
Mimicking Networks and Succinct Representations

of Terminal Cuts∗

Robert Krauthgamer Inbal Rika
Weizmann Institute of Science

{robert.krauthgamer,inbal.rika}@weizmann.ac.il

Abstract

Given a large edge-weighted network G with k terminal
vertices, we wish to compress it and store, using little
memory, the value of the minimum cut (or equivalently,
maximum flow) between every bipartition of terminals.
One appealing methodology to implement a compres-
sion of G is to construct a mimicking network : a small
network G′ with the same k terminals, in which the
minimum cut value between every bipartition of termi-
nals is the same as in G. This notion was introduced
by Hagerup, Katajainen, Nishimura, and Ragde [JCSS

’98], who proved that such G′ of size at most 22k

al-
ways exists. Obviously, by having access to the smaller
network G′, certain computations involving cuts can be
carried out much more efficiently.

We provide several new bounds, which together nar-
row the previously known gap from doubly-exponential
to only singly-exponential, both for planar and for gen-
eral graphs. Our first and main result is that every
k-terminal planar network admits a mimicking network
G′ of size O(k222k), which is moreover a minor of G.
On the other hand, some planar networks G require
|E(G′)| ≥ Ω(k2). For general networks, we show that
certain bipartite graphs only admit mimicking networks
of size |V (G′)| ≥ 2Ω(k), and moreover, every data struc-
ture that stores the minimum cut value between all
bipartitions of the terminals must use 2Ω(k) machine
words.

1 Introduction

These days, more than ever, we deal with huge
graphs such as social networks, communication net-
works, roadmaps and so forth. But even when our main
interest is only in a small portion of the input graph
G, we still need to process all or most of it in order
to answer our query, since the runtime and memory re-

∗A full version [KR12] of this extended abstract appears at
http://arxiv.org/abs/1006.3970. This work was supported in

part by The Israel Science Foundation (grant #452/08), by a US-
Israel BSF grant #2010418, and by the Citi Foundation.

quirements of many common graph algorithms depend
on the input (graph) size. Therefore, a natural question
is whether we can find a smaller graph G′ that exactly
(or approximately) preserves some property of the origi-
nal graph such as distances, cuts and connectivity. This
basic concept is known as a graph compression and was
first introduced by Feder and Motwani [FM95], although
their definition was slightly different technically. They
require that the compressed graph has fewer edges than
the original graph, and that each graph can be quickly
computed from the other one. They have demonstrated
how this paradigm leads to significantly improved run-
ning time by implementing it for several graph prob-
lems.

Yet another significant advantage of the compressed
graph G′ is that it requires far less memory than stor-
ing the original graph G, which could be critical for
machines with limited resources such as smartphones,
assuming that the preprocessing can be executed in ad-
vance on much more powerful machines. This paradigm
becomes indispensable when computations on the com-
pressed graph are to be preformed repeatedly (after a
one-time preprocessing).

We focus on cuts and flows, which are of fundamen-
tal importance in computer science, engineering, and
operations research, because of their frequent usage in
many application areas. Specifically, we study the com-
pression of a large graph G containing k “important”
vertices (called terminals), into a smaller graph G′ con-
taining the same terminals, while maintaining the fol-
lowing condition: the minimum cut between every bi-
partition of the terminals has exactly the same value
in G and in G′. The above cut condition can be also
stated in terms of maximum flow, because it effectively
deals with the single-source single-sink case, for which
we have the max-flow min-cut theorem. We now turn
to define this problem more formally, restricting our at-
tention (throughout) to undirected graphs.

A network (G, c) is a graph G with an edge-costs
function c : E(G) → R+. The size of a network is

http://arxiv.org/abs/1006.3970

its number of vertices of G. The network is called a
k-terminal network if the graph G has k distinguished
vertices called terminals, denoted Q = {q1, . . . , qk} ⊆
V (G). In such a network, a cut (W,V (G) \W) is said
to be S-separating if it separates the terminals subset
S ⊂ Q from the remaining terminals S̄ := Q \ S,
i.e. if W ∩ Q is either S or S̄. When clear from
the context, (W,V (G) \ W) may refer not only to a
bipartition of the vertices, but also to its corresponding
cutset (set of edges crossing the cut). The cost of a cut
(W,V (G)\W) is the sum of costs of all the edges in the
cutset. We let mincutG,c(S, S̄) denote an S-separating
cut in the network (G, c) of minimum cost (breaking
ties arbitrarily). With a slight abuse of notation, we
use the same notation to denote also the cost of the
that cut. We also omit the subscript c when clear from
the context.

Definition 1. (Mimicking Network [HKNR98])
Let (G, c) be a k-terminal network. A mimicking
network of (G, c) is a k-terminal network (G′, c′) with
the same set of terminals Q, such that for all S ⊂ Q,1

mincutG′,c′(S, S̄) = mincutG,c(S, S̄).

The above definition (albeit for directed networks)
was introduced by Hagerup, Katajainen, Nishimura,
and Ragde [HKNR98], who proved that every k-
terminal network (G, c) admits a mimicking network

of size at most 22k

. Subsequently, Chaudhuri, Sub-
rahmanyam, Wagner, and Zaroliagis [CSWZ00] stud-
ied specific graph families, showing an improved up-
per bound of O(k) for graphs G that have bounded
treewidth. For the special case of outerplanar graphs
G, the mimicking network G′ they construct is further-
more outerplanar. Some of these previous results hold
also for directed networks.

The only lower bound we are aware of on the size
of mimicking networks is k + 1 for every k > 3, even
for a star graph, due to [CSWZ00]. For k = 4, 5 they
further show a matching upper bound. These results are
summarized in Table 1. We mention that several other
variants of the problem were studied in the literature, in
particular when cut values are preserved approximately,
see Section 1.2 for details.

1.1 Our Results
(a) Upper bounds. We first prove (in Section 2) a

new upper bound for planar graphs, which significantly
improves over the bound that follows from previous

work (namely, 22k

known for general graphs [HKNR98]).
See also Table 1 for the known bounds.

1Throughout, we omit the trivial exclusion S 6= ∅, Q.

Theorem 1.1. Every planar k-terminal network (G, c)
admits a mimicking network of size at most O(k222k),
which is furthermore a minor of G.

Notice that our theorem constructs for an input
graph G a mimicking network that is actually a minor
of it, and thus preserves additional properties of G such
as planarity.

