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Abstract

We simplify and improve upon recent lower bounds on

the minimum distortion of embedding certain finite metric

spaces into L1. In particular, we show that for infinitely

many values of n there are n-point metric spaces of negative

type that require a distortion of Ω(log log n) for such an em-

bedding, implying the same lower bound on the integrality

gap of a well-known SDP relaxation for sparsest-cut. This

result builds upon and improves the recent lower bound of

(log log n)1/6−o(1) due to Khot and Vishnoi [STOC 2005].

We also show that embedding the edit distance on {0, 1}n

into L1 requires a distortion of Ω(log n). This result sim-

plifies and improves a very recent lower bound due to Khot

and Naor [FOCS 2005].

1 Introduction

In recent years, low distortion embeddings of finite
metric spaces into L1 have become a powerful tool in
an algorithm designer’s arsenal. Such embeddings are
extremely useful in two very different contexts, which
we discuss below.

In combinatorial optimization, cuts in an n-vertex
graph correspond to n-point cut semi-metrics.1 These
semi-metrics span the cone of n-point semi-metrics
that are subsets of L1. Polynomial-time computable
relaxations of NP-hard cut problems are often expressed
as optimization over larger sets of semi-metrics. Thus,
using (“rounding”) a relaxed solution to approximate
the optimal solution to the original problem often boils
down to embedding the relaxed solution into L1.

In data analysis, proximity and classification prob-
lems are often easier to perform when data sets are sub-
sets of L1. In fact, for many such problems L1 be-
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1A semi-metric satisfies all the properties of a metric, except
that points may be co-located.

haves as well as Euclidean space. Therefore, a com-
mon approach to solving such problems with other in-
put families is first to embed the distance function into
a well-behaved normed space such as L1, and then to
use known solutions for the chosen target space.

We consider in this paper the embedding into
L1 of two types of metrics that have attracted much
attention recently, as we survey below. Firstly, we
consider negative type metrics. A finite metric d has
negative type if and only if the metric that is derived
by taking the square roots of the original distances is
Euclidean (i.e., embeds isometrically into L2). We show
that such n-points metrics may require Ω(log log n)
distortion to embed into L1. Secondly, we consider
the edit distance on {0, 1}n, which is the minimum
number of character insert/delete/substitute operations
required to transform one string into the other. We
show that this metric requires Ω(log n) distortion to
embed into L1. Both results are proved using simple
tools from Fourier analysis of boolean functions. The
lower bound for negative type metrics improves upon
the (log log n)1/6−o(1) bound by Khot and Vishnoi [17].2

The lower bound for edit distance improves upon the
(log n)1/2−o(1) lower bound by Khot and Naor [16].
Both previous bounds were proved very recently using
Bourgain’s deep result [8] on noise insensitive boolean
functions. In contrast with the use of ε-noise in [17, 16],
we use hypercube edges in both of our lower bound
constructions. This is the main reason we can simplify
the analysis considerably. As is turns out, our simpler
constructions also lead to stronger bounds.

Sparsest-cut and negative type metrics. The
most striking connection between L1 embeddings and
combinatorial approximation algorithms is exhibited by
the sparsest-cut problem. In this problem the input
is an undirected graph G = (V, E) with positive edge
capacities c : E → N, a set of pairs of vertices D =
{si, ti}k

i=1 (called terminals or demand pairs), and a
positive demand function h : {1, 2, . . . , k} → N. The
goal is to find a cut (S, S) in G (where ∅ 6= S ( V ,

2They also indicate that the bound improves to
(log log n)1/4−o(1) using [21].



S ∩ S = ∅, and S ∪ S = V ) that minimizes the ratio
∑

e∈E:|S∩e|=1 c(e)∑
i:|S∩{si,ti}|=1 h(i)

.

In the uniform-demand case, D consists of all pairs of
vertices and h(i) = 1 for all i. Our lower bound requires
a non-uniform choice of demands.

