
42

Conditional Lower Bounds for All-Pairs Max-Flow

ROBERT KRAUTHGAMER and OHAD TRABELSI, Weizmann Institute of Science, Israel

We provide evidence that computing the maximum flow value between every pair of nodes in a directed graph
on n nodes,m edges, and capacities in the range [1..n], which we call the All-Pairs Max-Flow problem, cannot
be solved in time that is significantly faster (i.e., by a polynomial factor) than O (n3) even for sparse graphs,
namely m = O (n); thus for general m, it cannot be solved significantly faster than O (n2m). Since a single
maximum st-flow can be solved in time Õ (m

√
n) [Lee and Sidford, FOCS 2014], we conclude that the all-pairs

version might require time equivalent to Ω̃(n3/2) computations of maximum st-flow, which strongly separates
the directed case from the undirected one. Moreover, if maximum st-flow can be solved in time Õ (m), then the
runtime of Ω̃(n2) computations is needed. This is in contrast to a conjecture of Lacki, Nussbaum, Sankowski,
and Wulff-Nilsen [FOCS 2012] that All-Pairs Max-Flow in general graphs can be solved faster than the time
of O (n2) computations of maximum st-flow.

Specifically, we show that in sparse graphs G = (V ,E,w), if one can compute the maximum st-flow from
every s in an input set of sources S ⊆ V to every t in an input set of sinks T ⊆ V in time O ((|S | |T |m)1−ε),
for some |S |, |T | and a constant ε > 0, then MAX-CNF-SAT (maximum satisfiability of conjunctive normal

form formulas) with n′ variables andm′ clauses can be solved in timem′O (1)2(1−δ)n′ for a constant δ (ε) > 0,
a problem for which not even 2n′/poly(n′) algorithms are known. Such running time for MAX-CNF-SAT
would in particular refute the Strong Exponential Time Hypothesis (SETH). Hence, we improve the lower
bound of Abboud, Vassilevska-Williams, and Yu [STOC 2015], who showed that for every fixed ε > 0 and |S | =
|T | = O (

√
n), if the above problem can be solved in time O (n3/2−ε), then some incomparable (and intuitively

weaker) conjecture is false. Furthermore, a larger lower bound than ours implies strictly super-linear time
for maximum st-flow problem, which would be an amazing breakthrough.

In addition, we show that All-Pairs Max-Flow in uncapacitated networks with every edge-densitym =m(n)
cannot be computed in time significantly faster thanO (mn), even for acyclic networks. The gap to the fastest
known algorithm by Cheung, Lau, and Leung [FOCS 2011] is a factor ofO (mω−1/n), and for acyclic networks
it is O (nω−1), where ω is the matrix multiplication exponent.

Finally, we extend our lower bounds to the version that asks only for the maximum-flow values below a
given threshold (over all source-sink pairs).

CCS Concepts: • Theory of computation → Design and analysis of algorithms; Network flows;

Additional Key Words and Phrases: Conditional lower bounds, hardness in P, all-pairs maximum flow, strong
exponential time hypothesis

ACM Reference format:

Robert Krauthgamer and Ohad Trabelsi. 2018. Conditional Lower Bounds for All-Pairs Max-Flow. ACM Trans.

Algorithms 14, 4, Article 42 (August 2018), 15 pages.
https://doi.org/10.1145/3212510

This work was partially supported by the Israel Science Foundation grant #897/13 and by a Minerva Foundation grant. An
extended abstract of this article appears in Proceedings of ICALP 2017 and is also available at arXiv:1702.05805. The most
significant difference is the addition of Section 4.
Authors’ addresses: R. Krauthgamer and O. Trabelsi, Department of Computer Science and Applied Mathematics, Weiz-
mann Institute of Science, Rehovot, Israel; emails: {robert.krauthgamer, ohad.trabelsi}@weizmann.ac.il.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 1549-6325/2018/08-ART42 $15.00
https://doi.org/10.1145/3212510

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

https://doi.org/10.1145/3212510
mailto:permissions@acm.org
https://doi.org/10.1145/3212510

42:2 R. Krauthgamer and O. Trabelsi

1 INTRODUCTION

The maximum flow problem is one of the most fundamental problems in combinatorial opti-
mization. This classic problem and its variations such as minimum-cost flow, integral flow, and
minimum-cost circulation, were studied extensively over the past few decades and have become
key algorithmic tools with numerous applications in theory and in practice. Moreover, techniques
developed for flow problems were generalized or adapted to other problems, see, for example,
References [4, 6, 7]. The maximum st-flow problem, which we shall denote Max-Flow, asks us
to ship the maximum amount of flow from a source node s to a sink node t in a directed edge-
capacitated graph G = (V ,E,w), where, throughout, we denote n = |V | and m = |E | and assume
integer capacities bounded by U . After this problem was introduced in 1954 by Harris and Ross
(see Reference [25] for a historical account), Ford and Fulkerson [14] devised the first algorithm for
Max-Flow, which runs in timeO ((n +m)F), where F is the maximum value of a feasible flow. Ever
since, a long line of generalizations and improvements was studied, and the current fastest algo-
rithm for Max-Flow with arbitrary capacities is by Lee and Sidford [23], which takesO (m

√
n logU)

time. For the case of small capacities and sufficiently sparse graphs, the fastest algorithm, due to
Mądry [24], has a running time Õ (m10/7U 1/7). Here and throughout, Õ (f) denotesO (f logc f) for
unspecified constant c > 0.

