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Abstract

Data dimensionality is a crucial issue in a variety of settings,
where it is desirable to determine whether a data set given
in a high-dimensional space adheres to a low-dimensional
structure. We study this problem in the framework of
property testing: Given a query access to a data set S, we
wish to determine whether S is low-dimensional, or whether
it should be modified significantly in order to have the
property. Allowing a constant probability of error, we aim
at algorithms whose complexity does not depend on the size
of S.

We present algorithms for testing the low-

dimensionality of a set of vectors and for testing whether a

matrix is of low rank. We then address low-dimensionality

in metric spaces. For vectors in the metric space l1, we show

that low-dimensionality is not testable. For l2, we show

that a data set can be tested for having a low-dimensional

structure, but that the property of approximately having

such a structure is not testable.

1 Introduction

The analysis of large volumes of complex data is re-
quired in various disciplines. Such complex data is fre-
quently represented by vectors in a high-dimensional
space, e.g., by applying feature extraction. High-
dimensional data is notoriously difficult to work with,
as the complexity of many commonly used operations is
highly dependent (e.g. exponentially) on the dimension.

Real-life data sets often adhere to a low-dimensional
structure, whose extraction is of practical importance.
This gives rise to (the family of) dimensionality reduc-
tion problems, where we want to find, for a given set
S of points, a good representation in a space of low di-
mension d > 0. Throughout, we consider the dimension
d to be fixed (with respect to the size of S).
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One prominent interpretation for the aforemen-
tioned low-dimensional structure is as a linear space.
That is, the data set S is given in a (high-dimensional)
vector space and one wishes to find whether the vectors
of S lie (exactly or approximately) in a low-dimensional
linear (or affine) subspace. For example, Singular Value
Decomposition (SVD) computes a low-rank matrix that
approximates an input (real-valued) matrix optimally
(in a certain sense), thus finding in the input matrix
an “almost” low-dimensional linear structure. SVD
has many applications in information retrieval, see e.g.
[DDL+90, Kle98]. Two related techniques that are com-
monly used in practice for dimensionality reduction are
Principle Component Analysis (PCA) and Multidimen-
sional Scaling (MDS).

Another way to look at the issue of low-dimensional
structure is through the prism of finite metric spaces.1

That is, given a data set S that consists of points
in a metric space (such as lmp , i.e. R

m equipped
with the lp-norm), one wishes to realize the distances
among the points of S (exactly or approximately) by
points of a low-dimensional space (say ldp). For exam-
ple, the “flatenning lemma” of Johnson and Linden-
strauss [JL84] (see also [Ind01]) shows that every n-

point l2-metric can be embedded in l
O(log n)
2 with an

arbitrarily small (fixed) distortion of distances.
Interestingly, when the data consists of vectors in

a Euclidean space l2, there is a close relation between
linear and metric low-dimensional spaces, but it is not
robust. It is clear that a set of points in l2 lies
in a d-dimensional linear subspace if and only if it
can be embedded isometrically in ld2 . However, the
situation is completely different when an almost low-
dimensional structure is considered. For instance, a
small perturbation to the vectors is not necessarily
related to a small distortion of distances.

An open question in the area of low-dimensional
metric spaces is that of a finite point criterion for ldp-
embeddability. Namely, what is the minimum integer
fp(d) (called the order of congruence of ldp) such that any

metric space is ldp-embeddable if and only if all subspaces

1Throughout, when we refer to a metric we mean a semi-

metric, i.e., the distance between distinct elements in the metric
space is allowed to be 0.



of it on fp(d) points are ldp-embeddable. For p = 2,
Menger [Men28] shows that f2(d) = d + 3 for all d ≥ 1.
For p = 1 and every d > 2, Bandelt et al. [BCL98] show
that f1(d) ≥ d2 − 1 (see also [DL97, Chapter 11]) but it
is not even known whether f1(d) is finite. Our results
for l1 and l2 spaces establish somewhat similar bounds
for a relaxed version of this question.

Property testing. We study relaxed versions of
dimensionality reduction decision problems, in the
framework of property testing. Instead of determining
whether S has a certain low-dimensionality property P
or not, the goal is to determine (with high probability)
whether S has the property P , or it should be modified
significantly in order to have P . That is, given query
access to the entries of (a representation of) S, we wish
to determine whether S has the property P , or whether
S should be modified in at least an ε-fraction of the en-
tries in order to have the property. In the latter case, S
is called ε-far from having the property P .2

For these relaxed problems, it is desirable to obtain
algorithms that are significantly more efficient (in terms
of query complexity and running time) than those
required for exactly deciding the property. In particular,
we seek an algorithm whose complexity does not depend
on the size of the data set but only on ε (and on the
property P ), and thus has a sublinear complexity. If
such an algorithm exists, we say that the property P is
testable.3

1.1 Our results.

Linear structure of low dimension. We show
that the (data set) property of having a low-dimensional
linear (or affine) structure is testable in rather general
settings. Specifically, we show the following in Section 2.

• Testing whether vectors v1, . . . , vn (in a vector
space V ) lie in a linear (or affine) subspace of di-
mension at most d can be achieved by an algorithm
that queries O(d/ε) vectors.

• Testing whether a matrix Am×n (over a field F ) has
rank at most d can be achieved by an algorithm
that queries the entries of an O(d/ε) × O(d/ε)
submatrix.

These results may be of independent interest, as they
consider fundamental algebraic properties. In partic-
ular, they are related to (but different from) testing
multi-linear and low-degree codes, which has found

2Property testing investigates the interplay between a global
property P of the input and the local entries of its representation.
This relationship is exploited in several areas such as secret
sharing and probabilistically checkable proofs (PCPs).