The ground-breaking work of [18] gave an O(log n)-
approximation for uniform demand sparsest-cut. The
algorithm is based on a linear programming relaxation
that produces a relaxed solution in the form of a (gen-
eral) metric on the vertex set V , which is used to gen-
erate a cut by a region growing argument. Followup
work applied this method to a similar relaxation for
the non-uniform case. Eventually, tight O(log k) bounds
(asymptotically matching the integrality gap) were de-
rived in [4, 20] by relating the problem to embedding
into L1 and applying a theorem of Bourgain [7] that
shows that every n-point metric space embeds into L1

with distortion O(log n).
An obvious direction for improving the approxima-

tion guarantee is to use a more restricted set of metrics
in the relaxation. A natural candidate for this is the
set of n-point negative type metrics, which includes all
n-point subsets of L1 and can be optimized over in poly-
nomial time using semidefinite programming. Formally,
associate with every vertex x ∈ V with a vector vx, then
the relaxation can be stated as given in Figure 1.

It has been conjectured that this relaxation can
be used to get a constant factor approximation. A
recent breakthrough result [3] obtained an O(

√
log n)

approximation for the uniform demand case. Followup
work [9, 2] led to a bound of O(

√
log k log log k) for the

non-uniform case by showing an embedding of negative
type metrics into L1. (In fact, the embedding is into
L2, which embeds isometrically into L1.)

On the other hand, two recent results [10, 17] in-
dependently proved that under Khot’s unique games
conjecture [15] the sparsest-cut problem is NP-hard
to approximate within any constant factor. Quantita-
tively stronger versions of the conjecture imply inap-
proximability factors of up to Ω(log log n). The sec-
ond paper [17] further showed that the integrality ra-
tio of the above semidefinite relation can be as bad
as (log log N)1/6−o(1), exhibiting in particular an n-
point negative type metric that requires a distortion of
(log log N)1/6−o(1) to embed into L1. We prove the fol-
lowing theorem.

Theorem 1.1. The semidefinite relaxation in Figure 1
has integrality ratio Ω(log log n).

Using standard arguments (see [17]), this theorem im-
plies the following corollary.

Corollary 1.1. There exist infinitely many positive
integers n and n-point negative type metric spaces that
require a distortion of Ω(log log n) to embed into L1.

Our proof of Theorem 1.1 is based on the argu-
ment in [17]. Our input instance differs in the choice of
edges—we use the regular hypercube edges instead of
the ε-noise model used in [17]. As a result, we are able
to simplify some of the analysis, using Friedgut’s ap-
proximation of low average sensitivity boolean functions
by juntas [12]. We point out that our construction does
not yield a strong integrality ratio for the related unique
games semidefinite relaxation. In fact, the relaxation
for the “underlying” unique games instance has (frac-
tional) value of about 1 − O(1/ log n), whereas there is
no integral solution of value 1−Ω(log log n/ log n). This
fact is somewhat surprising, in view of the approach and
motivation for the original argument in [17]. In partic-
ular, it indicates that our results might not be attained
by applying the reduction in [10] to the unique games
integrality ratio instance of [17].

Edit distance. The edit distance (a.k.a. Leven-
shtein distance [19]) between two strings is the minimum
number of character insertions, deletions, and substitu-
tions needed to transform one string to the other. Edit
distance is a fundamental measure of similarity between
strings and appropriately weighted variants of it play a
central role in several domains of data analysis. In par-
ticular, efficient algorithms for dealing with variations
of the edit distance (often referred to as sequence align-
ment) are among the most investigated computational
problems in molecular biology, dating back to 1970 [22].

We restrict our discussion to strings in {0, 1}n,
focusing on the asymptotic behavior as n goes to
infinity. For x, y ∈ {0, 1}n, let ed(x, y) denote their edit
distance. It is a simple observation that ({0, 1}n, ed)
forms a metric space. Our concern is with low distortion
embeddings of this metric space into L1, motivated, as
explained above, by applications in data analysis such
as near-neighbor searching.