A very natural problem is to compute the maximum st-flow for multiple source-sink pairs in
the same graph G. The seminal work of Gomory and Hu [16] shows that in undirected graphs,
Max-Flow for all (n

2) source-sink pairs requires at most n − 1 executions of Max-Flow (see also
Reference [17], where the n − 1 computations are all on the input graph), and a lot of research
aimed to extend this result to directed graphs, with several partial successes, see details in Sec-
tion 1.1. However, it is still not known how to solve Max-Flow for multiple source–sink pairs
faster than solving it separately for each pair, even in special cases like a single source and all pos-
sible sinks. We shall consider the following problems involving multiple source–sink pairs, where
the goal is always to report the value of each flow (and not an actual flow attaining it).

Definition 1.1 (Single-Source Max-Flow). Given a directed edge-capacitated graph G = (V ,E,w)
and a source node s ∈ V , output, for every t ∈ V , the maximum flow that can be shipped inG from
s to t .

Definition 1.2 (All-Pairs Max-Flow). Given a directed edge-capacitated graphG = (V ,E,w), out-
put, for every pair of nodes u,v ∈ V , the maximum flow that can be shipped in G from u to v .

Definition 1.3 (ST-Max-Flow). Given a directed edge-capacitated graph G = (V ,E,w) and two
subsets of nodes S,T ⊆ V , output, for every pair of nodes s ∈ S and t ∈ T , the maximum flow that
can be shipped in G from s to t .

Definition 1.4 (Global Max-Flow). Given a directed edge capacitated graphG = (V ,E,w), output
the maximum among all pairs u,v ∈ V , of the maximum flow value that can be shipped inG from
u to v .

Definition 1.5 (Maximum Local Edge Connectivity). Given a directed graph G = (V ,E), output
the maximum among all pairs u,v ∈ V , of the maximum number of edge-disjoint uv-paths in G.

Note that in a graph with all edge capacities equal to 1, the problem of finding the maximum
local edge connectivity is equivalent to finding the global maximum flow.

1.1 Prior Work

We start with undirected graphs, where the All-Pairs Max-Flow values can be represented in a
very succint manner, called nowdays a Gomory-Hu tree [16]. In addition to being very succint, it

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

Conditional Lower Bounds for All-Pairs Max-Flow 42:3

Table 1. Known Algorithms for Multiple-Pairs Max-Flow

Directed Class Problem Runtime Reference
No General All-Pairs (G-H Tree) (n − 1)T (n,m) [16]
No Uncapacitated Networks All-Pairs (G-H Tree) Õ (mn) [21], [8]

No Genus bounded by д All-Pairs (G-H Tree) 2O (д2)n log3 n [9]
Yes Sparse All-Pairs O (n2 + γ 4 logγ) [5]
Yes Constant Treewidth All-Pairs O (n2) [5]
Yes Uncapacitated All-Pairs O (mω) [13]
Yes Uncapacitated DAG Single-Source O (nω−1m) [13]
Yes Planar Single-Source O (n log3 n) [22]

In this table, T (n, m) is the fastest time to compute maximum st -flow in an undirected graph, ω is the matrix
multiplication exponent, and γ = γ (G) is a topological property of the input network that varies between 1 and
Θ(n). In planar graphs, γ is the minimum number of faces required to cover all the nodes (i.e., every node is adjacent
to at least one such face) over all possible planar embeddings [15].

allows the flow values and the corresponding cuts (vertex partitions) to be quickly retrieved. For
a list of previous algorithms for multiple pairs maximum st-flow, see Table 1. For directed graphs,
no current algorithm computes the maximum flow between any k = ω (1) given pairs of nodes
faster than the time of O (k) separate Max-Flow computations. However, some results are known
in special settings. It is possible to compute Max-Flow forO (n) pairs in the time it takes for a single
Max-Flow computation [18], and this result is used to find a global minimum cut. However, these
pairs cannot be specified in the input.

For directed planar graphs, there is an O (n log3 n) time algorithm for the Single-Source Max-

Flow problem [22], which immediately yields anO (n2 log3 n) time algorithm for the All-Pairs ver-
sion, that is much faster than the time of O (n2) computations of planar Max-Flow, a problem that
can be solved in timeO (n logn) [10]. Based on these results, it was conjectured in Referencce [22]
that also in general graphs, All-Pairs Max-Flow can be solved faster than the time required for
computing O (n2) separate maximum st-flows.

Several hardness results are known for multiple-pairs variants of Max-Flow [2]. For ST-Max-

Flow in sparse graphs (m = O (n)) and |S | = |T | = O (
√
n), there is an n3/2−o (1) lower bound assum-

ing at least one of the Strong Exponential Time Hypothesis (SETH), 3SUM, and All-Pairs Shortest-
Paths (APSP) conjectures is correct (for comprehensive surveys on them, see References [26, 27]).
In addition, they show that Single-Source Max-Flow on sparse graphs requires n2−o (1) time, unless
MAX-CNF-SAT can be solved in time 2(1−δ)npoly(m) for some fixed δ > 0, and in particular SETH
is false.

We will rely on SETH, a conjecture introduced in Reference [19], and on some weaker assump-
tion related to its maximization version, MAX-CNF-SAT. In more detail, SETH states that for ev-
ery fixed ε > 0 there is an integer k ≥ 3 such that kSAT on n variables and m clauses cannot be
solved in time 2(1−ε)npoly(m), where poly(m) refers to O (mc) for unspecified constant c . By the
sparsification lemma [20], to refute SETH it can be assumed that the number of clauses is O (n).
The MAX-CNF-SAT problem asks for the maximum number of clauses that can be satisfied in
an input CNF formula. Most of our conditional lower bounds are based on the assumption that
for every fixed δ > 0, MAX-CNF-SAT cannot be solved in time 2(1−δ)npoly(m), where currently
even 2n/poly(n) algorithms are not known for this problem [2]. Note that this is a weaker as-
sumption than SETH, since a faster algorithm for MAX-CNF-SAT would imply a faster algorithm
for CNF-SAT and refute SETH. Different assumptions regarding the hardness of CNF-SAT have

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

42:4 R. Krauthgamer and O. Trabelsi

been the basis for many lower bounds, including for the runtime of solving NP-hard problems
exactly, parametrized complexity, and problems in P. See the Introduction in Reference [1] and the
references therein.