3Some papers define a property to be testable if it has a testing
algorithm with sublinear (query) complexity.

many applications in secret sharing and in probablis-
tically checkable proofs (PCPs).

Metric structure of low dimension. We ad-
dress testing for low-dimensionality in the metric
spaces l2 and l1. First, testing algorithms for low-
dimensionality of l2-metrics follow immediately by spe-
cializing our results regarding linear structure.4 We
then show that, in contrast, a similar property in l1-
metrics is not testable, and that the property of approx-
imately having a low-dimensional structure in l2-metrics
is also not testable. Specifically, we show the following
in section 3.

• Testing whether vectors v1, . . . , vn ∈ lm1 can be
embedded into ld1 , requires querying Ω( 4

√
n) vectors,

even for d = 1, m = 2.

• Testing whether vectors v1, . . . , vn ∈ lm2 can be
perturbed by δ>0 so that they embed isometrically
in ld2 , requires querying Ω(min{√n,

√

m/ logm})
vectors, even for d=0, ε=1/2.

• Testing whether the vectors v1, . . . , vn ∈ lm2 can be
embedded into ld2 with distortion ∆ ≥ 1 requires
querying Ω(

√

n/∆) vectors, even for d = 1, ε =
O(1/∆), and arbitrary fixed ∆.

• Testing whether a matrix Mn×n is the distance
matrix of a d-dimensional Euclidean metric can be
achieved by an algorithm that queries the entries
of an O(d/ε) × O(d/ε) submatrix. (This offers a
slight improvement over the query complexity of
O(d log(d)/ε × d log(d)/ε) shown in [PR01].)

Small norm. In the context of testing dimension-
ality, the norm of a matrix may be interesting when
evaluating the difference of an input matrix and a
low-dimensional approximation of it, see e.g. [FKV98,
AM01]. In Section 4 we show the following for testing
whether the Frobenius norm (

∑

ij A2
ij)

1/2 of a matrix A
is small.

• Testing whether a matrix Am×n has Frobenius
norm at most r can be achieved by an algorithm
that queries O(ε−3 log 1/ε) entries of A.

This result applies also to testing whether the lp-norm
of a vector is small (for any fixed p ≥ 1), which may be
of independent interest.

Approximation of relaxed search problems.

Our testing algorithms can be extended to solve relax-
ations of the search problems that correspond to the
tested properties. Consider, for example, the problem
of finding a basis for the vector space spanned by the
rows of a low-rank matrix Am×n. Our analysis in the

4Note that in Euclidean spaces the metric dimension coincides
with the affine dimension.



proof of Theorem 2.2 implies an algorithm that finds,
with high probability, a basis for the span of a matrix
that agrees with A on all but at most an ε-fraction
of the entries. The running time of this algorithm is
O(min{m, n} · (rankA)2/ε2), and is thus sublinear in
the matrix size n ·m. Details omitted from this version
of the paper.

1.2 Related work. Property testing was first de-
fined by Rubinfeld and Sudan [RS96] in the context of
algebraic properties of functions. Goldreich, Goldwasser
and Ron [GGR98] initiated the study of this notion for
combinatorial objects, focusing mainly on graph prop-
erties. Recently, property testing was studied in var-
ious other settings such as clustering, metric spaces,
geometric objects, strings, and distributions, see e.g.
[Ron01, Fis01] and the references therein.

Our work is particularly related to that of Parnas
and Ron [PR01] on testing metric properties. They con-
sider the problem of testing whether a distance matrix
represents a tree metric, an ultrametric, an approximate
ultrametric, or a low-dimensional Euclidean metric.
The work in this paper touches upon the latter family of
metrics but we focus mainly on other input representa-
tions. Also related is testing of other properties of ma-
trices and vectors; for instance, testing the monotonicity
of a matrix is studied in [EKK+00, DGL+99, FN01].

Random sampling methods are used in [FKV98,
AM01] for fast computation of a low-rank approxima-
tion of a matrix; their results suggest that the struc-
ture of a low-rank matrix is typically revealed by sam-
pling a relatively few entries. However, there are some
crucial differences between these low-rank approxima-
tions and our work. One major difference is in the
sampling requirements. The algorithms we study are
essentially bound to oblivious uniform sampling, while
the algorithms of [FKV98] use a sample according to an
input-dependent distribution (which may be computed
in linear time by preprocessing), and the algorithms of
[AM01] require a sample whose size depends (at least
polylogarithmically) on the input. Another difference
is in the measure of farness from a low-rank matrix.
In low-rank approximations, two matrices are consid-
ered close to each other if the norm of their difference is
small. In contrast, our definitions measure the fraction
of entries in which the two matrices differ, bearing no
significance to the magnitude of the differences.5

5The “right” measure of farness clearly depends on the appli-
cation. For instance, measuring the norm of the difference may
prevail in real-valued data where an additive noise is expected,
while measuring the fraction of entries that differ may be more
suitable in discrete data where an arbitrary (or even adversarial)
partial corruption is considered.

Random sampling is also used in [DGGZ02] to
determine the dimension of a geometric shape. These
algorithms use sampling to explore the dimensionality
of the input, similar to our work, but from a different
perspective; the objects of investigation in [DGGZ02]
are shapes and not arbitrary finite sets of points from a
metric or linear space, and the problems they study are
not property testing problems.

We point out that there other notions of dimen-
sionality reduction. For instance, combinatorial feature
selection is the problem of projecting on a subset of the
coordinates (i.e., a subset of the features), and the goal
is to preserve the data properties, such as clustering and
entropy, see e.g. [CGK+00].