Until recently, no non-trivial bounds were known
for embedding edit distance into L1. In fact, isomet-
ric embedding was only recently ruled out by the 3

2
lower bound of [1]. On the other hand, an L1 em-
bedding of edit distance with distortion bounded by
2O(

√
log n log log n) was recently achieved in [23], and this

indeed yields the best approximate nearest neighbor
scheme currently known for edit distance. (An upper
bound of O(n2/3) can be derived from the results in [5].)
Lastly, the lower bound was significantly strengthened
to (log n)1/2−o(1) in [16], the paper that motivated our
work on edit distance. We show the following theorem.

Theorem 1.2. The distortion of embedding the metric



Minimize
∑

e={x,y}∈E

c(e)(vx − vy)2

s.t. (vx − vz)2 ≤ (vx − vy)2 + (vy − vz)2 , ∀x, y, z ∈ V∑

{si,ti}∈D

h(i)(vsi
− vti

)2 = 1

Figure 1: A semidefinite programming relaxation for sparsest-cut

space ({0, 1}n, ed) into L1 is Ω(log n).

Although inspired by the lower bound of [16], our
proof of the theorem is shorter and simpler, and requires
more basic machinery, namely, a result due to Kahn,
Kalai, and Linial [14]. Technically, the simplification
is obtained by analyzing separately the two different
types of edit operations, namely, a random bit flip and
a cyclic shift (with equal weights). For edit distance,
this simplification leads to a stronger distortion lower
bound because it can be applied also to a random bit
flip (i.e. the hyberpcube edges) compared with the ε-
noise used in [16]. More generally, it shows an effective
way to exploit “soft” symmetry constraints to derive
nonembeddability into L1, compared with the hard
constraints used in [17].

2 Integrality ratio for sparsest-cut

Our proof actually analyzes the (non-uniform demand)
balanced cut problem instead of analyzing the sparsest
cut problem. In the B-balanced cut problem, the input
is similar to that of the sparsest cut problem with an
additional parameter 0 < B < 1. The goal is to
find a minimum weight subset of the edges F ⊆ E
whose removal disconnects at least B-fraction of the
demand. The above-mentioned semidefinite relaxation
for sparsest cut can be adapted to B-balanced cut as
given in Figure 2. (As we do not need the full generality
of the problem, we restrict our attention to the case
of unit edge capacities and unit, though non-uniform,
demands.)

A standard argument, which can be found in [10,
17], shows that for all 0 < B′ < B ≤ 1, if there is an
n-vertex instance in which the size of every B′-balanced
cut exceeds by at least a ρ factor the value of the B-
balanced cut relaxation in Figure 2, then the integrality
ratio of the sparsest cut relaxation in Figure 1 on n-
vertex instances is at least Ω(ρ/(B − B′)). Therefore,
our goal in the rest of this section is to show an instance
with a gap of ρ = Ω(log log N) with B = 1/2 and
B′ = 1/4.

We will first define a graph G∗ that is based on a
folding of the 2n-dimensional hypercube, and define for

it a set of demand pairs D to make it an instance of
1
2 -balanced cut. Next, we will demonstrate a solution of
the semidefinite relaxation in Figure 2 for this instance.
The solution vectors will be identical to those of [17], so
the solution’s feasibility follows from the proof in that
paper, and we will only need to evaluate the value of
this solution. (Notice that the set of feasible solutions is
independent of the structure of the input graph, which is
why we can use the same solution as in [17], even though
we use a different graph on the same set of vertices.)
Finally, we will lower bound the cost of a 1/4-balanced
cut, which will conclude the proof of Theorem 1.1.

Note: We employ the notation used in an early
version of [17]. It is substantially different than the
newer version of [17].

2.1 The instance Fix an integer k > 0 and set
n = 2k. Let F be the family of all functions f :
{−1, +1}k 7→ {−1, +1}, hence |F| = 2n. For S ⊆ [k],
define

χS : {−1, +1}k 7→ {−1,+1}, χS(z) =
∏

i∈S

zi.

For g, h ∈ F , let gh denote the function that is the
point-wise multiplication of g and h. For z ∈ {−1, +1}k

and S ⊆ [k], let z ◦S denote the vector obtained from z
by flipping the bits in S. For g ∈ F and S ⊆ [k], define

g ◦ S : {−1,+1}k 7→ {−1, +1}, (g ◦ S)(z) = g(z ◦ S).