1.2 Our Contribution

We present conditional runtime lower bounds for both uncapacitated and capacitated networks.
The proofs appear in Sections 2 and 3, respectively, where the order reflects increasing levels of
complication. All our lower bounds hold even when the input G is a DAG and has a constant
diameter, and in the case of general capacities, they can be easily modified to apply also for graphs
with constant maximum degree. In addition, for integer k ≥ 1 we use [k] to denote the range
{1, . . . ,k }.

Capacitated Networks. Our main result is that for every set sizes |S | and |T |, the ST-Max-Flow

cannot be solved significantly faster thanO (|S | |T |m) (i.e., polynomially smaller runtime), unless a
breakthrough in MAX-CNF-SAT is achieved and, consequently, in SETH.

Theorem 1.6. If for some fixed constants ε > 0, c1, c2 ∈ [0, 1], ST-Max-Flow on graphs with n
nodes, |S | = Θ̃(nc1), |T | = Θ̃(nc2), m = O (n) edges, and capacities in [n] can be solved in time

O ((|S | |T |m)1−ε), then for some δ (ε) > 0, MAX-CNF-SAT on n′ variables and O (n′) clauses can be

solved in time O (2(1−δ)n′), and in particular SETH is false.

This result improves the aforementioned n3/2−o (1) lower bound of Reference [2], as for their
setting of |S | = |T | = O (

√
n) our lower bound is n2−o (1) , although their lower bound is based on an

incomparable (and intuitively weaker) conjecture, that at least one of the SETH, 3SUM, and APSP
conjectures is correct. In fact, if there was a reduction from SETH that implied a larger runtime
lower bound for ST-Max-Flow, then the (single-pair) Max-Flow problem would require a strictly
super-linear time under it, but such a reduction is not possible unless the non-deterministic version
of SETH (abbreviated NSETH) is false [11]. In any case, such a lower bound for Max-Flow would
be an amazing breakthrough.

The next theorem is an immediate corollary of Theorem 1.6 by assigning |S |, |T | = Θ(n).

Theorem 1.7. If for some fixed ε > 0, All-Pairs Max-Flow in graphs with n nodes,m = O (n) edges,

and capacities in [n] can be solved in time O ((n2m)1−ε), then for some δ (ε) > 0, MAX-CNF-SAT on

n′ variables, and O (n′) clauses can be solved in time O (2(1−δ)n′), and in particular SETH is false.

This conditional lower bound (see Figure 1) shows that All-Pairs Max-Flow requires time that is
equivalent to Ω(n3/2) computations of Max-Flow, which strongly separates the directed case from
the undirected one (where a Gomory-Hu tree can be constructed in the time ofn − 1 computations).
If Max-Flow takes Õ (m) time, which is currently open but plausible, then the running time of
Ω̃(n2) computations of Max-Flow is needed. This is in contrast to the aforementioned conjecture
of Lacki, Nussbaum, Sankowski, and Wulf-Nilsen [22] that All-Pairs Max-Flow in general graphs
can be solved faster than the time of O (n2) computations of maximum st-flow.

Uncapacitated Networks. For the case of uncapacitated networks, we show that for every m =
m(n), All-Pairs Max-Flow cannot be solved significantly faster than O (mn). Here we introduce a
new technique to design reductions from SETH to graphs with varying edge densities rather than
the usual reductions that only deal with sparse graphs.

Theorem 1.8. If for some fixed ε > 0 and c ∈ [1, 2], All-Pairs Max-Flow in uncapacitated graphs

with n nodes and m = Θ̃(nc) edges can be solved in time O ((nm)1−ε), then for some δ (ε) > 0, MAX-

CNF-SAT on n′ variables and O (n′) clauses can be solved in timeO (2(1−δ)n′), and in particular SETH

is false.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

Conditional Lower Bounds for All-Pairs Max-Flow 42:5

Fig. 1. State-of-the-art bounds for All-Pairs Max-Flow in directed networks. Conditional lower bounds are

depicted in dashed lines and known algorithms in solid lines.

Hence, a certain additional improvement to the O (mω) time algorithm of Reference [13] (and
similarly to the O (nωm) time for DAGs, where our lower bounds apply, too) is not likely. We now
present conditional lower bounds for ST-Max-Flow, which are functions of |S | and |T |.

Theorem 1.9. If for some fixed constants ε > 0, c1, c2 ∈ [0, 1], ST-Max-Flow on uncapacitated

graphs with n nodes, |S | = Θ̃(nc1), |T | = Θ̃(nc2), and O ((|S | + |T |)n) edges can be solved in time

O ((|S | |T |n)1−ε), then for some δ (ε) > 0, MAX-CNF-SAT on n′ variables and O (n′) clauses can be

solved in time O (2(1−δ)n′), and in particular SETH is false.

In addition, we present a conditional lower bound for computing the Maximum Local Edge

Connectivity of sparse graphs, which is the same as Global Max-Flow if all the capacities are 1,
that is indeed the case in our reduction. The next result, proved in Section 5, was obtained together
with Bundit Laekhanukit and Rajesh Chitnis, and we thank them for their permission to include
it here.