1.3 Preliminaries. We consider several natural rep-
resentations of high-dimensional data sets, but we al-
ways assume that both the querying mechanism (i.e.,
what queries are available to the algorithm) and the far-
ness measure (i.e., how far is an instance from having
the property) correspond to the same representation.
Below we formally define the notions of ε-farness and of
a testing algorithm.

Definition 1.1. (Distance from a property) Let
P be a property of objects that consist of entries (such
as matrices or vectors). An object is called ε-far from
having the property P if an ε-fraction of the object’s
entries should be modified for the object to have the
property.

Definition 1.2. (Property testing algorithm)
Let P be a property of objects that consist of entries. A
property testing algorithm for P is an algorithm that,
given a query access to the entries of an input object
and a distance ε > 0, accepts with probability at least
2/3 if the object has the property P , and rejects with
probability at least 2/3 if the object is ε-far from having
the property.

The above definition allows the algorithm to have
a two-sided error. A more restricted definition is one
where the algorithm’s error is one-sided, and then
the algorithm must always accept inputs having the
property P . We generally consider two-sided error
algorithms.

1.4 A technical lemma. The following lemma is
used several times in the analysis of our testing algo-
rithms.

Lemma 1.1. Let d ≥ 0 and ε > 0. Assume that
0 ≤ X0 ≤ X1 ≤ X2 ≤ . . . is a sequence of random
variables satisfying that for all t ≥ 0,

Pr [Xt+1 ≥ Xt + 1 | Xt ≤ d] ≥ ε.(1.1)



Then for t∗ ≥ 8(d + 1)/ε,

Pr [Xt∗ ≤ d] < 1/3.(1.2)

Proof. We first show that the variables Xt can be
modified into binomially distributed random variables
Zt ∼ B(t, ε) such that Pr[Xt ≤ d] ≤ Pr[Zt ≤ d] for all
t ≥ 0. Observe that when Xt is larger than d, its exact
value is irrelevant for the last inequality, so we assume
without loss of generality that once Xt is larger than d,
it increases by 1 with probability ε, independently of all
other events.

When Xt is not larger than d, We have by (1.1)
that Xt increases by at least 1 with probability at least
ε. Hence, we can define random variables Z0 ≤ Z1 ≤ . . .
such that Zt ∼ B(t, ε) and Zt is dominated by Xt, i.e.
Pr[Xt ≤ y] ≤ Pr[Zt ≤ y] for all y.

Our choice of t∗ = 8(d + 1)/ε implies E[Zt∗ ] ≥ 8d.
Using the Chernoff bound (see e.g. [MR95]) and that
d ≥ 0 we have

Pr[Zt∗ ≤ d] ≤ e−(7/8)2·8(d+1)/2 < e−3(d+1) < 1/3.

It follows that Pr[Xt∗ ≤ d] < 1/3, as claimed. 2

2 Low-dimensional linear structure

In this section we show algorithms for testing whether a
data set has a low-dimensional linear structure. Very
briefly, these algorithms query a random sample of
the input and accept if the sample satisfies the tested
property P . The proofs follow by considering the sample
to be an iterative process, which is a relatively standard
technique in this area.

2.1 A low-dimensional vector subspace. The fol-
lowing theorem shows that it is possible to test whether
a set of vectors has a low linear (or affine) dimension.
We note that the result holds for either finite or infinite
vector space V . As was pointed out to us by Dick Karp,
this result easily extends also to matroids.6

Theorem 2.1. There is an algorithm for testing
whether a set S of n vectors in a vector space V lie in a
linear (or affine) subspace of dimension d, or whether S
is ε-far from having this property (in the sense at least
εn vectors need to be modified/removed). This algorithm
queries O(d/ε) randomly chosen vectors of S.

6Let M = (E, I) be a matroid with ground set E and (set
of) independent subsets I. The rank of S ⊆ E is the size of the
largest independent set contained in S (see e.g. [Oxl92]). The
analog formulation of theorem 2.1 for matroids states that there
is an algorithm for testing whether a set S of n elements in the
ground set of a matroid M has rank at most d, or whether S is
ε-far from having this property.

Proof. The testing algorithm works as follows. Given
a set S and an integer d, the algorithm queries O(d/ε)
randomly chosen vectors of S, and accepts if and only
if they lie in a linear (or affine, respectively) subspace
of dimension at most d. Clearly, if the dimension of the
vectors of S is at most d, then the algorithm always
accepts. (It follows that this algorithm has one-sided
error.)

Consider next a set of n vectors that is ε-far from
residing in a subspace of dimension d. For the purpose
of our analysis, we think of the algorithm as if it has
O(d/ε) iterations. Starting with an empty sample, the
algorithm iteratively augments the sample with one
additional vector from S. (For affine dimension, assume
that we start with one vector.) Denote by Ut the set of
sampled vectors that is obtained after t ≥ 0 iterations,
and let Xt be the dimension of the linear (or affine)
subspace spanned by the vectors of Ut.

Lemma 2.1. Let S be a set of n vectors that is ε-far
from residing in a subspace of dimension d. Then,
Pr [Xt+1 = Xt + 1 | Xt ≤ d] ≥ ε.

Proof. Consider Ut as above and suppose its dimension
is Xt ≤ d. Since S is ε-far from residing in a subspace
of dimension d, we have that removal (or modification)
of εn vectors of S cannot result in a set of vectors that
lies in a d-dimensional subspace, and obviously not in a
subspace of dimension Xt ≤ d. It follows that at least
εn vectors of S lie outside the subspace spanned by Ut.
Thus, with probability at least ε one of these vectors
is chosen to augment Ut, yielding Ut+1 of dimension
Xt+1 = Xt + 1. 2

We can now complete the proof of Theorem 2.1.
By combining Lemmas 1.1 and 2.1, we have that if S is
ε-far from residing in a subspace of dimension d, then
for t∗ = 8(d + 1)/ε we have Pr [Xt∗ ≥ d + 1] > 2/3. It
follows that with probability at least 2/3 the testing
algorithm rejects S after t∗ = O(d/ε) iterations. 2

2.2 Testing matrix rank. The next theorem shows
that the matrix property of having a low rank is
testable. We note that the result holds for either finite
or infinite fields F .