(b) Lower bounds. We further provide (in Sec-
tion 3) two nontrivial lower bounds. See Table 1 for
comparison with the known bounds. The following the-
orem addresses general graphs, and narrows the previ-

ous doubly-exponential gap (between k + 1 and 22k

) to
be only singly-exponential.

Theorem 1.2. For every k > 5 there exists a k-
terminal network such that every mimicking network of
it has size 2Ω(k). This holds even for bipartite networks
with all the terminals on one side and all the non-
terminals on the other side.

The next theorem is for mimicking networks of
planar graphs, proving a lower bound on the number
of edges. If the mimicking network is guaranteed to
be sparse (say planar, as is the case in our bound
in Theorem 1.1) then we get a similar bound for the
number of vertices. But if the mimicking network could
be arbitrary (e.g., a complete graph) we do not know
how to prove it cannot have O(k) vertices.

Theorem 1.3. For every k > 5 there exists a planar
k-terminal network such that every mimicking network
of it has at least Ω(k2) edges.

Remark. Very recently, we were informed of new
results, obtained independently of ours, by Khan,
Raghavendra, Tetali and Végh [KRTV12]. Their re-
sults include improved upper bounds for general graphs
(albeit still doubly-exponential in k), for trees, and for
bounded treewidth graphs, as well as lower bounds that
are comparable to ours.

(c) Succinct data structures. Our final result
is an alternative formulation of graph compression as
the problem of storing succinctly (i.e., summarizing
or sketching) all the 2k terminal cuts in a k-terminal
network.

Definition 2. A terminal-cuts (TC) scheme is a data
structure that uses storage (memory) M to support the
following two operations on a k-terminal network (G, c),
where n = |V (G)| and c : E(G)→ {1, . . . , nO(1)}.

1. Preprocessing P , which gets as input the network
and builds M .

Graph family Lower bounds Upper bounds

General graphs 2Ω(k) Theorem 1.2 22k

[HKNR98]
Planar graphs |E(G′)| ≥ Ω(k2) Theorem 1.3 O(k222k) Theorem 1.1
Bounded treewidth O(k) [CSWZ00]
Star graphs k + 1 [CSWZ00]

Table 1: Known bounds for the size of mimicking networks

2. Query Q, which gets as input a subset of terminals
S, and uses M (without access to (G, c)) to output
mincutG,c(S, S̄).

Observe that putting together the two conditions above
gives Q(S;P (G)) = mincutG,c(S, S̄) for all S ⊂ Q. The
storage requirement (or space complexity) of the TC
scheme is the (maximum) number of machine words
used by M . Since the value of every cut in (G, c)
is at most nO(1), and since we need to be able to
represent every vertex in G, we shall count the size of
the TC scheme in terms of machine words of O(log n)
bits. An obvious upper bound is 2k machine words, by
explictly storing a list of all the cut values. Perhaps
surprisingly, we can show a matching lower bound for
any data structure using the technology developed to
prove Theorem 1.2. We prove the following Theorem
1.4, including an extension of it to randomized schemes,
in Section 4.

Theorem 1.4. For every k > 5, a terminal-cuts
scheme for k-terminal networks requires storage of 2Ω(k)

machine words.

This theorem is related to, but different from,
Theorem 1.2. A TC scheme can possibly use its memory
M to store an entire mimicking network; a more naive
approach would be to store all the terminal-cut values,
using at most 2k machine words. Indeed, our theorem
shows that the worst-case memory usage of this naive
approach is essentialy optimal.

1.2 Related Work Graph compression can be inter-
preted quite broadly, and indeed it was studied exten-
sively in the past, with many results known for different
graphical features (the properties we wish to preserve).
For instance, in the context of preserving the graph dis-
tances, concepts such as spanners [PS89] and proba-
bilistic embedding into trees [AKPW95, Bar96], have
developed into a rich area with productive area, and
variations of it that involve a subset of terminal vertices
were studied more recently, see e.g. [CE06, KZ12].

In the context of preserving cuts (and flows), which
is also our theme, the problem of graph sparsification

[BK96] has recently seen an immense progress, see
[BSS09] and references therein. Even closer to our
own work are analogous questions that involve a subset
of terminals, and the goal is to find a small network
that preserves (the cost of) all minimum terminal cuts
approximately. In particular, Chuzhoy [Chu12] recently
showed a constant factor approximation using a network
whose size depends on (certain) edge-costs is in the
original graph. Another variation of our problem is that
of a cut (and flow) sparsifier, in which the compressed
network should contain only k vertices (the terminals)
and the goal is to minimize the approximation factor
(called congestion), see [CLLM10, EGK+10, MM10] for
the latest results.

2 Upper Bound for Planar Graphs

In this section we prove Theorem 1.1, showing that ev-
ery planar k-terminal network (G, c) admits a mimick-
ing network of size O(k222k), which is in fact a minor
of G.

2.1 Technical Outline Let G be a planar k-
terminal network, and assume it is connected. Let
ES = mincutG,c(S, S̄) be the cutset of a minimum S-

separating cut in (G, c), and let Ê be the union of ES

over all subsets S ⊂ Q. Removing the edges Ê from
the graph G disconnects it to some number of con-
nected components, and we construct our mimicking
network G′ by contracting every such connected com-
ponent into a single vertex. It is easy to verify that
these contractions maintain the minimum terminal cuts.
This method of constructing G′ resembles the one in
[HKNR98], except that the sets of vertices that we unite
are always connected, hence our G′ is a minor of G. We
proceed to bound the number of connected components
one gets in this way, as this will clearly be the size of
our mimicking network G′.

We first consider removing from G a single cut-
set mincutG(S, S̄) (for arbitrary S ⊂ Q), and show
(in Lemma 2.1) that it can disconnect the graph into
at most k connected components. We then extend
this result to removing from G two cutsets, namely
mincutG(S, S̄) and mincutG(T, T̄) (for arbitrary S, T ⊂

Q), and show (in Lemma 2.2) such a removal can dis-
connect the graph into at most 3k connected compo-
nents. Next, we consider removing all the m = 2k−1−1
cutsets of the minimum terminal cuts from G (i.e., Ê)
from G. However, naive counting of the number of re-
sulting connected components, which argues that every
additional cutset splits each existing component into at
most O(k) components, would give us in total a poor
bound of roughly km.