Theorem 1.10. If for some fixed ε > 0, the Maximum Local Edge Connectivity in graphs with n
nodes and Õ (n) edges can be found in time O (n2−ε), then for some δ (ε) > 0, MAX-CNF-SAT on n′

variables and O (n′) clauses can be solved in time O (2(1−δ)n′), and in particular SETH is false.

Generalization to Bounded Cuts. Finally, we show in Section 4 that our lower bounds extend to
the version that requires to output the maximum-flow value only for source-sink pairs for which
this value is at most some given threshold k .

Connection to the Orthogonal Vectors Problem. Our techniques are based on partitioning the vari-
able set of CNF-SAT to sets of different sizes, and constructing graphs with the property that certain
pairs of nodes would have smaller maximum flow between them if and only if they correspond to
a satisfying assignment. This approach is inspired by results of Williams [28].

We remark that all of our theorems can also be proved assuming that for the appropriate
k ∈ {2, 3}, the k-Orthogonal Vectors (kOV) problem cannot be solved in time Õ (nk−ε) for a fixed
constant ε > 0, in what is called the kOV Hypothesis (see References [26, 27]). In the kOV problem
the input is k sets {Ui }i ∈[k], each of n vectors from {0, 1}d , and the goal is to find k vectors {ui }i ∈[k],

one from each set, such that u1 · ... · uk :=
∑d

i=1

∏k
j=1 uj [i] = 0 (for k = 2 it means that u1,u2 are

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

42:6 R. Krauthgamer and O. Trabelsi

orthogonal). An equivalent version of the problem hasU1 = · · · = Uk . Solving kOV in timeO (nkd)
can be done easily by exhaustive search, while the fastest known algorithm for the problem runs
in time nk−1/Θ(log(d/ log n)) [3, 12]. Williams [28] proved that SETH implies the non-existence of an
Õ (nk−ε)-time algorithm.

2 REDUCTION TO MULTIPLE-PAIRS MAX-FLOW WITH UNIT CAPACITY

In this section, we prove Theorems 1.8 and 1.9. We start with a general lemma that is the heart of
the proofs.

Lemma 2.1. Let a ∈ [0, 1] and b ∈ [0, 1 − a]. Then MAX-CNF-SAT on n variables and m clauses

{Ci }i ∈[m] can be reduced to O (m) instances of ST-Max-Flow with |S | = 2an and |T | = 2bn in graphs

with Θ(2an + 2(1−a−b)np + 2bn) nodes, Θ((2an + 2bn) · 2(1−a−b)nm) edges, and capacities in {0, 1}.

Proof. Given a CNF-formula F on n variables and m clauses as input for MAX-CNF-SAT, a ∈
[0, 1], and b ∈ [0, 1 − a], we split the variables into three sets, U1, U2, and U3, where U1 is of size
an, U2 is of size (1 − a − b)n, and U3 is of size bn, and enumerate all their 2an , 2(1−a−b)n , and 2bn

partial assignments (with respect to F), respectively, when the objective is to find a triple (α , β,γ)
of assignments toU1,U2, andU3, respectively, that satisfies the maximal number of clauses. We will
have an instanceGp of ST-Max-Flow for each value p ∈ [m], in which by one call to ST-Max-Flow

we check if there exists a triple α , β , and γ that satisfies at least p clauses, as follows.
We construct a graph Gp for every p ∈ [m] on N nodes V1 ∪V2 ∪V3, where V1 contains a node

α for every assignment α toU1,V2 contains 2m + 1 + (p − 1) = 2m + p nodes for every assignment
β to U2, that are β l

i and βr
i for every i ∈ [m], β ′, and the set {β ′i }i ∈[p−1], and V3 contains a node γ

for every assignment γ to U3. We use the notation α for nodes in V1 and for assignments to U1,
β for assignments to U2, and γ for nodes in V3 and assignments to U3. However, it will be clear
from the context. Now, we have to describe the edges in the network. To simplify the reduction,
we partition the edges into blue and red colors, as follows.

For every α , β , and i ∈ [m], we add a blue edge from α to β l
i if both of α and β do not satisfy the

clauseCi (do not set any of the literals to true), and otherwise we add a red edge from α to βr
i . We

further add, for every β , γ , and i ∈ [m], a blue edge from β l
i to γ if γ does not satisfyCi . For every

β , γ , and j ∈ [p − 1], we add a red edge from every β ′j to every γ . For every β and i ∈ [m], we add

a red edge from β l
i to βr

i and from βr
i to β ′, and, finally, for every β and j ∈ [p − 1], we add a red

edge from β ′ to β ′j , where all edges are of capacity 1.

The graph we built has 2an + 2 · 2(1−a−b)nm + 2(1−a−b)n + 2(1−a−b)n (p − 1) + 2bn = Θ(2an +

2(1−a−b)nm + 2bn) nodes, 2an · 2(1−a−b)nm + 2bn · 2(1−a−b)nm + 2 · 2(1−a−b)nm+ (p − 1)2(1−a−b)n +

2bn · (p − 1)2(1−a−b)n = Θ((2an + 2bn) · 2(1−a−b)nm) edges, with capacities in {0, 1} (see Figure 2),
and its construction time is asymptotically the same as the time it takes to output its edge set. For

every α , β , and γ , we denote by G
α,β,γ
p the graph induced from Gp on the nodes

{α , β ′,γ } ∪
�����
�

⋃

y ∈ {l, r }
i ∈ [m]

{βy
i }
�����
�

∪ ��
�

⋃

j ∈ [p − 1]

{β ′j }
��
�
.