Theorem 2.2. There is an algorithm for testing
whether a matrix Am×n over a field F has rank at most
d or whether A is ε-far from having this property (in the
sense that at least an ε-fraction of entries of A need to
be modified). This algorithm queries a randomly chosen
O(d/ε) × O(d/ε) submatrix of A.

Proof. The testing algorithm works as follows. Given
a matrix A and an integer d, the algorithm selects at



random O(d/ε) rows and O(d/ε) columns, queries the
resulting submatrix, and accepts if and only if the rank
of this submatrix is at most d. Clearly, if A has rank
at most d then every submatrix of A has rank at most
d and the testing algorithm always accepts. (It follows
that this algorithm has one-sided error.)

Consider next an input matrix A that is ε-far from
any matrix of rank at most d. For the sake of analysis,
we think of the algorithm as if it starts with an “empty”
0 × 0 submatrix, and iteratively augments the current
submatrix by one random row and by one random
column (i.e., the choice is without replacement).

To analyze a single iteration in the algorithm, we
use the lemma below. Denote by Bt the t× t submatrix
of A that is considered at iteration t ≥ 0 (i.e., after t
augmentations), and let Xt = rank(Bt) for t ≥ 0.

Lemma 2.2. Let A be ε-far from any matrix of rank at
most d. Then

Pr [Xt+1 > Xt) | Xt ≤ d] ≥ ε/3.(2.3)

Proof. Consider an arbitrary submatrix Bt that satisfies
rank(Bt) ≤ d. We say that a row is an augmenting row
for the submatrix Bt if this row was not chosen in the
first t iterations. An augmenting row for the submatrix
Bt is said to be consistent with Bt if the augmentation
of Bt to this row does not increase the rank of Bt. It is
straightforward that if at least εm/3 augmenting rows
are not consistent with Bt, then the probability that
the algorithm augments Bt with one of these rows is at
least ε/3, and thus (2.3) holds.

Using analogous definitions for the columns, we
have that if at least εn/3 augmenting columns are
not consistent with Bt, then the probability that the
algorithm augments Bt with one of these columns is
larger than ε/3, and thus (2.3) holds.

We say that entry Aij is a strongly-augmenting
entry for the submatrix Bt if each of row i and column j
(separately) is both augmenting and consistent for Bt.
A strongly-augmenting entry Aij is said to be consistent
with Bt if the augmentation of the submatrix Bt with
row i and column j (simultaneously) does not increase
the rank of Bt. If the number of strongly-augmenting
entries that are not consistent with Bt is at least εnm/3,
then the probability that the algorithm augments Bt

with one of these entries Aij (i.e. chooses its row i and
its column j), is larger than ε/3, and thus (2.3) holds.

We complete the proof of Lemma 2.2 by showing
that at least one of the three cases mentioned above
must hold. Assume to the contrary that (i) less than
εm/3 augmenting rows are not consistent with Bt, (ii)
less than εn/3 augmenting columns are not consistent
with Bt, and (iii) less than εnm/3 strongly-augmenting

entries are not consistent with Bt. Suppose that we
change to zero all the entries in rows and columns that
are augmenting and not consistent with Bt, and that
we change the value of every strongly-augmenting entry
Aij that is not consistent with Bt to a value that is
consistent with Bt. (Such a value always exists, because
augmenting Bt with row i adds a row that is a linear
combination of the rows already in Bt, so we can take
the same linear combination also in column j.) It is
straightforward that the rank of the resulting matrix
is exactly rank(Bt) ≤ d, while the total number of
entries changed is less than εnm, which contradicts the
assumption that A is ε-far from any matrix of rank at
most d. 2

We can now complete the proof of Theorem 2.2. By
combining Lemmas 1.1 and 2.2 (with ε′ = ε/3), we have
that A is ε-far from any matrix of rank at most d, then
Pr [Xt∗ ≥ d + 1] > 2/3 for t∗ = 24(d + 1)/ε. It follows
that with probability at least 2/3 the testing algorithm
rejects A after t∗ = O(d/ε) iterations. 2

3 Metric structure of low dimension

In this section we investigate testing for low-
dimensionality from the perspective of metric spaces.
Observe that a set of points in a Euclidean space lm2 can
be embedded isometrically into ld2 if and only if they lie
in a d-dimensional affine space. Hence, applying Theo-
rem 2.1 on the vector space R

m gives an algorithm for
testing the dimensionality of a set of vectors in lm2 . Be-
low, we show that a similar result does not hold for l1
metrics. We then consider two notions of being an “ap-
proximate” ld2-metric. Finally, we examine the property
of being a low-dimensional l2-metric, when the input is
given as a distance matrix.

3.1 Low-dimensional l1-metric. We turn to the
problem of testing whether a set of n points in l1 can
be embedded into ld1 for a fixed d ≥ 0. The next
lemma shows that no (two-sided error) testing algorithm
for this problem can query a number of points that is
independent of n.

Lemma 3.1. Any algorithm for testing whether a set
S of n vectors in lm1 can be embedded into ld1, or
whether S is ε-far from having this property (in the
sense that at least an ε-fraction of the vectors need to be
modified/removed), has to query Ω( 4

√
n) vectors.