Notice that for every S ⊆ [k], both f 7→ fχS and
g 7→ g ◦ S are one-to-one functions.

For f, g, f ′, g′ ∈ F , write (f, g) ≡ (f ′, g′) if there
exists S ⊆ [k] such that f ′ = fχS and g′ = g ◦ S. It is
easy to see that ≡ is an equivalence relation on F ×F ,
and the size of every equivalence class is exactly 2k = n.
Let [(f, g)] denote the equivalence class of (f, g).

Let dH(f, f ′) denote the Hamming distance be-
tween f, f ′ ∈ F , i.e., the number of z ∈ {−1, +1}k

such that f(z) 6= f ′(z). Notice that for all f ∈ F and
∅ 6= S ⊆ [k], we have dH(f, fχS) = n/2.

We are now ready to define the graph G∗ =
(V ∗, E∗). The vertex set is

V (G∗) = {[(f, g)] : f, g ∈ F},



Minimize 1
4

∑

(i,j)∈E

(vi − vj)2

s.t. (vi)2 = 1 , ∀i ∈ V
(vi − vk)2 ≤ (vi − vj)2 + (vj − vk)2 , ∀i, j, k ∈ V
1
4

∑

{i,j}∈D

(vi − vj)2 ≥ B · |D|

Figure 2: A semidefinite programming relaxation for B-balanced cut

i.e., the collection of equivalence classes in F×F , hence
|V (G∗)| = 22n/n. The edge set is

E(G∗) =
{

(u, u′) : ∃(f, g) ∈ u, ∃(f ′, g′) ∈ u′,

s.t. dH(f, f ′) + dH(g, g′) = 1
}

i.e., two vertices u, v ∈ V (G∗) are connected by an
edge if there exists a representation u = [(f, g)] and
u′ = [(f ′, g′)] such that either (i) f = f ′ and the
functions g, g′ differ in exactly one coordinate, or (ii)
g = g′ and the functions f, f ′ differ in exactly one
coordinate. It is easy to verify that for all f, f ′ ∈ F
and S ⊆ [k], we have dH(f, f ′) = dH(fχS , f ′χS) and
dH(f, f ′) = dH(f ◦ S, f ′ ◦ S). Thus, all vertices in G∗

have degree 2n.
Similarly to [17], we define the demands to be

uniform inside every n-dimensional cube induced by
a single f ∈ F , i.e., D = {(u, u′) : ∃[(f, g)] ∈
u, ∃[(f ′, g′)] ∈ u′, f = f ′}. We note that we could have
also defined them similarly to [10] to be D = {(u, u′) :
∃f, g ∈ F , u = [(f, g)], u′ = [(f,−g)]}.

Remark: The graph G∗ is the 2n-dimensional hy-
percube with the standard edges (i.e., connecting ver-
tices at Hamming distance 1), folded by merging to-
gether every vertex (f, g) with (fχS , g ◦ S) for every
S ⊆ [k]. It is instructive to think of f ∈ F and g ∈ F
as vectors in {−1, +1}n. The map f 7→ fχS then corre-
sponds to flipping n/2 bits in f (as determined by S),
and the n flip patterns generate the Hadamard code.
The map g 7→ g ◦ S corresponds to permuting the coor-
dinates of g (as determined by S), and the n permuta-
tions form a 1-transitive group, meaning that for every
i, j ∈ [n] there is S ⊆ [k] such that gj = (g ◦ S)i.