The crucial step here is to use the planarity of
G to improve the dependence on m significantly, and
we indeed obtain a bound that is quadratic in m by
employing the dual graph of G denoted by G∗. Loosely
speaking, the cutsets in G correspond to (multiple)
cycles in G∗, and thus we consider the dual edges of Ê,
which may be viewed as a subgraph of G∗ comprising
of (many) cycles. We now use Euler’s formula and
the special structure of this subgraph of cycles; more
specifically, we count its vertices of degree > 2, which
turns out to require the aforementioned bound of 3k for
two sets of terminals S, T . This gives us a bound on the
number of faces in this subgraph (in Lemma 2.4), which
in turn is exactly the number of connected components
in the primal graph (Corollary 2.2).

2.2 Preliminaries Recall that a graph is called a
multi-graph if we allow it to have parallel edges and
loops. A cycle in a multi-graph G is a sequence of edges
(u0, v0), . . . , (ul−1, vl−1) such that vi = u(i+1) mod l for
all i = 0, . . . , l − 1. The cycle is simple if it contains l
distinct vertices and l distinct edges. Note that two
parallel edges define a simple cycle of length 2, and
that a loop is a cycle of length 1 that contributes 2
to the degree of its vertex. A circuit is a collection of
cycles (not necessarily disjoint) C = {C1, . . . , Cl}. Let

E(C) =
⋃l

i=1 Ci be the set of edges that participate in
one or more cycles in the collection (note it is not a
multiset, so we discard multiplicities). The cost of a
circuit C is defined as

∑
e∈E(C) c(e).

For a graph G, let CC(G) denote the set of con-
nected components in the graph. In particular, if
CC(G) = {P1, . . . , Ph} then V (G) = P1 ∪ · · · ∪ Ph as a
disjoint union. For a subset of the vertices W ⊂ V (G),
let δ(W) denote the set of edges with exactly one end-
point in W , i.e. δ(W) = {(u, v) ∈ E(G) : u ∈ W, v /∈
W}. A vertex in G with degree more than 2 will be
called a meeting vertex of G. We introduce special no-
tation for two (disjoint) sets of vertices:

V2(G) = {v ∈ V : deg(v) = 2};
Vm(G) = {v ∈ V : deg(v) > 2};

𝐺 ∖ 𝐸𝑆 𝐺 ∖ 𝐸𝑇 𝐺 ∖ (𝐸𝑆∪ 𝐸𝑇) 𝑆 = {𝑞3} 𝑆 = {𝑞1, 𝑞2}

𝑽𝒊

Figure 1: As depicted in gray, G\ES has two connected
components, G \ ET has three, and G \ (ES ∪ ET) has
five. Notice the connected component Vi ofG\(ES∪ET)
contains no terminals.

and for two (disjoint) sets of edges:

E2(G) := {(u, v) ∈ E(G) : u, v ∈ V2(G)};
Em(G) := {(u, v) ∈ E(G) : u ∈ Vm(G) or v ∈ Vm(G)}.

2.3 Proof of Theorem 1.1 Let (G, c) be a k-
terminal network with terminals Q = {q1, . . . , qk},
where G is a connected plane graph with faces F (if
G is not connected we can apply the proof for every
connected component separately). We may assume, us-
ing small perturbation on the edges cost, that every two
different subsets of edges in G have different total cost.
In the proof we will use the notations ES and Ê defined
in Section 2.1.

Lemma 2.1. (One cutset) For every subset of termi-
nals S, the graph G \ES has at most k connected com-
ponents.

Proof. If there are more than k connected components
then there is at least one connected component without
any terminal vertex. Since G is connected, we can unite
it to any other connected component by removing some
edge from ES . We get a new cutset that separates S
from S̄ with smaller total cost than ES in contradiction
to the minimality. �

Lemma 2.2. (Two cutsets) For every two subsets of
terminals S and T , the graph G\ (ES ∪ET) has at most
|CC(G\ES)|+ |CC(G\ET)|+k connected components.

We illustrate this lemma in Figure 1. The idea
is that if G \ (ES ∪ ET) has too many connected
components, then we can find one that contains no
terminals, and that moving it to the other side of (say)
G \ ES contradicts the minimality of ES .

Proof. [of Lemma 2.2] Let CC(G \ (ES ∪ ET)) =
{P0, . . . , Ph}. For every Pi, we let WS(Pi) := δ(Pi)∩ES

𝐺 ∖ 𝐸′𝑇 𝑆 = {𝑞1, 𝑞2}

𝑽𝒊

Figure 2: E′T = (ET ∪WS) \WT , where the red edges
we removed are WT , and the blue edges we added are
WS .

be the set of edges in ES that have exactly one of their
endpoints in Pi, and similarlyWT (Pi) := δ(Pi)∩ET . We
can use the above notation to associate every connected
components Pi of G\ (ES ∪ET), to one of the following
four sets:

1. WS(Pi) = ∅; in particular, Pi ∈ CC(G \ ET).

2. WT (Pi) = ∅; in particular, Pi ∈ CC(G \ ES).

3. WS(Pi) = WT (Pi); in particular Pi ∈ CC(G\ES)∩
CC(G \ ET).

4. WS(Pi) 6= ∅, WT (Pi) 6= ∅ and WS(Pi) 6= WT (Pi);
in particular Pi /∈ CC(G \ ES) ∪ CC(G \ ET).

Every connected component that belongs to the last
set (i.e. there are at least two different edges in δ(Pi),
one from ET and one from ES) will be called a mixed
connected component of G \ (ES ∪ ET). Thus, the
number of connected components in G \ (ES ∪ ET)
is bounded by |CC(G \ ES)| + |CC(G \ ES)| plus the
number of mixed connected components ofG\(ES∪ET).

Assume towards contradiction that there are more
than k mixed connected components in G \ (ES ∪ET).
Therefore, there exists at least one mixed connected
component, say with out loss of generality P0, without
any terminal in it. Since P0 is a mixed connected
component in G\ (ES ∪ET) we know that WS(P0) 6= ∅,
WT (P0) 6= ∅ and WS(P0) 6= WT (P0). For simplicity
from now on we will drop the p0 and refer WS and
WT to WS(P0) and WT (P0) correspondingly. By the
perturbation on the edges cost the total cost of these
two subsets must be different. Assume without loss of
generality that c(WS) < c(WT). We will replace the
edges WT by the edges WS in the cutset of T and call

this new set of edges E′T , i.e. E′T = (ET ∪WS) \WT .
It is clear that c(E′T) < c(ET). We will prove that E′T
is also a cutset that separate T from T̄ in the graph G,
contradicting the definition of ET . See Figures 1 and 2.