Proof. Consider first the case where d = 1, m = 2. We
construct sets S and S′, each consisting of n vectors in
l21, as follows. S′ “forms” three diagonal lines parallel
to each other in the plane R

2, and is given by

S′ =
{

(i, i + j) : i = 1, . . . , n/3 ; j = 0, 1, 2
}

.



To construct S, choose at random t =
√

n/10 points of
S′ and add n/t copies of each one of these points to S.

We claim that with probability at least 8/9 the
set S can be embedded isometrically in l11. Indeed,
the probability that S contains two points (x, y) and
(x′, y′) with either |x−x′| ≤ 1 or |y− y′| ≤ 1 is at most
8t2

n−t ≤ 1/9 (since each point added to S has probability

at most 8t
n−t to form such a pair with one of the points

already placed in S). Thus, S has no such pairs with
probability at least 8/9. When this event happens,
ordering the points of S by their first coordinate and by
their second coordinate yield the same order, yielding a
geodesic line in l21 that goes through all the points of S.
This shows that S can be embedded isometrically into
l11 (i.e., into R), and the claim follows.

Let us show that S′ is 1/6-far from being embed-
dable in l11. Any three points that form the endpoints
of a “⊥”, namely {(x, y), (x + 1, y + 1), (x + 2, y)}, can-
not be embedded into l11 (since in l11, which is identical
to R, one of every three points must be on a geodetic
line between the other two.) There are (at least) n/6
disjoint triplets of this type in S ′, and in order for S to
be embeddable into l11 at least one vector out of each
triplet must be modified/removed. Hence, S ′ is 1/6-far
from being embeddable in l11.

Assume for contradiction that there exists a (pos-
sibly two-sided error) testing algorithm that queries at
most s ≤ 4

√
n/10 vectors. Let the algorithm’s input be

the set of vectors S, permuted at random. The random
permutation implies that the s queried vectors are s ran-
dom vectors from S, and thus the probability (over the
randomness in choosing the permutation and in the test-
ing algorithm) of querying more than one vector from
at least one of the t groups (of copies) in S is at most
s2n/t
n−s ≤ 1/9 (each of the s queries has probability at

most sn/t
n−s to be from the same group as a previously

queried vector). Similar to the above, the probability
that the t points chosen for S are not distinct is also
at most 1/9, so by the union bound we have that the
probability that two of the queried vectors are identical
is at most 2/9. It follows that there is a difference in
the algorithm’s view (in terms of queried vectors) be-
tween input sets S and S′ (permuted) with probability
at most 2/9. Therefore, the probability that the algo-
rithm accepts a (permuted) input S differs from that of
a (permuted) input S′ by at most 2/9. However, by our
analysis above the probability of accepting S is at least
8/9 · 2/3 = 16/27, while the probability of accepting S ′

is at most 1/3, and we arrive at a contradiction.
The proof extends to any fixed d > 1 and m ≥ d+1,

as we now sketch. Let S ′ consist of many parallel copies
of W = {0, ~e1, . . . , ~ed+1,−~e1, . . . ,−~ed+1} ⊂ R

d+1,

where ~ei is the ith standard unit vector in R
d+1. namely

S′ = {~u + (3i, 3i, . . . , 3i) : ~u ∈ W ; i = 1, . . . , n
2d+3}.

Observe that the l1 metric on the points of W is just the
path metric of a complete bipartite graph K1,2d+1, and
thus cannot be embedded isometrically into ld1 , see e.g.
[HH78] or [DL97, Prop. 11.1.4]. It follows that S ′ is
Ω(1/d)-far from being isometrically embeddable into ld1 .
Similar to the above, a set S of random points from S ′

(with many copies) has, with high probability, the same
ordering according to each of the coordinates, and thus
can be embedded isometrically into l11, and in particular
into ld1 . 2

3.2 Almost low-dimensional l2-metric. We con-
sider next the problem of testing whether a set of n
points in Euclidean space can be perturbed by a small
distance so that they reside in an affine subspace of
low dimension (i.e. they can be embedded isometri-
cally into ld2), as follows. This property is relevant in
settings where the input may contain some additive er-
ror. The next lemma shows that no (two-sided error)
testing algorithm for this problem can query a number
of vectors that is independent of n. Note that m below
is the (high) dimension in which the input data set is
given.

Lemma 3.2. Any algorithm for testing whether a set
of n vectors v1, . . . , vn ∈ lm2 can be perturbed by a
distance of at most δ in order to reside in an affine
subspace of dimension d, or ε-far from having this
property (in the sense that at least an ε-fraction of
the vectors need to be modified/removed), has to query
Ω(min{√n,

√

m/ logm}) vectors, even for d = 0, ε =
1/2, and arbitrary δ > 0.

Proof. Consider first the case where d = 0. Let S be
a set of n vectors chosen at random from a sphere of
radius δ+ = δ/(1 − 1

2n ) (centered at the origin) in R
m.

Let S′ be a set of n vectors from this sphere, formed
by n/2 vectors chosen at random from the same sphere
together with their n/2 antipodal vectors (i.e. for each
randomly chosen vector v we take also −v).

We claim that with probability at least 5/6 the set
S has the property that its vectors can be perturbed
by a distance of at most δ in order to reside in an affine
subspace of dimension d = 0. Obviously, this property is
equivalent to saying that the vectors of S reside in some
ball of radius δ. Denote the vectors of S by u1, . . . , un.
Then every two vectors ui, uj for i 6= j are random
vectors from the sphere, and so by the concentration of
measure in a sphere in R

m (see e.g. [MS86, IM99, Fei00])
we have that for all κ > 1,

Pr
[

|uT
i uj | > |ui| · |uj | ·

√

κ/m
]

≤ e−κ/4.