2.2 The solution to the semidefinite relaxation
For a function f ∈ F , define ψ(f) =

(
f(z)√

n

)
z∈{−1,+1}n

to be the truth table of f viewed as a unit-length vector
in Rn. We associate every f, g ∈ F with the following

vector in Rn

ϕ(f, g) =


 1√

n

∑

S⊆[k]

g(1 ◦ S)ψ(fχS)⊗s



⊗t

.

where s = 8 and t = 2240 + 1. It can be easily
verified that for all f, g ∈ F and S ⊆ [k], we have
ϕ(f, g) = ϕ(fχS , g ◦ S), because (g ◦ T )(1 ◦ S) =
g((1 ◦ S) ◦ T ) = g(1 ◦ (S4T )) and (fχT )χS = fχS4T .
Therefore, ϕ can be viewed as a function from V (G∗) to
Rn, and we can take (ϕ(u))u∈V (G∗) as a solution to the
semidefinite relaxation in Figure 2. Since these vectors
are exactly the vectors used as the semidefinite solution
in [17], it follows from that paper that they satisfy all the
relaxation’s constraints. However, our choice of edges is
different and thus the value of this semidefinite solution
is different.

Lemma 2.1. Let f, g, f ′, g ∈ F and suppose that
dH(f, f ′) + dH(g, g′) = 1. Then

1
n

∑

S,S′⊆[k]

g(1 ◦ S)g′(1 ◦ S′)(ψ(fχS) · ψ(f ′χS′))s

≥ 1−O(s/2n).

Proof. It is easily seen that {ψ(fχS)}S⊆[k] is an or-
thonormal basis of Rn. For every h ∈ F , we also
have ψ(h) ∈ Rn, and thus

∑
S⊆[k](ψ(fχS) · ψ(h))2 =

‖ψ(h)‖2 = 1.
Suppose first that g = g′ and dH(f, f ′) = 1, and fix

S ⊆ [k]. We then have dH(fχS , f ′χS) = 1, and thus
(ψ(fχS) · ψ(f ′χS)) = 1− 2/n. It follows that

∑

S′⊆[k],S′ 6=S

(ψ(fχS · ψ(f ′χS′))s ≤ (1− (1− 2/n)2)s/2

≤ (4/n + 4/n2)s/2.

Thus, the LHS in the statement of the lemma is lower
bounded by (1− 2/n)2− (4/n +4/n2)s/2 ≥ 1−O(s/n).

Suppose next that f = f ′ and dH(g, g′) = 1.
It follows that for all S′, S ⊆ [k] with S′ 6= S we



have (ψ(fχS) · ψ(f ′χS′)) = 0. Thus, the LHS in
the statement of the lemma is given by 1

n

∑
S⊆[k] g(1 ◦

S)g′(1 ◦ S) = 1− 2/n.

Lemma 2.2. The solution (ϕ(u))u∈V (G∗) for the
semidefinite relaxation in Figure 2 has value
O(st/n) · |E(G∗)|.

Proof. Let (u, u′) ∈ E(G∗). Let f, g, f ′, g′ ∈ F be
such that u = [(f, g)], u′ = [(f ′, g′)], and dH(f, f ′) +
dH(g, g′) = 1. By Lemma 2.1, ‖ϕ(u) − ϕ(u′)‖2 =
2 − 2(ϕ(u) · ϕ(u′)) ≤ 2 − 2(1 − O(s/n))t ≤ O(st/n),
and we conclude that

∑
(u,u′)∈E(G∗) ‖ϕ(u) − ϕ(u′)‖2 ≤

O(st/n) · |E(G∗)|.

2.3 Balanced cuts We use the following theorem
of Friedgut. (The average sensitivity (aka total influ-
ence) of a boolean function b : {0, 1}n → {0, 1} is∑n

i=1 Prx∈{0,1}n [f(x) 6= f(xi)], where xi ∈ {0, 1} is de-
rived from x by flipping the i-th bit.)

Theorem 2.1. (Friedgut [12]) Let b : {0, 1}n →
{0, 1} be a boolean function with average sensitivity k.
Let ε > 0 and let M = k

ε . Then, there exists a
boolean function b′ : {0, 1}n → {0, 1} depending only
on 2O((2+

√
2 log(4M)/M)M) variables, such that b′ differs

from b on at most ε2n inputs.

The following lemma shows that every 1
4 -balanced

cut in G∗ cuts Ω( log n
n )|E(G∗)| edges.