Denote CC(G \ ET) = {P ′0, . . . , P ′h′} and assume
without loss of generality that the set of edges WS con-
nects the connected component P0 and the t connected
components P1, . . . Pt of G \ (ES ∪ ET) into one con-
nected component P ′0 in G \ ET . Therefore, by adding
the edges ES \(WS∪WT) to the graph G\(ES∪ET) We
will get the graph G′ = G\(ET ∪WS) and its connected
components will be P0, P1, . . . , Pt, P

′
1, . . . , P

′
h′ . Since the

graph G′ do not contains any edge from ET , the sets T
and T̄ are still separated.

Now it remain to add the edges WT to the graph
G′ in order to get the desirable graph G \ E′T . Assume
without loss of generality that P ′0 contains terminals
from T . Then, by the minimality of ET , if edges from
WT connect between P ′0 and P ′i , then the terminals of
P ′i are from T̄ . In particular, adding the edges WT to
G′ will connect P0 to some connected components P ′i
that contains only terminals from T̄ . Since P0 does not
contains any terminals, the connected component that
was combined by the edges WT contains only terminals
from T̄ , and so E′T separate between T and T̄ . �

Planar duality. Recall that every planar graph G
has a dual graph G∗, whose vertices correspond to the
faces of G, and whose faces correspond to the vertices
of G, i.e., V (G∗) = {v∗f : f ∈ F (G)} and F (G∗) = {f∗v :
v ∈ V (G)}. Every edge e = (v, u) ∈ E(G) with cost
c(e) that lies on the boundary of two faces f1, f2 ∈ F (G)
has a dual edge e∗ = (v∗f1 , v

∗
f2

) ∈ E(G∗) with the same
cost c(e∗) = c(e) that lies on the boundary of the faces
f∗v and f∗u . For every subset of edges H ⊂ E(G),
let H∗ := {e∗ : e ∈ H} denote the subset of the
corresponding dual edges in G∗.

The following theorem describes the duality be-
tween two different kinds of edge sets – minimum cuts
and minimum circuits – in a plane multi-graph. It is
a straightforward generalization of the case of st-cuts
(whose duals are cycles) to three or more terminals. We
are not aware of a reference for this precise statement,
although it is similar to [HS85, Rao87]. See also Figure
3 for illustration.

Theorem 2.1. (Duality of cutsets and circuits)
Let G be a connected plane multi-graph, let G∗ be its
dual graph, and fix a subset of the vertices W ⊆ V (G).
Then, H ⊂ E(G) is a cutset in G that has minimum
cost among those separating W from V (G) \ W if
and only if the dual set of edges H∗ ⊆ E(G∗) is
actually E(C) for a circuit C in G∗ that has minimum
cost among those separating the corresponding faces

{f∗v : v ∈W} from {f∗v : v ∈ V (G) \W}.

𝐺:

𝑐(𝑒) =8

5
4

2

1

3

𝑞2

𝑞3

𝑞1

𝐺∗:

𝑞2

𝑞3

𝑞1

𝑐(𝑒∗) =8

𝑆 = 𝑞1, 𝑞3 𝑆 = {𝑞2}

Figure 3: A planar 3-terminal network G (in black),
with ES depicted as dashed edges. The dual graph G∗

is shown in blue, with E∗S depicted as dashed edges.

Recall that removing edges from a graph G discon-
nects it into (one or more) connected components. The
next lemma characterizes this behavior in terms of the
dual graph G∗. See Figure 4 for illustration. Recall
that G[H] is a standard notation for the subgraph of G
induced by the subset (of edges or vertices) H.

Lemma 2.3. (Dual of a connected component)
Let G be a connected plane multi-graph, let G∗ be its
dual, and fix a subset of edges H ⊂ E(G). Then P is
a connected component in G \H if and only if its dual
set of faces {f∗v : v ∈ P} is a face of G∗[H∗].

Figure 4: The graph G is in black. Removing the black
dashed edges H disconnects the graph G into three
connected components. The blue bold dashed edges are
the dual edges H∗, that form the dual subgraph G∗[H∗].

Leveraging the planarity. We proceed with the
proof of Theorem 1.1, and now use the duality of planar
graphs. In the following corollary we will deal with the
dual graph G∗[E∗S ∪ E∗T] for two arbitrary subsets of
terminals S and T .

Corollary 2.1. For all S, T ⊂ Q, the graph G∗[E∗S ∪
E∗T] has at most 6k meeting vertices.

Proof. [of Corollary 2.1] According Lemmas 2.1 and
2.2, the graph G \ (ES ∪ ET) has at most |CC(G \
ES)|+|CC(G\ET)|+k ≤ 3k connected components. By
Lemma 2.3 every connected component in G\(ES∪ET)
corresponds to a face in G∗[E∗S ∪ E∗T]. Therefore,
G∗[E∗S ∪ E∗T] has at most 3k faces.

By the duality of cuts and circuits, every set of edges
E∗S is a circuit. Therefore, every vertex v appearing in
these edges E∗S , has degree at least 2. E∗S ∪E∗T is circuit
as well, and all its vertices have degree at least 2, i.e.
V (G∗[E∗S∪E∗T]) = V2(G∗[E∗S∪E∗T])∪Vm(G∗[E∗S∪E∗T]).
To simplify the notation we denote G∗ST = G∗[E∗S∪E∗T].
By Handshaking lemma,

2|E(G∗ST)| =
∑

v∈V (G∗ST)

deg(v)

≥ 3|Vm(G∗ST)|+ 2|V2(G∗ST)|
= 2|V (G∗ST)|+ |Vm(G∗ST)|.

By Euler’s formula

3k ≥ |F (G∗ST)|
= |E(G∗ST)| − |V (G∗ST)|+ |CC(G∗ST)|+ 1

≥ 1

2
|Vm(G∗ST)|,

and the corollary follows. �

Recall that in Section 2.1 we defined Ê :=⋃
S⊂QES , and denote its set of dual edges by Ê∗ :=

{e∗ : e ∈ Ê} =
⋃

S⊂QE
∗
S .

Lemma 2.4. The graph G∗[Ê∗] has at most O(k222k)
faces.