For a suitable κ = Ω(log n) we get e−κ/4 ≤ 1
6n2 .

By a union bound, with probability at least 5/6 ev-
ery ui, uj satisfy that |uT

i uj | ≤ δ2
+

√

κ/m. Assum-
ing that the latter event happens, consider a ball
centered at 1

n

∑n
j=1 uj that contains all the vectors

u1, . . . , un. For every i we have
∥

∥

∥ui − 1
n

∑

j uj

∥

∥

∥

2

=

(1− 1
n )2‖ui‖2 + 1

n2

∑

j 6=i ‖uj‖2 − (1− 1
n ) 1

n

∑

j 6=i uT
i uj ≤

δ2
+

(

1 − 1
n + 2

√

κ/m
)

. When m ≥ 16κn2 = Ω(n2 log n)

we have that
∥

∥

∥ui − 1
n

∑

j uj

∥

∥

∥

2

≤ δ2
+(1 − 1

2n ) ≤ δ2, and

then all the vectors u1, . . . , un reside in a ball of radius
δ2 (centered at 1

n

∑n
j=1 uj). The claim follows.

Let us now show that S′ is always 1/2-far from
having the above property. The distance between a
vector v and its antipodal vector −v is 2δ+, and thus any
ball of radius δ (and thus diameter 2δ < 2δ+) contains
at most one of v and −v. It follows that any such ball
contains at most half the vectors of S ′, i.e. at least half
the vectors need to be modified/removed in order for
them to reside in a ball of radius δ.

Consider an arbitrary (possibly two-sided error)
testing algorithm, and assume for contradiction it
queries at most s ≤

√

n/10 vectors. Let the algorithm’s
input be the set of vectors S ′, permuted at random. The
random permutation implies that the s queried vectors
are s random vectors from S ′, and thus the probability
(over the randomness in choosing the permutation and
in the testing algorithm) of querying a vector v and its

antipodal vector −v is at most s2

n−s ≤ 1/9 (each of the s
queries has probability at most s

n−s to be the antipodal
of a previously queried vector). It follows that there is
a difference in the algorithm’s view (in terms of queried
vectors) between input sets S and S ′ (permuted) with
probability at most 1/9. Therefore, the probability that
the algorithm accepts a (permuted) input S differs from
that of a (permuted) input S′ by at most 1/9. However,
by our analysis above the probability of accepting S is at
least 5/6 · 2/3 = 5/9, while the probability of accepting
S′ is at most 1/3, and we arrive at a contradiction.

The proof extends to any fixed d > 0; we now
sketch the proof for d = 1. Let S, S ′ be sets of
(random) vectors in R

m as above. Let Ŝ, Ŝ′ be each
a set with 2n vectors in R

m+1 as follows. For every
vector v ∈ S place (v; 0) and (v; δ+) in Ŝ, and similarly
for Ŝ′. We showed above that with probability at least
5/6, there exists a point p ∈ R

m such that all n vectors
of S are within distance δ from p. When this events
happens, all vectors of Ŝ are within distance δ from
the line that goes through the two points (p; 0) and
(p; δ+), i.e. Ŝ has the property that its vectors can
be perturbed by a distance of at most δ in order to
reside in an affine subspace of dimension d = 1. To see

that Ŝ′ is 1/4-far from having this property, break Ŝ′

into quadruples (v; 0), (−v; 0), (v; 2δ+), (−v; 2δ+), and
observe that there is no line that intersects all four balls
of radius δ < δ+ centered at these four points. 2

3.3 Distorted low-dimensional l2-metric. We
now consider the problem of testing whether a set of
points in Euclidean space has a low-distortion embed-
ding into a low-dimensional Euclidean space. We say
that the vectors v1, . . . , vn ∈ lm2 can be embedded into
ld2 with distortion at most ∆ ≥ 1 if there exist vec-

tors v′1 . . . , v′n ∈ ld2 such that 1 ≤ ‖vi−vj‖
‖v′

i
−v′

j
‖ ≤ ∆ for all

1 ≤ j < i ≤ n. The next lemma shows that no (two-
sided error) testing algorithm for this problem can query
a number of vectors that is independent of n.

Lemma 3.3. Any algorithm for testing whether a set of
n vectors in lm2 can be embedded into ld2 with distortion
at most some fixed ∆ > 0, or whether it is ε-far from
having this property (in the sense that at least an ε-
fraction of the vectors need to be modified/removed), has
to query Ω(

√

n/∆) vectors, even for d = 1, ε = O(1/∆).

Proof. Consider first the case d = 0. We construct sets
S and S′ each with n vectors in l32, as follows. Consider a
unit circle in l22 and place on it t = Ω(∆) points, so that
the distance between every two consecutive points is the
same. Now place n/t parallel copies of these discrete
circles in l32, so that every two consecutive copies are
at distance r > 0 from each other, where r > 0 is a
constant to be determined later. Formally, let

S′ =
{





sin(2πi/t)
cos(2πi/t)

j · r



 : i = 1, . . . , t ; j = 1, . . . , n/t
}

.

To construct S, choose at random one point of S ′ from
each circle and add t copies of it to S.

The set S can be embedded in R with distortion at
most ∆. To see this, map the points of each circle to the
center of that circle, i.e., project on the third coordinate.
The distance between points from circles i 6= j is at least
|i − j| · r and at most ((|i − j| · r)2 + 4)1/2, while the
distance between their embeddings in R is |i− j| ·r. For
a suitable choice of r, the distortion in this embedding
is at most ∆, as claimed.