Lemma 2.3. Let A : V (G∗) 7→ {0, 1} be a func-
tion such that Pr(u,u′)∈D[A(u) 6= A(v)] ≥ 1

4 . Then
Pr(u,u′)∈E(G∗)[A(u) 6= A(v)] ≥ Ω( log n

n ).

Proof. Let G be the 2n-dimensional hypercube whose
vertex set is V (G) = F × F and edge set is E(G) =
{((f, g), (f ′, g′)) : dH(f, f ′) + dH(g, g′) = 1}. To see
that this is a hypercube, write every function f ∈ F as
a vector in {−1, +1}n. Let us set up the terminology
for the 2n variables (dimensions) of this hypercube. In
particular, we associate each of the last n variables (i.e.,
the g-variables when a vertex in V (G) is written as
(f, g)) with a distinct set S ⊆ [k], as follows: Fix a
function σ0 : {−1, +1}k 7→ {−1,+1} that takes the
value −1 exactly once, and for every S ⊂ [k], let
σS : {−1,+1}k 7→ {−1,+1} be the function σS =
σ0 ◦ S. Notice that {σS}S⊆[k] is the family of functions
in F that take the value −1 exactly once, and thus
dH((f, g), (f, gσS)) = 1.

We extend the function A : V (G∗) 7→ {0, 1} in a
straightforward way to a function B : V (G) 7→ {0, 1}
by defining B(u) = A([u]). By definition, for all
f ∈ F , g ∈ F , S ⊆ [k] we have B(f, g) = B(fχS , g ◦ S).

It is easily seen that

Pr
(u,u′)∈E(G)

[B(u) 6= B(u′)] = Pr
(u,u′)∈E(G∗)

[A(u) 6= A(u′)].

Assume, towards contradiction, that this quantity is
at most c log n

n , where c > 0 is a constant that will
be determined shortly. Observe that B is 1

4 -balanced
because

Pr
u,u′∈V (G)

[B(u) 6=B(u′)] ≥ Pr
f,g,g′∈F

[B(f, g) 6=B(f, g′)]

= Pr
(u,u′)∈D

[A(u) 6= A(u′)]

≥ 1
4
.

Thus, using Theorem 2.1 we get that B can be ε-
approximated by a junta function B̂ that depends only
on variables in J for |J | ≤ 2O(c log n/ε). Fixing ε = 1

20 ,
we see that if c > 0 is a sufficiently small constant then
|J | ≤ n1/3. Let Jg be the set of g-variables in J . For
T ⊆ [k], define Jg ◦T to contain the variable indexed by
S4T whenever Jg contains the variable indexed by S.

We first claim that there exists S∗ ∈ [k] such that
Jg ∩ (Jg ◦ S) = ∅. To prove the claim, observe that for
two variables indexed by T1, T2 in Jg, there is only one
S ⊂ [k], namely S = T14T2, such that T2 ∈ J ∩ (J ◦S).
Hence, at most n2/3 choices of S ∈ [k] may yields J ◦ S
that has a non-empty intersection with J . The claim
follows since the number of choices for S is 2k = n.

We now wish to upper bound Pr(u,u′)∈D[A(u) 6=
A(u′)] = Prf,g,h∈F [B(f, g) 6= B(f, gh)]. To this end,
notice that every h ∈ F can be written as h = hJhJ̄ ,
where hJ ∈ F is negative only on g-coordinates in J ,
and hJ̄ ∈ F is negative only on g-coordinates in J̄ .
Thus,

Pr
f,g,h∈F

[B(f, g) 6= B(f, gh)]

≤ Pr
f,g,hJ̄

[B(f, g) 6= B(f, ghJ̄)]

+ Pr
f,g,hJ̄ ,hJ

[B(f, ghJ̄ ) 6= B(f, gh)]

≤ 2ε + Pr
f,g,hJ

[B(f, g) 6= B(f, ghJ)]

= 2ε + Pr
f,g,hJ

[B(fχS , g ◦ S) 6= B(fχS , (ghJ) ◦ S)]

≤ 4ε;

the second inequality holds because hJ̄ is negative only
in variables that B̂ does not depend on; the third
inequality holds because for all f ∈ F , g ∈ F , S ⊆ [k],
we have by definition B(f, g) = B(fχS , g ◦ S), the
last inequality follows by noticing that (ghJ) ◦ S =
(g ◦ S)hJ◦S differs from g ◦ S in coordinates that are
all not in J .