Proof. [of Lemma 2.4] Using Theorem 2.1 we get that
for every S ⊂ Q, ES is a minimum cutset in G if and
only if E∗S (the dual set of edges of ES) is a minimum
circuit in G∗. Moreover, as defined in Section 2.3
Ê∗ =

⋃
S⊂QE

∗
S . Thus, Ê∗ is also a circuit, and so

|V (G∗[Ê∗])| = |V2(G∗[Ê∗])|+ |Vm(G∗[Ê∗])|,(2.1)

|E(G∗[Ê∗])| = |E2(G∗[Ê∗])|+ |Em(G∗[Ê∗])|.(2.2)

According to the definitions and the Handshaking
lemma we get that

(2.3) |E2(G∗[Ê∗])| ≤ |V2(G∗[Ê∗)|.

By a union bound, the two following inequalities holds

|Vm(G∗[Ê∗])| ≤
∑

S⊂Q
|V (G∗[E∗S]) ∩ Vm(G∗[Ê∗])|(2.4)

|Em(G∗[Ê∗])| ≤
∑

S⊂Q
|E(G∗[E∗S]) ∩ Em(G∗[Ê∗])|(2.5)

Fix a subset S. We will start by bounding the set
of vertices V (G∗[E∗S]) ∩ Vm(G∗[Ê∗]). For every vertex

v in V (G∗[E∗S]) ∩ Vm(G∗[Ê∗]) there exists a subset T
such that v is also in V (G∗[E∗S]) ∩ Vm(G∗[E∗S ∪ E∗T]).
According to Corollary 2.1, |Vm(G∗[E∗S ∪ E∗T])| ≤ 6k.
Therefore |V (G∗[E∗S])∩Vm(G∗[E∗S ∪E∗T])| ≤ 6k, and by
union bound on all the subsets T we get |V (G∗[E∗S]) ∩
Vm(G∗[Ê∗])| ≤ 6k2k.

We will now move to bound E(G∗[E∗S]) ∩
Em(G∗[Ê∗]). By Lemma 2.1 there are at most k cy-
cles that cover the graph G∗[E∗S], so every vertex in

V (G∗[E∗S]) ∩ Vm(G∗[Ê∗]) can be shared by at most k
cycles of G∗[E∗S], which bound the degree of every ver-
tex in G∗[E∗S] by 2k. Thus

|E(G∗[E∗S]) ∩ Em(G∗[Ê∗])|(2.6)

≤ 2k|V (G∗[E∗S]) ∩ Vm(G∗[Ê∗])| = O(k22k)

We can bound |CC(G∗[Ê∗])| by extending the ar-
gument in Lemma 2.1. Assume toward contradiction
that |CC(G∗[Ê∗])| ≥ k + 1. Thus, there exists at least
one connected component P in G∗[Ê∗] that does not
contains any terminal face of G∗. By the construction
of Ê∗, there exists a subset S such that P contains at
least one cycle C of the circuit E∗S . Since P does not
contain any terminal face, we can remove some edge e∗

of the cycle C from the circuit E∗S and get a circuit
with smaller cost that separates between f∗S and f∗

S̄
in

contradiction.
Now by Euler’s formula,

|F (G∗[Ê∗])|
= |E(G∗[Ê∗])| − |V (G∗[Ê∗])|+ 1 + |CC(G∗[Ê∗])|
≤ |Em(G∗[Ê∗])| − |Vm(G∗[Ê∗])|+ 1 + k

≤
∑

S⊂QO(k22k) + 1 + k = O(k222k)

the first inequality is by Equations (2.1), (2.2) and (2.3),
the second inequality is by Equations (2.5) and (2.6),
and the lemma follows. �

Corollary 2.2. There are at most O(k222k) con-
nected components in the graph G \ Ê.

This corollary follows from Lemma 2.4 by applying
Lemma 2.3 with H = Ê. We now complete the proof of
Theorem 1.1. Merge the vertices in each connected com-
ponent of G \ Ê into a single vertex (formally, contract
all the internal edges in each connected component) and
call this new multi-graph M . Notice there is at most one
terminal vertex in each connected component. So a ver-
tex in M , which corresponds to a connected component
(of G \ Ê) that contains some terminal vertex q, will
be identified with that terminal q. To be concrete, the
vertices and the terminals of M are the sets

V (M) := {vi : Pi ∈ CC(G \ Ê)}

Q(M) := {q = vi : Pi ∈ CC(G \ Ê) and q ∈ Pi}
In addition, (vi, vj) is an edge in M if there exist

two vertices ui, uj ∈ E(G) such that ui ∈ Pi, uj ∈ Pj

and (ui, uj) is an edge in G. The cost of every edge
(vi, vj) ∈ E(M) is

c′(vi, vj) :=
∑

ui∈Pi,uj∈Pj : (ui,uj)∈E(G)

c(ui, uj).

It is easy to verify that M is a minor of G with
O(k222k) vertices that includes the same k terminals Q.
We now prove that (M, c′) is a mimicking network of G
using the same argument as in [HKNR98], but applied
to the connected components. Fix a subset of terminals
S. Since we only contract edges, every cut that
separates S and S̄ in M has a cut in G that separates
S and S̄ with the same cost, thus mincutM,c′(S, S̄) ≥
mincutG,c(S, S̄). In the other direction, notice that
by the construction of M , all the vertices in each
connected component of G \ Ê are on the same side
of the minimum S-separating cut in G. Thus, there is a
cut in M that separates between S and S̄ and has cost
mincutG(S, S̄). Combining these together, we get the
equality mincutM,c′(S, S̄) = mincutG,c(S, S̄) for every
S, and Theorem 1.1 follows.

3 Lower Bounds

In this section we prove Theorems 1.2. While Theorem
1.3 belongs here as well, its proof is deferred to the full
version [KR12].

3.1 Techniques and Proof Outline All our lower
bounds are proved using the same technique, which
basically counts the number of “degrees of freedom”
needed to express all the relevant cut values. Formally,
we develop a certain machinery based on linear algebra,
which relates the size of any mimicking network to the
rank of some matrix.

The lower bound proofs start by describing a k-
terminal network (G, c) that seems minimal in the sense

that it does not admit a smaller mimicking network.
The networks used in Theorems 1.2 and 1.3 are different,
see Section 3 for details. We then identify the minimum
cost S-separating cuts for all (or some) S ⊂ Q, and
capture this information in a matrix.