We next claim that the set S ′ is 1/t-far from
having an embedding into R with distortion at most
∆. Indeed, if less than 1/t-fraction of the vectors of S ′

are modified/removed then in at least one circle C, less
than 1/t-fraction of the vectors are modified/removed,
i.e. all the t vectors from C remain intact. Embedding
into R the t points on the circle C requires distortion
Ω(t), due to a result of Rabinovich and Raz [RR98].



(In fact, they consider embedding a cycle graph on t
vertices into R, but such a cycle can be embedded into
a suitable scaling of the circle C with distortion 2π.)
The Ω(t) distortion that is required for the circle C is
larger than ∆, for a suitable choice of t, and the claim
follows.

Consider an arbitrary (possibly two-sided error)
testing algorithm, and assume for contradiction that
it queries s ≤

√

n/10t points. Let the algorithm’s
input be the set S′, permuted at random. The random
permutation implies that the s queried points are s
random points from S′, and thus the probability (over
the randomness in choosing the permutation and in the
testing algorithm) of querying two points from the same

circle is at most s2t
n−s ≤ 1/9 (each of the s queries

has probability at most st
n−s to be a point from the

same circle as a previously queried point). It follows
that there is a difference in the algorithm’s view (in
terms of queried points) between input sets S and S ′

(permuted) with probability at most 1/9. Therefore,
the probability that the algorithm accepts a (permuted)
input S differs from that of a (permuted) input S ′ by at
most 1/9. However, by our analysis above the probably
of accepting S is at least 2/3 while the probability
of accepting S′ is at most 1/3, and we arrive at a
contradiction.

The proof extends to any fixed d > 1, by replacing
the circles above with a structure that cannot be embed-
ded into ld2 with a small distortion. For example, for t
unit vectors orthogonal to each other in R

t (or t nearly-
orthogonal unit vectors in R

O(log t)) there is a tΩ(1/d)

lower bound on the distortion, due to Euclidean volume
considerations. Details omitted from this version of the
paper. 2

3.4 Distance matrix for low-dimensional l2-
metrics. We next consider testing whether a given ma-
trix is the distance matrix of a low-dimensional Eu-
clidean metric, i.e. whether the given distances can be
realized by vectors in ld2 . We show for this problem
a testing algorithm whose complexity slightly improves
over a result of Parnas and Ron [PR01]. Our algorithm
is similar to that of [PR01]; it chooses a random subset
U of points in the metric space, queries the distances
between every two points in U (so it queries O(|U |2)
entries of M), and accepts if and only if the metric in-
duced on points of U can be embedded (isometrically)
in a Euclidean space of dimension d. Our analysis shows
that it suffices to have |U | = O(d/ε), while that of Par-
nas and Ron [PR01] requires |U | = O(d log d/ε). The
improvement in the sample size follows from a tighter
analysis of the underlying random process.

Theorem 3.1. There is an algorithm for testing
whether a real matrix Mn×n is the distance matrix of
a d-dimensional Euclidean metric or ε-far from it (in
the sense that at least ε-fraction of the entries of M
need to be modified). This algorithm queries the pair-
wise distances between O(d/ε) points chosen at random.

Proof. The testing algorithm works as follows. Given
M , the algorithm selects at random O(d/ε) points, and
accepts if and only if the metric induced by M on these
points can be embedded (isometrically) in a Euclidean
space of dimension d. As noted in [PR01], one can
decide in polynomial time whether such a Euclidean
embedding exists (by computing the rank and positive
semidefiniteness of a related matrix). Clearly, if M
is the distance matrix of a d-dimensional Euclidean
metric, then the metric induced by M on any sample
U is also a d-dimensional Euclidean metric, and the
algorithm always accepts. (It follows that this algorithm
has one-sided error.)

Consider a matrix M that is ε-far from the distance
matrix of any d-dimensional Euclidean metric. We can
assume that M is nonnegative and symmetric, since
as noted in [PR01, Section 2], these properties are
easily testable with complexity O(1/ε). For the sake
of analysis, we think of the algorithm as if it starts
with a sample U of one point, and iteratively augment
the sample with two random points chosen without
replacement.

To analyze a single iteration in the algorithm, we
use the lemma below, which follows from Lemma 6.1
in the full version of [PR01]. Denote by Ut the set of
sampled points that is obtained after t ≥ 0 iterations
(i.e., after t augmentations, so |Ut| = 1 + 2t ), and let
Xt denote the minimum dimension that is required to
embed (the metric induced by M on) Ut in a Euclidean
metric. If no such dimension exists (i.e., this metric is
not Euclidean), let Xt = ∞.

Lemma 3.4. (Parnas and Ron [PR01]) Let M be ε-
far from the distance matrix of any d-dimensional Eu-
clidean metric. Then Pr [Xt+1 > Xt | Xt ≤ d] ≥ ε/2.

By combining Lemmas 1.1 and 3.4 (with ε′ =
ε/2), we have that if M is ε-far from the distance
matrix of any d-dimensional Euclidean metric, then
Pr [Xt∗ ≥ d + 1] > 2/3 for t∗ = 16(d + 1)/ε. It follows
that with probability at least 2/3 the testing algorithm
rejects U after t∗ = O(d/ε) iterations. This completes
the proof of Theorem 3.1. 2

4 Small norm

In this section we show an algorithm for testing whether
a matrix has a small Frobenius norm. It is straightfor-
ward that this problem is equivalent to testing whether



the l2-norm of a vector is small. In fact, this equivalence
extends to testing the lp-norm of a vector, for any fixed
p ≥ 1. Our algorithm has a two-sided error. A simple
argument shows that any one-sided error testing algo-
rithm for this property must query Ω(n) entries; details
omitted from this version of the paper.