We conclude that the fraction of demands separated
by this cut is Pr(u,u′)∈D[A(u) 6= A(u′)] ≤ 4ε = 1

5 ,
contradicting our assumption that the cut is 1

4 -balanced.

Combining Lemmas 2.2 and 2.3 we see that every
1
4 -balanced cut exceeds by at least a Ω(log log N) factor
the value of the 1

2 -balanced cut semidefinite relaxation
in Figure 2. We conclude that the integrality ratio of
the semidefinite relaxation in Figure 1 is Ω(log log N),
completing the proof of Theorem 1.1.

3 Lower bound for embedding edit distance
into L1

To prove Theorem 1.2, fix an integer n and let V =
{0, 1}n. We will need a few weight functions over
V × V ; for simplicity, we define them as probability
distributions. First, let

EH = {(x, y) : x, y ∈ V, ‖x− y‖1 = 1},
and let τH be a probability distribution over V ×V that
has a uniform support over EH and assigns probability
0 for pairs not in EH . Next, define S : {0, 1}n → {0, 1}n

to be the cyclic left-shift operation, i.e. S(x1, . . . , xn) =
(x2, . . . , xn, x1), let

ES = {(x, S(x)) : x ∈ V },
and let τS be a probability distribution over V ×V that
has a uniform support over ES and assigns probability 0
for pairs not in ES . Let the distribution τ be the average
of τH and τS , i.e. τ(x, y) = (τH(x, y) + τS(x, y))/2. Let
σ be the uniform distribution over V . For A ⊆ V ,
let Ā = V \ A and let Λ(A) = (A × Ā) ∪ (Ā × A)
be the collection of pairs “crossing” the cut (A, Ā). A
straightforward counting argument (see [6, Lemma 8]
and [16, Lemma 4.4]) shows that for two strings x, y ∈ V
drawn independently at random, ed(x, y) ≥ Ω(n) with
probability Ω(1). We thus get

E(x,y)∈τ [ed(x, y)]
Ex∈σ,y∈σ[ed(x, y)]

≤ 2
Ω(n)

≤ O(1/n).

Using the cut cone representation of L1 metrics (see
[4, 20, 11]), if (V, ed) embeds into L1 with distortion
D > 0 then there must exist A ⊆ V such that

τ(Λ(A))
σ(A)σ(Ā)

≤ O(D/n).

The following key lemma would then complete the proof
of Theorem 1.2.

Lemma 3.1. For every A ⊆ V ,

τ(Λ(A)) ≥ Ω
(

log n

n

)
σ(A)σ(Ā).

Proof. Fix A ⊆ V , and assume without loss of general-
ity that |A| ≤ |Ā|, i.e. σ(A) ≤ 1/2. Define accordingly a
boolean function f : {0, 1}n → {0, 1} by f(x) = 1{x∈A}.
Let Ij be the influence of the j-th variable in f , i.e.,
Ij = Prx∈V [f(x) 6= f(x⊕ ej)], where ej is the j-th unit
vector and ⊕ represents coordinate-wise addition mod-
ulo 2. We shall soon require the following bound that is
implicit in [14]; see also [13, Lemma 3.4] or [10, Lemma
2.3] for details.

Lemma 3.2. (Kahn, Kalai, and Linial [14]) Let
f : {0, 1}n → {0, 1} be a boolean function with
balance p = Prx∈{0,1}n [f(x) = 1] ≤ 1/2, and let
Ij = Prx∈{0,1}n [f(x) 6= f(x ⊕ ej)] be the influence of
the j-th variable. Then for all δ > 0,

max
j∈[n]

Ij ≤ δ ⇒
∑

j∈[n]

Ij ≥ Ω(p) log(1/δ).