Definition 3. (Cutsets-edges incidence matrix)
Let (G, c) be a k-terminal network, and fix an enumera-
tion S1, . . . , Sm of all m = 2k−1−1 distinct and nontriv-
ial bipartitions Q = Si ∪ S̄i. The cutset-edge incidence
matrix of (G, c) is the matrix AG,c ∈ {0, 1}m×E(G)

given by

(AG,c)i,e =

{
1 if e ∈ mincut(G,c)(Si, S̄i);

0 otherwise.

We also define the vector of minimum-cut values
between every bipartition of terminals

ΦG,c =

 mincutG,c(S1, S̄1)
...

mincutG,c(Sm, S̄m)

 ∈ Rm.

Here and throughout, we shall omit the subscript c when
it is clear from the context. Observe that if we think
of the edge costs c as a column vector ~c ∈ (R+)E(G),
then AG · ~c = ΦG. For a given S ⊂ Q, a minimum
S-separating cut (W,V (G) \W) is called unique if all
other S-separating cuts have a strictly larger cost.

The core of our analysis is the next lemma, as
it immediately provides a lower bound on the size of
any mimicking network; the theorems would follow by
calculating the rank of AG.

Lemma 3.1. (Main Technical Lemma) Let (G, c)
be a k-terminal network. Let AG be its cutset-edge
incidence matrix, and assume that for all S ⊂ Q
the minimum S-separating cut of G is unique. Then
there is for G an edge-costs function ĉ : E(G) → R+,
under which every mimicking network (G′, c′) satisfies
|E(G′)| ≥ rank(AG,c).

Notice that the bound is proved not for (G, c) but rather
for (G, ĉ); indeed, the edge-costs ĉ are a small random
perturbation of c. Thus, the proof of this lemma first
shows that a small perturbation does not change the
cutset-edge incidence matrix, i.e. AG,c = AG,ĉ. This
is where the uniqueness property is used. Next, fix
a small graph G′ that can potentially be a mimicking
network, but without specifying its edge-costs c′; now
let EG′ be the event that (G, ĉ) admits a mimicking
network of the form (G′, c′). Since G′ has too few edges
(whose costs are undetermined/free variables), we can
use linear algebra to show that Pr[EG′] = 0. The lemma
then follows by a union bound over the finitely many
(unweighted) graphs G′ of the appropriate size.

3.2 Proof of Lemma 3.1 We turn to proving
Lemma 3.1. Recall that this lemma considers a
k-terminal network (G, c), and assuming a certain
(uniqueness) condition, asserts that there is for G a
modified edge-costs function ĉ, under which every mim-
icking network must have at least rank(AG,c) edges,
where AG,c is a cutset-edge incidence matrix of (G, c).

The proof employs two lemmas and the following
notation. For S ⊂ Q, let ∆G,c(S) ≥ 0 be the difference
between the two smallest costs among all S-separating
cuts in G. Observe that if these two are not equal
(i.e., ∆G,c(S) > 0) then the minimum S-separating cut
is said to be unique in G. We also denote ∆G,c :=
minS⊂Q ∆G,c(S).

Lemma 3.2. For every edge-costs function w : E(G)→
[0, 1

∆G,c|E(G)|] the cutset-edge incidence matrix of (G, c)

is equal to the cutset-edge incidence matrix of (G, c+w),
i.e. AG,c = AG,c+w, where c+ w : e→ c(e) + w(e).

Proof. Let w be an edge-costs function w : E(G) →
[0, 1

∆G,c|E(G)|]. Since (G, c) and (G, c+ w) have the

same vertices and edges, every Si-separating cut in
(G, c) is also a Si-separating cut in (G, c+ w) and vice
versa. The value of every such cutset in (G, c+ w)
is ranged from the value of this cutset in G to
the value of this cutset in G plus 1

∆G,c
. In par-

ticular, mincutG,c(Si, S̄i) ≤ mincutG,c+w(Si, S̄i) ≤
mincutG,c(Si, S̄i) + 1

∆G,c
. Thus, mincutG,c+w(Si, S̄i) is

smaller (by at least
∆G,c−1

∆G,c
) than every cut that sepa-

rates Si and S̄i in G. Therefore it must be the case that
the cutsets of the minimum Si-separating cuts in (G, c)
and in (G, c+ w) are the same. �

We proceed with the proof of Lemma 3.1. Sample
an edge-costs function w : E(G) → [0, 1

∆G,c|E(G)|]

by independently choosing each w(e) from that range
uniformly at random. By the above lemma, AG,c =
AG,c+w so in the rest of the proof we will omit the
edge-costs function and denote this matrix by AG. Now
we argue that every mimicking network of (G, c + w)
must has at least r := rank(AG) edges. Consider
some network G′ with |E(G′)| < r, and let’s see if it
can potentially be a mimicking network of (G, c+ w).
Notice that every edge-costs function c′ : E(G′) → R+

for this G′ yields a cutset-edge incidence matrix AG′,c′

of size m × (r − 1) (if some graph has less than r − 1
edges we can pad the irrelevant columns with zeros).
Since this matrix has only ones and zeros in its entries,
there are only 2m(r−1) such matrices. The next lemma
proves that for every fixed matrix A ∈ {0, 1}m×(r−1),
the probability that there exists an edge-costs function
c′ : E(G′)→ R+ such that A · ~c′ = AG · (~c+ ~w) = ΦG is
zero.

Lemma 3.3. Fix a matrix A ∈ {0, 1}m×(r−1), and let
WAG

and WA be the span of the columns of AG and
A, respectively. If each w(e) is independently sampled
uniformly at random from [0, 1

∆G,c|E(G)|], then

Pr
w

[AG · (~c+ ~w) ∈WA] = 0.

Proof. Without loss of generality let the first r columns
of the matrix AG, { ~a1, . . . , ~ar}, be the basis for the
space WAG

. Since rank(A) < r = rank(AG) we get that
dim(WA) < dim(WAG

). Thus there must be some basis
vector of WAG

, say without loss of generality ~a1, that is
not in the subspace WA and denote by c(e1) +w(e1) its
corresponding cost.

We will calculate the number of vectors in WA that
can be expressed as linear combination with the vector
~a1. Let f(α) = α~a1 +

∑r
i=2(c(ei) + w(ei))~ai. If there

are at least two such vectors, f(α) and f(α′) (where
α, α′ 6= 0) in WA, then ~a1 will be in WA because WA

is a subspace. So there is at most one α such that
f(α) ∈WA.