We claim that for every α and γ , the maximum flow from α to γ can be bounded by the sum,

over all β , of the maximum flow between them in G
α,β,γ
p . This claim follow easily, because the

intersection G
α,β1,γ
p ∩Gα,β2,γ

p for β1 � β2 is exactly the source and the sink {α ,γ }, no edge passes

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

Conditional Lower Bounds for All-Pairs Max-Flow 42:7

Fig. 2. An illustration of part of the reduction. Here,U1,U2, andU3 have two assignments each, α and α̃ toU1,

β and β̃ toU2, andγ and γ̃ toU3. Blue edges are dashed. For simplicity, only the edges ofG
α,β,γ̃
3 ∪Gα, β̃,γ̃

3 are

presented. In this illustration, α does not satisfy anything, β satisfiesC2 andC3, β̃ satisfiesC1, and γ̃ satisfies

C1. Note that the assignment comprised of α , β , and γ̃ satisfies all the clauses, and indeed the maximum

flow from α to γ is 2 · 3 − 1 = 5.

between these two graphs, and (
⋃

β G
α,β,γ
i) consists of all nodes that are both reachable from α

and γ is reachable from them.
We now prove that if there is an assignment to F that satisfies at least p clauses, then the graph

Gp we built has a triple α , β,γ with maximum flow from α to γ in G
α,β,γ
p at most m − 1. Since for

every β̃ , m is the number of outgoing edges from α in G
α, β̃,γ
p , m is also an upper bound for the

maximum flow from α to γ in it, and hence in Gp it is at most 2(1−a−b)nm − 1. Otherwise, we will

show that every triple α , β,γ has a maximum flow from α to γ inG
α,β,γ
p of size at leastm, and so in

Gp it is at least 2(1−a−b)nm. Hence, by simply picking the maximal j ∈ [m] such that the maximum

flow in G j of some pair α ,γ is at most 2(1−a−b)nm − 1, and then by iterating over all assignments
β to U2 with α and γ fixed as the assignments to U1 and U3, we can also find the required triple
α , β,γ .

For the first direction, assume that F has an assignment that satisfies at least p clauses, and
denote such assignment by Φ. Let αΦ, βΦ, and γΦ be the assignments toU1,U2, andU3, respectively,
that are induced from Φ. Since a blue path fromαΦ through (βΦ)l

i for some i ∈ [m] toγΦ corresponds

to αΦ, βΦ, and γΦ all do not satisfyCi , inG
αΦ,βΦ,γΦ
p there are at mostm − p (internally) disjoint blue

paths from α to γ . As the only way to ship flow in G
αΦ,βΦ,γΦ
p that is not through a blue path is

through the node β ′Φ, and the total number of edges going out of this node is p − 1, we conclude

that the total maximum flow in G
αΦ,βΦ,γΦ
p from αΦ to βΦ is bounded by m − p + (p − 1) =m − 1.

Since for every β , the maximum amount of flow that can be shipped in G
αΦ,β,γΦ
p from αΦ to γΦ

is at most m, summing over all β we get that the total flow in Gp from αΦ to γΦ is bounded by

(2(1−a−b)n − 1)m + (m − 1) ≤ 2(1−a−b)nm − 1, as required.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

42:8 R. Krauthgamer and O. Trabelsi

For the second direction, assume that every assignment to F satisfies at most p − 1 clauses. To
show that the maximum flow from every α to every γ is at least 2(1−a−b)nm, we first fix α , β , and

γ . Then, by passing flow in two phases we show that m units of flow can be passed in G
α,β,γ
p

from α to γ . As this argument applies for every β , we can add up the respective flows without
violating capacities, concluding the proof. By the assumption, there exist m − (p − 1) =m − p + 1
i’s, such that α , β , and γ do not satisfy Ci , and we denote a set with this amount of such i’s by

Iβ . Each of these i’s induces a blue path (α → β l
i → γ) from α to γ in G

α,β,γ
p , and so we ship a

unit of flow through every one of them according to Iβ , in what we call the first phase. In the
second phase, we ship additional m − (m − p + 1) = p − 1 units in the following way. Let A1 :=
{i ∈ [m] \ Iβ : α � Ci ∧ β � Ci } andA2 := ([m] \ Iβ) \A1 = {i ∈ [m] \ Iβ : α � Ci ∨ β � Ci }, where
α � Ci denotes that the assignment α satisfies Ci (as defined earlier), and α � Ci denotes that it
does not satisfy Ci . Let f : A1 ∪A2 → [m − |Iβ |] be a bijective function such that the range of A1

is [|A1 |] and the range of A2 is [m − |Iβ |] \ [|A1 |]. Clearly, there exists such bijection and it is easy

to find one. For every i ∈ A1 we ship flow through the path (α → β l
i → βr

i → β ′ → β ′j → γ), and
for every i ∈ A2 through the path (α → βr

i → β ′ → β ′j → γ), in both cases with j = f (i).
Since we defined the flow in paths, we only need to show that the capacity requirements hold,

and we start with blue edges. Indeed, edges of the form (α , β l
i) are used in the first phase, with

flow that is determined uniquely by β and i ∈ Iβ , and in the second phase uniquely according to β

and i ∈ [m] \ Iβ , and so they cannot be used twice. Edges of the form (β l
i ,γ) are only used in the

first phase, and their flow is uniquely determined according to β and i ∈ Iβ , and so are good, too.
We now proceed to red edges, which were used only in the second phase.