Let c > 0 be a constant to be determined later, and
assume towards contradiction that τ(Λ(A)) < c log n

n ·
σ(A). Observe that the total influence of f is

∑

j∈[n]

Ij = nτH(Λ(A)) ≤ 2nτ(Λ(A)) < 2c log n · σ(A),

and its balance is σ(A). We thus get from Lemma 3.2
that there exists l ∈ [n] such that Il ≥ 1/n1/8, if only
c > 0 is chosen to be a sufficiently small (depending
only on the hidden constant in Lemma 3.2).

We now claim that for every k ∈ {1, . . . , n1/4},
Il+k ≥ 1/(2n1/8). Indeed, by our assumption above,

Pr
x∈V

[f(x) 6= f(S(x))] = τS(Λ(A))

≤ 2τ(Λ(A))
≤ 2c log n

n · σ(A)

≤ c log n
n .

Observe that if x is chosen uniformly at random from
V then S(x) is also uniformly distributed over V .
For every k ∈ [n1/4] (the constant 1/4 is somewhat
arbitrary), it thus follows by a union bound that

Pr
x∈V

[f(x) 6=f(Sk(x))] ≤
k−1∑

i=0

Pr
x∈V

[f(Si(x)) 6=f(Si+1(x))]

≤ ck log n
n

¿ n−1/2.

Observe that Sk(x) ⊕ el = Sk(x ⊕ el+k), and that if x
has uniform distribution over V then so does x + el+k;



thus, the last inequality implies that

Ij = Pr
x∈V

[f(Sk(x)) 6= f(Sk(x)⊕ ej)]

≤ Pr
x∈V

[f(Sk(x)) 6= f(x)] + Pr
x∈V

[f(x) 6= f(x⊕ el+k)]

+ Pr
x∈V

[f(x⊕ el+k) 6= f(Sk(x⊕ el+k))]

≤ Il+k + 2/n1/2.

The claim now follows from the bound Il ≥ 1/n1/8.
Finally, notice that by the above claim, the total

influence is at least
∑n1/4

k=1 Il+k ≥ 1
2n1/8 À c log n

n , which
contradicts our assumption above and completes the
proof of Lemma 3.1.

4 Discussion

One obvious challenge left open from Section 3 is to
determine c1({0, 1}n, ed), as there is still a large gap
between the upper bound of [23] and the lower bound of
Theorem 1.2. We note however that Lemma 3.1 is tight:
There exists A ⊆ V such that 1/4 ≤ σ(A) ≤ 3/4 and
τ(Λ(A)) ≤ O( log n

n ). It is also interesting to note that
there exists a collection V ′ containing 1− o(1) fraction
of the strings in {0, 1}n, such that c1(V ′, ed) = Θ(log n).
The lower bound follows from our proof above; details
are omitted from this version.

It was pointed out by Assaf Naor that Lemma 3.1
can be cast as the following Poincaré inequality: For
every f : {0, 1}n → L1,
∑

j

E
x∈σ

‖f(x)− f(x⊕ ej)‖1 + n E
x∈σ

||f(x)− f(S(x))||1

≥ Ω(log n) E
x∈σ,y∈σ

‖f(x)− f(y)‖1.

Furthermore, it can be generalized to some other oper-
ations on the coordinates (other than the cyclic shift).

Another intriguing question is the least distortion
for embedding ({0, 1}n, ed) into L2-squared (equiva-
lently, embedding ({0, 1}n,

√
ed) into L2). While a

squared-L2 embedding is technically weaker than an
L1-embedding (i.e., it follows from but generally does
not imply an L1-embedding), it is as useful for many
applications like Nearest Neighbor Search. We remark
that an exact analogue to Lemma 3.1 (based on same
τ and σ) is not true, because letting h(x) be the Ham-
ming weight of x we obtain E(x,y)∈τ |h(x) − h(y)|2 ≤
O(1/n)Ex∈σ,y∈σ |h(x)− h(y)|2.

Finally, we note that our results do not give a lower
bound for several related problems, such as embedding
into L1 of the Ulam metric or of the edit distance with
moves.
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