Since each w(ei) is sampled independently from a
uniform distribution over [0, 1

∆G,c|E(G)|], the probability

that c(e1) + w(e1) = α is 0. By independence of w(ei)
for all i ∈ [r] we can sample w(e1) last which completes
Lemma 3.3. �

To complete the proof of Lemma 3.1, we will
calculate the probability that there exists a mimicking
network (G′, c′) for the network (G, c + w), such that
|E(G′)| < r.

Pr
w

[∃ mimicking network (G′, c′) with |E(G′)| < r]

= Pr
w

[∃ 0-1 matrix AG′,c′ s.t. AG′,c′ · ~c′ = AG(~c+ ~w)]

≤ Pr
w

[∃ 0-1 matrix AG′,c′ s.t. AG(~c+ ~w) ∈WAG′,c′]

≤
∑

A∈{0,1}m×(r−1)

Pr
w

[AG · (~c+ ~w) ∈WA] = 0,

where the first equality is by the definition of a mim-
icking network, the following inequality is because the
condition is necessary (but not sufficient), the second
inequality is by a union bound over all possible matri-
ces, and the final equality is by Lemma 3.3. Denot-
ing ĉ = c + w, we see that every mimicking network
(G′, c′) for the network (G, ĉ) has at least rank(AG)
edges. Lemma 3.1 follows.

3.3 Lower bound for general graphs We now
prove Theorem 1.2 which asserts that for every k there
exists a k-terminal network such that its mimicking
network must have 2Ω(k) non-terminals. The proof

constructs a bipartite k-terminal network, with all its
terminals on one side and all its non-terminals on the
other side. As we will show, the rank of its cutset-edge
incidence matrix is at least 2Ω(k), and the corresponding
cuts are unique, hence applying Lemma 3.1 to this
matrix will complete the proof of Theorem 1.2.

Proof. [of Theorem 1.2] Consider a complete bipartite
graph G = (Q,U,E), where one side of the graph
consists of the k terminals Q = {q1, . . . , qk}, the other
side of the graph consists of l =

(
k
2
3k

)
non-terminals U =

{uS1
, . . . , uSl

}, with S1, . . . , Sl denoting the different
subsets of terminals of size 2

3k. The costs of the edges
of G are as follows: every non-terminal uSi is connected
by edges of cost 1 to every terminal in Si, and by
edges of cost 2 + ε to every terminal in S̄i = Q \ Si,
for sufficient small ε > 0, in fact ε = 1

k suffices.
Let c(uSi

, qj) denote the cost of edge (uSi
, qj), and

define c(uSi
, Sj) :=

∑
q∈Sj

c(uSi
, q). The proofs of the

following two lemmas are deferred to the full version
[KR12].

Lemma 3.4. The minimum Si-separating cut is ob-
tained uniquely by the cut (W,V (G) \W) where W =
{uSi
} ∪ S̄i and V (G) \W = {uSj

: j 6= i} ∪ Si.

Lemma 3.5. Let AG be a cutset-edge incidence matrix
of G.Then rank(AG) ≥ l.

We can now complete the proof of Theorem 1.2.
Applying Lemma 3.1 to our bipartite graph G and its
cutset-edge incidence matrix AG, we get that every
mimicking network G′ of G has at least l = 2Ω(k) edges.
It follows that |V (G′)| ≥

√
|E(G′)| ≥ 2Ω(k). �

4 Lower Bounds for Data Structures

We can extend the definition of a (deterministic) TC
scheme to a randomized one by letting the two opera-
tions access a common source of random bits. (We do
not assume the random bits are stored explicitly in M ,
even though it might be required in some implementa-
tions.) We then change the requirement from the query
operation to be

Pr[Q(S;M) = mincutG,c(S, S̄)] ≥ 2/3,

where the probability is taken over the data structure’s
random bits. Our lower bound in Theorem 1.4 holds
also for randomized schemes, even those with shared
randomness (that is not stored explicitly).

We now prove Theorem 1.4, which asserts that a
terminal-cuts scheme requires 2Ω(k) words in the worst-
case. Fix k and let (G, c) be the k-terminal bipartite
graph constructed in Section 3.3. Recall that l :=

(
k

2k/3

)

is the number of subsets of terminals of size 2k/3, each
corresponding to a non-terminal in G. The number
of vertices in G is n := k + l = 2Θ(k), and size of a
machine word is O(log n) = Θ(k) bits. Assume towards
contradiction there is a terminal-cuts scheme that can
handle every k-terminal network using less than l/100
bits. For now, let us assume the scheme is deterministic.

Let AG,c be the cutset-edge incidence matrix of
(G, c). By Lemma 3.5, rank(AG,c) ≥ l. Let us assume
that the first l columns of AG,c are linearly independent
(otherwise, we just reorder them), and let ej denote the
edge of G corresponding to the j-th column of AG,c.

Let W denote the collection of 2l edge-costs func-
tions w : E(G) → {0, 1

6k2l} satisfying that w(ej) = 0
for all j > l. As in Section 3.3, every function w ∈ W
defines a graph (G, c+ w), whose cutset-edge incidence
matrix is denoted AG,c+w. We can now apply Lemma
3.2, since 6k > ∆G,c and |E(G)| = kl, and obtain that
for all w ∈ W the network (G, c+w) has the same cutset-
edge incidence matrix as (G, c), i.e. AG,c = AG,c+w. Us-
ing the above bound on the rank of AG,c we can deduce
that for every two different functions w 6= w′ ∈ W, we
have AG,c·(~c+~w) 6= AG,c·(~c+ ~w′), i.e. there exists S ⊂ Q
such that mincutG,c+w(S, S̄) 6= mincutG,c+w′(S, S̄).

Now, the assumed terminal-cuts scheme uses less
than l/100 bits, and thus, by the pigeonhole principle,
there must be w 6= w′ ∈ W, whose preprocessing
results with the exact same memory image M =
P (G, c + w) = P (G, c + w′). Consequently, for all
queries S ⊂ Q, the scheme will report the same answer
under inputs (G, c + w) and (G, c + w′), which means
that mincutG,c+w(S, S̄) = mincutG,c+w′(S, S̄) and is a
contradiction.