Theorem 4.1. There is an algorithm for testing
whether a vector v ∈ R

n has l1-norm (or l2-norm) at
most b, or whether it is ε-far from having this prop-
erty (in the sense that at least ε-fraction of the en-
tries of v need to be modified). This algorithm queries
O(ε−3 log(1/ε)) randomly chosen entries of v.

Proof. The testing algorithm works as follows. Given
a vector v ∈ R

n and b > 0, the algorithm queries
s = O(ε−3 log(1/ε)) entries of v chosen at random (with
replacement), discards the εs/7 samples whose absolute
values are the largest, and accepts if and only if the
average of the absolute values of the remaining (1−ε/7)s
samples is at most (1 + ε/2) b

n . (For testing l2-norm
absolute value is replaced with squared value.) For
simplicity, we assume that all terms involving 1/ε (such
as εs/7) are integers, and that ε < 1/10.

For the sake of analyzing our testing algorithm,
we can assume that the input vector v ∈ R

n has
only nonnegative entries (as replacing them with their
absolute values does not affect the algorithm or the
vector’s norm). Similarly, we may assume that the
entries of v are in nondecreasing order, i.e. v1 ≤ v2 ≤
· · · ≤ vn. We then partition the n entries of v into
10/ε blocks, each consisting of εn/10 entries of v. It
follows that for every 1 ≤ i < j ≤ 10/ε, every entry in
block i is not larger than every entry in block j. We
denote by Ti the sum of the entries in block i. The next
lemma characterizes the typical number of samples from
a block.

Lemma 4.1. With probability at least 2/3, each of the
10/ε blocks is sampled by the algorithm between (1 −
ε/7)εs/10 and (1 + ε/7)εs/10 times.

Proof. Let Xi denote the number of samples from block
i. This random variable has a binomial distribution
B(ε/10, s), and thus its expectation is E[Xi] = εs/10.
For a suitable s = Θ(ε−3 log(1/ε)) we have by the
Chernoff bound (see e.g. [MR95]) that

Pr
[

Xi ≥ (1 +
ε

7
)E[Xi]

]

≤ e−( εs
10

)( ε
7
)2/2 = e−

ε3s
980 ≤ ε

60
,

and a similar bound for the probability of the event
Xi ≤ (1 − ε/7)E[Xi]. Applying a union bound on the
10/ε blocks, the lemma follows. 2

Consider first a vector v whose l1-norm is at most b.
From Lemma 4.1 we have that with probability at least
2/3 every block is sampled between (1 − ε/7)εs/10 and
(1 + ε/7)εs/10 times. Suppose that this event indeed
happens. We then have that the samples discarded by
the algorithm include all the samples from the highest
block i = 10/ε (since εs/7 > (1 + ε/7)εs/10). The
number of samples from a block i < 10/ε is at most
(1 + ε/7)εs/10, and each of them is no larger than the
average of the entries in block i + 1; note that this
average is Ti+1/(εn/10). We can thus upper bound the
sum of the samples that are not discarded by

∑

i<10/ε

(1 + ε/7)εs

10
· Ti+1

εn/10
=

(1 + ε/7)s

n

∑

i<10/ε

Ti+1

≤ (1 + ε/7)sb

n
.

It follows that the average of the (1−ε/7)s samples that
were not discarded is at most

1

(1 − ε/7)s
· (1 + ε/7)sb

n
< (1 + ε/2)

b

n
.

We conclude that with probability at least 2/3 the afore-
mentioned event happens and the algorithm accepts.

Consider next a vector v that is ε-far from having
l1-norm at most b, namely at least εn entries of v need
to be changed in order to yield a vector of norm at
most b. The sum of the (1 − 0.9ε)n smallest entries
of v is larger than b, or otherwise we could zero the
largest 0.9εn entries of v (i.e. highest 9 blocks) and
obtain a vector of norm at most b, which contradicts our
assumption on v. From Lemma 4.1 we have that with
probability at least 2/3 every block is sampled between
(1 − ε/7)εs/10 and (1 + ε/7)εs/10 times. Suppose that
this event indeed happens. We then have that all
the samples discarded by the algorithm are from the
two highest blocks i = 10/ε and i = 10/ε − 1 (since
εs/7 < 2 · (1− ε/7)εs/10). The number of samples from
a block 1 < i < 10/ε− 1 is at least (1 − ε/7)εs/10, and
each of them is no smaller than the average of the entries
in block i − 1; note that this average is Ti−1/(εn/10).
We can thus lower bound the sum of the samples that
are not discarded by

10/ε−2
∑

i=2

(1 − ε/7)εs

10
· Ti−1

εn/10
=

(1 − ε/7)s

n

10/ε−3
∑

j=1

Tj .

By the nondecreasing order of the entries of v we
have that each of T10/ε−8, . . . , T10/ε−3 is no smaller
than the average of T1, . . . , T10/ε−9. It follows that
∑10/ε−3

j=1 Tj ≥
(

1 + 6
10/ε−9

)

∑10/ε−9
j=1 Tj . Recall that the



sum of the (1 − 0.9ε)n smallest entries of v is larger

than b, i.e.,
∑10/ε−9

j=1 Tj > b. Therefore, the average of
the (1 − ε/7)s samples that are not discarded is larger
than

1

(1 − ε/7)s
· (1 − ε/7)s

n
·
(

1 +
6

10/ε− 9

)

·b > (1+ε/2)
b

n
.

We conclude that with probability at least 2/3 the
aforementioned event happens and then the algorithm
rejects. This proves the correctness of our testing
algorithm, which completes the proof of Theorem 4.1.
2
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