·D2.

Proof. Let ∆ > 0 and C ⊆ M of diameter diamM(C) ≤ K∆.
Let fC

∆ : C → N be the function promised by Definition V.1,
and g : (N , dN ) → (Z, dZ) be an embedding with distortion
D2. Consider f̃C

∆ := g ◦ fC
∆. Recall that since g has distortion

at most D2, there exists s > 0 such that for every u, v ∈ N ,
we have s

D2
·dN (u, v) ≤ dZ(g(u), g(v)) ≤ s ·dN (u, v). Since

fC
∆ is non-constant and g has bounded contraction, f̃C

∆ is non-
constant. Let x, y ∈ C such that dM(x, y) > ∆. Hence,

dZ

(
f̃C
∆(x), f̃

C
∆(y)

)
≥ s

D2
· dN

(
fC
∆(x), f

C
∆(y)

)
>

s · ∥fC
∆∥Lip

D1 ·D2
∆,

where the last inequality follows since fC
∆ is a K-localized

weakly bi-Lipschitz embedding with distortion D1. Since g
expands distances by at most a factor s, we have ∥f̃C

∆∥Lip ≤
s · ∥fC

∆∥Lip, concluding the proof.

Lemma V.3 (Generalization of Lemma 5 in [NR25a]). For
every K > 1, if p > q ≥ 1, then ℓp admits a K-
localized weakly bi-Lipschitz embedding into ℓq with distortion
Op/q(K

p/q−1).

Proof. Fixing K,∆ > 0 and a subset C ⊂ ℓp whose ℓp
diameter is at most K∆, pick an arbitrary point z ∈ C, and
consider the Mazur map Mp,q scaled down by (K∆)p/q−1 on
C − z. The lemma follows immediately by Theorem II.1.

Definition V.4. The Lipschitz extension modulus e(M,N )
of a pair of metric spaces M,N is the infimum over all
L ∈ [1,∞) such that for every subset C ⊆ M, every 1-
Lipschitz function f : C → N can be extended to an L-
Lipschitz function F : M → N .

Theorem V.5 (Theorem 6 in [NR25a]). There is a universal
constant κ > 1 with the following property. Fix θ > 0, an
integer n ≥ 3, and α > 1. Let (M, dM) be an n-point metric
space such that every subset C ⊆ M with |C| ≥ 3 admits
a κ(log |C|)-localized weakly bi-Lipschitz embedding into ℓ2
with distortion α(log |C|)θ. Then

c2(M) ≤ α · e(M; ℓ2) · (log n)max{θ, 12} · log logn.

Next, we show a reduction that takes embeddings of finite ℓq
metrics into ℓ2, and constructs an embedding of finite ℓp metric
into ℓ2, for p > q. The proof constructs a localized weakly
bi-Lipschitz embedding of ℓp into ℓq and composes it with
the given embedding from ℓq into ℓ2. By Observation V.2, this
yields a localized weakly bi-Lipschitz embedding from ℓp into
ℓ2, and by Theorem V.5, we get a low-distortion embedding
into ℓ2.

For every q ∈ [1,∞], define

ξq := inf
θ≥0

{
θ : ∃ν > 0,∀n ≥ 2, cn2 (ℓq) ≤ ν · logθ n

}
,

where ξq ≤ 1 for all q ∈ [1,∞] by Bourgain’s embedding
[Bou85].

Lemma V.6. For every 2 ≤ q < p,

ξp ≤ max{ 1
2 , ξq}+

p
q − 1.

Proof. Let δ > 0 and let M ⊂ ℓp be an n-point metric. If
n ≤ 2, then clearly cn2 (ℓp) = 1. Otherwise, let C ⊆ M with
|C| ≥ 3. We now construct a weakly bi-Lipschitz embedding
of C into ℓ2. By Lemma V.3 and Observation V.2, we have that
for every K ≥ 1, C admits a K-localized weakly bi-Lipschitz
embedding into ℓ2 with distortion O(Kp/q−1·c|C|2 (ℓq)). Setting
K = κ(log |C|), where κ is the universal constant from
Theorem V.5, and using c

|C|
2 (ℓq) ≤ Oδ(log

ξq+δ |C|), we obtain
a κ(log |C|)-localized weakly bi-Lipschitz embedding of C into
ℓ2 with distortion Op,δ(log

p
q−1+ξq+δ |C|).