Notice that the edge costs of the graphs (G, c+ w)
for w ∈ W can be easily scaled so that they are all in the
range {0, 1, . . . , nO(1)}. We conclude that a terminals-
cut scheme for k terminals requires, in the worst case,

storage of at least l/100
O(log n) ≥ 2Ω(k) words. This proves

Theorem 1.4 for deterministic schemes.
Proof for randomized schemes (sketch). The

proof for randomized schemes follows the same outline,
the main difference being that we replace the simple
collision argument between w 6= w′, with well-known
entropy (information) bounds. First, the data struc-
ture’s success probability can be amplified to at least
(say) 1 − 22k, by straightforward independent repeti-
tions, while increasing the storage requirement by a
factor of O(k). So assume henceforth this very high
probability is the case.

Now let us choose w ∈ W at random, which
corresponds to choosing a random string of l bits. Using
the data structure, one can retrieve with very high
probability the value mincutG,c+w(S, S̄) = AG,c ·(~c+ ~w).

Applying a union bound over all 2k subsets S ⊂ Q,
with very high probability one would retrieves correctly
all these values. In this case, since the first l columns
of AG,c yield an invertible matrix, we could actually
recover the vector w itself (with high probability). But
since w is effectively a random string of l bits, it follows
by standard entropy bounds that M must have at least
2Ω(l) bits, and the theorem is completed just like for a
deterministic scheme.

5 Concluding Remarks

Define a generalized mimicking network of a k-terminal
network (G, c) to be a k-terminal network (G′, c′) with
the same set of terminals Q, such that for all disjoint
S, T ⊂ Q, the minimum cost of a cut separating
S from T is the same, namely mincutG′,c′(S, T) =
mincutG,c(S, T). Although this definition increases the
number of cuts that must be preserved, our upper bound
for planar graphs extends to this more general definition
(but with larger constants in the exponents), and the
same is true for the upper bound for general graphs by
[HKNR98].

The upper bound of Hagerup, Katajainen,
Nishimura, and Ragde [HKNR98] holds for both di-
rected and undirected graphs. Our paper only discusses
undirected graphs; our lower bounds actually hold for
directed graphs as well. It is an interesting question
whether there is a significant difference between the
maximum size of a mimicking network in the directed
and undirected versions of the problem, either for gen-
eral graphs or for some natural family of graphs.

References

[AKPW95] N. Alon, R. M. Karp, D. Peleg, and D. West. A
graph-theoretic game and its application to the k-server
problem. SIAM J. Comput., 24(1):78–100, February
1995.

[Bar96] Y. Bartal. Probabilistic approximation of metric
spaces and its algorithmic applications. In 37th Annual
Symposium on Foundations of Computer Science, pages
184–193. IEEE, 1996.

[BK96] A. A. Benczúr and D. R. Karger. Approximating
s-t minimum cuts in Õ(n2) time. In 28th Annual
ACM Symposium on Theory of Computing, pages 47–
55. ACM, 1996.

[BSS09] J. D. Batson, D. A. Spielman, and N. Srivastava.
Twice-ramanujan sparsifiers. In 41st Annual ACM
symposium on Theory of computing, pages 255–262.
ACM, 2009.

[CE06] D. Coppersmith and M. Elkin. Sparse sourcewise
and pairwise distance preservers. SIAM J. Discrete
Math., 20:463–501, 2006.

[Chu12] J. Chuzhoy. On vertex sparsifiers with Steiner

nodes. In 44th symposium on Theory of Computing,
pages 673–688. ACM, 2012.

[CLLM10] M. Charikar, T. Leighton, S. Li, and A. Moitra.
Vertex sparsifiers and abstract rounding algorithms. In
51st Annual Symposium on Foundations of Computer
Science, pages 265–274. IEEE Computer Society, 2010.

[CSWZ00] S. Chaudhuri, K. V. Subrahmanyam, F. Wagner,
and C. D. Zaroliagis. Computing mimicking networks.
Algorithmica, 26:31–49, 2000.

[EGK+10] M. Englert, A. Gupta, R. Krauthgamer,
H. Räcke, I. Talgam-Cohen, and K. Talwar. Vertex
sparsifiers: New results from old techniques. In 13th
International Workshop on Approximation, Random-
ization, and Combinatorial Optimization, volume 6302
of Lecture Notes in Computer Science, pages 152–165.
Springer, 2010.

[FM95] T. Feder and R. Motwani. Clique partitions, graph
compression and speeding-up algorithms. J. Comput.
Syst. Sci., 51(2):261–272, 1995.

[HKNR98] T. Hagerup, J. Katajainen, N. Nishimura, and
P. Ragde. Characterizing multiterminal flow networks
and computing flows in networks of small treewidth. J.
Comput. Syst. Sci., 57:366–375, 1998.

[HS85] D. S. Hochbaum and D. B. Shmoys. An O(|V |2)
algorithm for the planar 3-cut problem. SIAM J.
Algebraic Discrete Methods, 6(4):707–712, 1985.

[KR12] R. Krauthgamer and I. Rika. Mimicking networks
and succinct representations of terminal cuts. CoRR,
abs/1207.6246, 2012.

[KRTV12] A. Khan, P. Raghavendra, P. Tetali, and L. A.
Végh. On mimicking networks representing minimum
terminal cuts. CoRR, abs/1207.6371, 2012.

[KZ12] R. Krauthgamer and T. Zondiner. Preserving termi-
nal distances using minors. In 39th International Col-
loquium on Automata, Languages, and Programming,
volume 7391 of Lecture Notes in Computer Science,
pages 594–605. Springer, 2012.

[MM10] K. Makarychev and Y. Makarychev. Metric exten-
sion operators, vertex sparsifiers and lipschitz extend-
ability. In 51st Annual Symposium on Foundations of
Computer Science, pages 255–264. IEEE, 2010.

[PS89] D. Peleg and A. A. Schäffer. Graph spanners. J.
Graph Theory, 13(1):99–116, 1989.

[Rao87] S. Rao. Finding near optimal separators in planar
graphs. In 28th Annual Symposium on Foundations of
Computer Science, pages 225–237. IEEE, 1987.

	Introduction
	Our Results
	Related Work

	Upper Bound for Planar Graphs
	Technical Outline
	Preliminaries
	Proof of Theorem 1.1

	Lower Bounds
	Techniques and Proof Outline
	Proof of Lemma 3.1
	Lower bound for general graphs

	Lower Bounds for Data Structures
	Concluding Remarks