Edges of the forms (α , βr
i), (β l

i , β
r
i), and (βr

i , β
′) have flow that is uniquely determined by β

and i ∈ [m] \ Iβ and so are not used more than once. Edges of the form (β ′, β ′j) have flow that is
uniquely determined by β and j = f (i) ∈ [p − 1], and since f is a bijection, every j has at most one
i such that f (i) = j, and so these edges are also used at most once. As a byproduct, and since every
edge of the form (β ′j ,γ) has only the edge (β ′, β ′j) as its source for flow, edges of the form (β ′j ,γ)
are also used at most once. Altogether, we have bounded the total flow in all edges that were used
in both phases, and so the capacity requirements follow, which completes the proof of the second
direction and of Lemma 2.1. �

Proof of Theorem 1.8. We apply Lemma 2.1 in as follows. For every setting of a = b ∈
[1/3, 1/2] we get graphs G = (V ,E,w) with |V | = Θ(2an) (|V | = Θ(2an)m if a = 1/3) and |E | =
Θ(2(1−a)nm). Hence, |E | = Θ̃(|V |1/a−1) and so to get any c ∈ [1, 2] we can pick a(= b) such that
additionally c = 1/a − 1, and Theorem 1.8 follows. �

Proof of Theorem 1.9. Here we apply Lemma 2.1 a bit differently. For every setting of a,b ∈
[0, 1/2] such that 1 − a − b ≥ max(a,b) we get graphsG = (V ,E,w) with |V | = Θ(2(1−a−b)nm) and
|E | = Θ((2an + 2bn)2(1−a−b)nm). Hence, to get any c1, c2 ∈ [0, 1], we can pick a = c1/(1 + c1 + c2)
and b = c2/(1 + c1 + c2), which clearly satisfy the required conditions. Now, observe that c1 =

a/(1 − a − b) and c2 = b/(1 − a − b), thus |S | = (|V |/m)c1 and |T | = (|V |/m)c2 , we get our lower
bound for |E | = O ((|S | + |T |) |V |), and Theorem 1.9 follows. �

3 REDUCTION TO MULTIPLE-PAIRS MAX-FLOW IN CAPACITATED NETWORKS

In this section, we prove Theorems 1.6 and 1.7. We proceed to prove our main technical lemma.

Lemma 3.1. Let a ∈ [0, 1] and b ∈ [0, 1 − a]. Then MAX-CNF-SAT on n variables and m clauses

{Ci }i ∈[m] can be reduced to O (m) instances of ST-Max-Flow with |S | = 2an and |T | = 2bn in graphs

with N = Θ(2an + 2(1−a−b)nm + 2bn) nodes, O ((2an + 2(1−a−b)n + 2bn)m) = O (N) edges, and with

capacities in [N].

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

Conditional Lower Bounds for All-Pairs Max-Flow 42:9

Proof. Given a CNF-formula F on n variables and m clauses as input for MAX-CNF-SAT, a ∈
[0, 1], andb ∈ [0, 1 − a], we begin similarly to before by splitting the variables into three sets,U1,U2,
andU3, whereU1 is of size an,U2 is of size (1 − a − b)n, andU3 is of size bn, and enumerate all their
2an , 2(1−a−b)n , and 2bn partial assignments (with respect to F), respectively, when the objective
is to find a triple (α , β,γ) of assignments to U1, U2, and U3 that satisfy the maximal number of
clauses. We will have an instance Gp of ST-Max-Flow for each value p ∈ [m], in which by one call
to ST-Max-Flow we check if there exists a triple (α , β,γ) that satisfies at least p clauses, as follows.

We construct the graph Gp on N nodes V1 ∪V2 ∪V3 ∪A ∪ B ∪ {vB }, where V1 contains a node
α for every assignment α to U1, V2 contains 3m + 1 nodes for every assignment β to U2, that are
β l

i , βc
i , βr

i , for every i ∈ [m], and β ′,V3 contains a node γ for every assignment γ toU3, A contains
two nodes C�

i and C�

i for every clause Ci , and B contains a node Ci for every clause Ci . We use
the notation α for nodes inV1 and assignments toU1, β to assignments toU2, γ for nodes inV3 and
assignments to U3, and Ci for nodes in B and clauses. However, it will be clear from the context.
Now, we have to describe the edges in the network. To simplify the reduction, we partition the
edges into red and blue colors, as follows.

For every α and i ∈ [m], we add a red edge of capacity 2(1−a−b)n from α to C�
i if α � Ci , and a

blue edge of the same capacity from α toC�

i otherwise. We further add, for every β , a red edge of
capacity 1 from C�

i to βc
i , a blue edge of capacity 1 from C�

i to β l
i , a blue edge of capacity 1 from

β l
i to βr

i if β � Ci , a red edge of capacity 1 from βc
i to β ′, and a blue edge of capacity 1 from βr

i to
Ci . For every β we add a red edge of capacity p − 1 from β ′ to vB . For every γ we add a red edge
of capacity 2(1−a−b)n (p − 1) from vB to γ ∈ V3, and, finally, for every γ and i ∈ [m] we add a blue
edge of capacity 2(1−a−b)n from Ci to γ if γ � Ci .

The graph we built has N = 2an + 2m + 2(1−a−b)n · 3m + 2(1−a−b)n + 1 +m + 2bn =

Θ(2an + 2(1−a−b)n ·m + 2bn) nodes, at most 2anm + 2(1−a−b)n · 2m + 2(1−a−b)n · 2m + 2(1−a−b)nm +
2(1−a−b)n + 1 + 2(1−a−b)nm + 2bnm = O ((2an + 2(1−a−b)n + 2bn)m) edges, all of its capacities are in
[N], and its construction time is O (Nm) (see Figure 3).