By Theorem V.5,

c2(ℓp) ≤ Op,δ

(
e(ℓp; ℓ2)(log n)

max{ 1
2 ,

p
q−1+ξq+δ} log logn

)
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since e(ℓp, ℓ2) ≤ O(
√
p) by [NPSS06],

≤ Op,δ

(
(log n)max{ 1

2 ,
p
q−1+ξq+δ} log log n

)
and since p

q − 1 + δ > 0,

≤ Op,δ

(
(log n)max{ 1

2 ,ξq}+
p
q−1+δ log log n

)
≤ Op,δ

(
(log n)max{ 1

2 ,ξq}+
p
q−1+2δ

)
.

Since δ is arbitrary, the lemma follows.

The reduction given in the lemma above is a single iteration
of recursive embedding, and we repeat it recursively to prove
Theorem I.9.

Proof of Theorem I.9. Let 3 < p < 3
√
e and ε > 0. Consider

a sequence q0, . . . , qk, where q0 = p and qi
qi+1

= (p3 )
1/k for

all i ∈ [0, k− 1]. Therefore, qk = 3. By Lemma V.6 we have,

ξp ≤ max{ 1
2 , ξq1}+

p
q1

− 1

≤ max{ 1
2 , ξq2}+

p
q1

− 1 + q1
q2

− 1

. . .

≤ max{ 1
2 , ξ3}+ ( p

q1
− 1 + q1

q2
− 1 + . . .+ qk−1

qk
− 1).

By [NR25a, Theorem 1], we have cn2 (ℓ3) ≤ O(
√
log n ·

log logn), and thus ξ3 ≤ 1
2 . Therefore,

= 1
2 − k +

k−1∑
i=0

qi
qi+1

= 1
2 − k + k(p3 )

1/k = 1
2 − k + k · exp( 1k ln p

3 ).

For a suitable choice of k = O(ε−1), and using the useful
inequality ex ≤ 1 + x+ x2 for x < 1.79,

≤ 1
2 − k + k

(
1 + 1

k ln p
3 + ( 1k ln p

3 )
2
)

< 1
2 + ln p

3 + ε.

The theorem follows from the definition of ξp.

VI. FUTURE DIRECTIONS

Problems in ℓp, p < 2: Our results for ℓp spaces are
all for p > 2. For the other case, p < 2, there are natural
candidates for intermediate spaces, namely, ℓq for p < q < 2.
Can recursive embedding be used in such settings?

Problems in ℓ∞: Many problems in ℓd∞ can be reduced
to ℓd2 using John’s theorem [Joh48], which incurs O(

√
d) mul-

tiplicative distortion and is known to be tight. Our method by-
passes this limitation and reduces the Lipschitz decomposition
problem from ℓd∞ to ℓd2 at the cost of only a polylogarithmic
(in d) factor. Indeed, the reduction in Theorem I.2 actually
proves (although not stated explicitly) that

β∗(ℓd∞) ≤ polylog(d) · β∗(ℓd2). (4)

Can other problems in ℓd∞ be resolved similarly, i.e., through
a recursive embedding to ℓd2 that bypasses the O(

√
d) factor

of a direct embedding?

Lower Bounds: Our approach of reducing from ℓd∞ to
ℓd2 can also establish lower bounds for problems in ℓd2, which
essentially amounts to “pulling” hard instances, from ℓd∞ into
ℓd2. For β∗(ℓd2), a tight bound is already known [CCG+98], and
thus (4) cannot yield a new lower bound for it. However, for
the extension modulus of ℓd2, the known bounds are not tight,
namely, Ω(d1/4) ≤ e(ℓd2) ≤ O(

√
d) [LN05], [MN13], and it

is conjectured that e(ℓd2) = Θ(
√
d) [Nao17]. Can the known

lower bound e(ℓd∞) ≥ Ω(
√
d) be pulled to ℓd2, analogously

to (4)?
Nearest Neighbor Search: The space and preprocessing

time of our data structure in Theorem I.8 are not polynomial in
n and d whenever p is non-constant. This increase in prepro-
cessing time and space was somewhat mitigated in [BG19] in
the special case of doubling metrics. Can this issue be avoided
also in the general case?

Low-Distortion Embeddings: There remains a gap in our
understanding of the distortion required to embed finite ℓp
metrics into ℓ2 for every p ∈ (2,∞). For the special case of
doubling metrics, we know from [BG14, Theorem 5.5] that
c2(C) ≤ O

(√
ddim(C)p/2−1 log n

)
for every p ∈ (2,∞)

and every n-point metric C ⊂ ℓp, where ddim(C) denotes
its doubling dimension. This upper bound above does not
match the Ω(log1/2−1/p n) lower bound in Remark I.10, which
actually holds for doubling metrics. We thus ask whether the
distortion bound in the doubling case can be improved.
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