We proceed to prove that if there is an assignment to F that satisfies at least p clauses, then the
graph Gp we built has a pair α ,γ with maximum flow from α to γ at most 2(1−a−b)nm − 1, and

otherwise, every α ,γ has a maximum flow of size at least 2(1−a−b)nm. Hence, by simply picking
the maximal j ∈ [m] such that the maximum flow inG j of some pair α ,γ is at most 2(1−a−b)nm − 1,
and then by iterating over all assignments β toU2 with α and γ fixed as the assignments toU1 and
U3, we can also find the required triple α , β,γ .

For the first direction, assume that F has an assignment that satisfies at least p clauses, and
denote such assignment by Φ. Let αΦ, βΦ, and γΦ be the assignments toU1,U2, andU3, respectively,
that are induced from Φ. We will show that there exists an (αΦ,γΦ) cut whose capacity is at most
2(1−a−b)nm − 1; hence, by the Min-Cut Max-Flow theorem, the maximum flow from αΦ to γΦ is
bounded by this number, concluding the proof of the first direction. We define the cut in a way
that for every β � βΦ, the cut will have m cut edges that are contributed from nodes related to β ,
and nodes related to βΦ will be carefully added to either side of the cut, so that they will contribute
capacity of only m − 1 to the cut. This is done by exploiting the fact that there are at most m − p
blue paths from αΦ toγΦ through nodes associated with βΦ. To be more precise, we define a suitable
cut as follows:

S = {αΦ, β
′
Φ} ∪ {C

�
i : αΦ � Ci } ∪ {C�

i : αΦ � Ci } ∪ {(βΦ)c
i : i ∈ [m]} ∪ {Ci , (βΦ)l

i , (βΦ)r
i : γΦ � Ci }∪

{(βΦ)l
i : γΦ � Ci ∧ βΦ � Ci }.

Claim 3.2. The cut (S,V \ S) = (S,T) has capacity at most 2(1−a−b)nm − 1.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

42:10 R. Krauthgamer and O. Trabelsi

Fig. 3. An illustration of part of the reduction, with p =m. Here,U1,U2, andU3 have two assignments each;

α and α̃ to U1, β and β̃ to U2, γ and γ̃ to U3. Bolder edges correspond to edges of higher capacity (specified

wherever they are bigger than 1), and blue edges are dashed. For simplicity, only the edges relevant to α and

γ̃ are presented. In this illustration, α satisfies C3, β satisfies C1, β̃ satisfies C3, and γ̃ satisfies C2. Note that

the assignment comprised of α , β , and γ̃ satisfies all the clauses, and indeed the maximum flow from α to γ
is 2 · 3 − 1 = 5.

Proof of Claim. We will go over all the nodes in S and count the total capacity leaving to nodes
inT for each of them. αΦ ∈ S and all nodesC�

i andC�

i that are adjacent to it are in S , too; hence, it
does not contribute anything. For every i ∈ [m], we have two cases for nodes inA. If αΦ � Ci , then
C�

i ∈ T and hence C�

i does not contribute anything. However, C�
i has 2(1−a−b)n outgoing edges,

where all except (βΦ)c
i are inT . Hence, it contributes 2(1−a−b)n − 1 to the cut. Else, if αΦ � Ci , then

C�
i ∈ T and henceC�

i does not contribute anything. ButC�

i has 2(1−a−b)n outgoing edges, of which

2(1−a−b)n − 1 are cut edges as their targets are in T , and the one incoming to (βΦ)l
i is a cut edge if

and only if (βΦ)i � Ci and also γΦ � Ci (equivalently, (βΦ)l
i ∈ T), and in our current case it means

that Φ � Ci . Hence, for every i ∈ [m], the nodes in {C�
i ,C

�

i } contribute 2(1−a−b)n − 1 to the cut if

Φ � Ci , and 2(1−a−b)n otherwise. Since there are at most m − p clauses that are not satisfied by
Φ, summing over all i ∈ [m] would yield a total of at most p (2(1−a−b)n − 1) + (m − p) (2(1−a−b)n) =
2(1−a−b)nm − p cut edges for vertices with origin in A.

For every β � βΦ, all nodes in V2 that are associated with β , vB , and γΦ are in T and hence will
not contribute anything to the cut. However, the node βΦ

′ is always in S , with vB its sole target,

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

Conditional Lower Bounds for All-Pairs Max-Flow 42:11

and hence the edge (βΦ
′,vB) is in the cut, and βΦ

′ contributes an additional amount of p − 1, to
a current total of at most 2(1−a−b)nm − p + (p − 1) = 2(1−a−b)nm − 1. In addition, βΦ

′ is the only
target of (βΦ)c

i , and thus (βΦ)c
i will not contribute to the cut.

We will show that the rest of the nodes, i.e., nodes in V2 that are of the forms β l
Φ and β l

Φ, and

the nodes in B contribute nothing to the cut. For every i ∈ [m], (βΦ)l
i ∈ S if and only if either

βΦ � Ci or γΦ � Ci , so we assume that. It always happens that (βΦ)c
i ∈ S and (βΦ)r

i ∈ T if and only
if γΦ � Ci , but in such case, by our assumption it must be that βΦ � Ci , which implies that the edge
((βΦ)l

i , (βΦ)r
i) is not in the graph, and thus the total contribution of (βΦ)l

i is zero. Continuing to
nodes of the forms (βΦ)r

i and Ci , it is easy to verify that the following four statements are either
all true or all false: (βΦ)r

i ∈ S , γΦ � Ci ,Ci ∈ S , and the edge (Ci ,γΦ) is not in the graph. In the case
where they all false, in particular Ci and (βΦ)r

i are in T and it is clear that they do not contribute
anything, we will focus on the remaining case. SinceCi is in S and is the only target of (βΦ)r

i , (βΦ)r
i

will not increase the cut capacity. In addition, since the edge (Ci ,γΦ) is not in the graph, Ci does
not increase the capacity of the cut either. Altogether, we have bounded the total capacity of the
cut by 2(1−a−b)nm − 1, finishing the proof of Claim 3.2. �

Proceeding with the proof of Lemma 3.1, we now focus on the second direction. Assume that
every assignment to F satisfies at most p − 1 clauses. We note that we need to prove that the
maximum flow from every α to every γ is at least 2(1−a−b)nm, and to do this we first fix α and γ .
By the assumption, for every β there existm − (p − 1) =m − p + 1 i’s, such that α , β , and γ do not
satisfy Ci , and we denote a set with this amount of such i’s by Iβ . Each of these i’s induces a blue

path (α → C�

i → β l
i → βr

i → Ci → γ) from α to γ , and so we pass a unit of flow through every
one of them according to Iβ , and for all β , in what we call the first phase. We note that so far, the

flow sums up to 2(1−a−b)n (m − p + 1), and so we carry on with shipping the second phase of flow
through paths that are not entirely blue.

We claim that for every β , we can pass an additional amount of m − (m − p + 1) = p − 1
units through β ′, which would add up to a total flow of 2(1−a−b)n (m − p + 1) + 2(1−a−b)n (p − 1) =
2(1−a−b)nm, concluding the proof. Indeed, for every β , we ship flow in the following way. For ev-
ery i ∈ [m] \ Iβ , if α � Ci , then send a unit through (α → C�

i → β l
i → βc

i → β ′ → vB → γ) and

otherwise send a unit through (α → C�
i → βc

i → β ′ → vB → γ).
Since we defined the flow in paths, we only need to show that the capacity constraints are

satisfied, starting with edges of color blue. Edges of the forms (β l
i , β

r
i), (βr

i ,Ci), and (Ci ,γ) are
only used in the first phase, where the flow in the first two is uniquely determined by β and i ∈ Iβ ,
and so at most 1 unit of flow is passed through them, and the flow in the latter kind is determined
by i ∈ Iβ , and the same i ∈ Iβ can have at most |{βr

i }β | = 2(1−a−b)n units of flow passing in (Ci ,γ),

and so the flow in it is also bounded. The flow in edges of the form (C�

i , β
l
i) in the first phase

is uniquely determined by β and i ∈ Iβ , and in the second phase uniquely according to β and

i ∈ [m] \ Iβ , and so will not be used twice, and the flow in edges of the form (α ,C�

i) is determined
in the first phase by i ∈ Iβ and in the second phase by i ∈ [m] \ Iβ , and so will be used at most∑

β |Iβ ∩ {i}| +
∑

β |([m] \ Iβ) ∩ {i}| ≤ 2(1−a−b)n times.
We now proceed to prove that red edges do not have more flow than their capacity, and for this

we only need to consider the second phase. Edges of the forms (C�
i , β

c
i), (β l

i , β
c
i), and (βc

i , β
′) have

flow that is uniquely determined by β and i ∈ [m] \ Iβ and so are not used more than once, edges of
the form (β ′,vB) have flow that is determined by β and thus have flow |{βc

i }i ∈[m]\Iβ
| = |[m] \ Iβ | =

p − 1, and edges of the form (vB ,γ) have flow of size (p − 1) |{β ′}β |2(1−a−b)n = (p − 1)2(1−a−b)n and

hence are properly bounded. Finally, edges of the form (α ,C�
i) have flow that is determined by

i ∈ [m] \ Iβ and so are used at most |{βc
i }β | = 2(1−a−b)n times. Altogether, we have bounded the

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

42:12 R. Krauthgamer and O. Trabelsi

total flow in all the edges that were used in both phases, and so the capacity requirements follow,
which completes the proof of the second direction and of Lemma 3.1.

Proof of Theorem 1.6. We apply Lemma 3.1 in the following way. For every setting of a,b ∈
[0, 1/2] such that 1 − a − b ≥ max(a,b) we get graphsG = (V ,E,w) with |V | = Θ(2(1−a−b)nm) and
|E | = O (2(1−a−b)nm) = O (|V |). Hence, to get any c1, c2 ∈ [0, 1], we can pick a = c1/(1 + c1 + c2)
and b = c2/(1 + c1 + c2), which clearly satisfy the required conditions. Now, observe that c1 =

a/(1 − a − b) and c2 = b/(1 − a − b), thus |S | = (|V |/m)c1 and |T | = (|V |/m)c2 , and our claimed
lower bound and Theorem 1.6 follow. �

4 GENERALIZATION TO BOUNDED CUTS

Our lower bounds extend to the version where we only care about vertex-pairs with maximum
flow bounded by a given k , which we refer to as kPMF.

Definition 4.1. (kPMF) Given a directed edge-capacitated graph G = (V ,E,w) and an integer k ,
for every pair of nodes u,v ∈ V where the maximum flow that can be shipped in G from u to v is
of size at most k , output this pair and its maximum flow value.

Theorem 4.2 (Generalization of Theorem 1.8). If for some fixed constants ε > 0 and c ∈ [0, 1],
kPMF in uncapacitated graphs with n nodes, k = Õ (nc), and m = O (kn) edges can be solved in time

O ((n2k)1−ε), then for some δ (ε) > 0, MAX-CNF-SAT on n′ variables and O (n′) clauses can be solved

in time O (2(1−δ)n′), and in particular SETH is false.

Proof. We apply Lemma 2.1 as follows. For every setting of a = b ∈ [1/3, 1/2], we get
graphs G = (V ,E,w) with |V | = Θ(2an) (|V | = Θ(2anm) if a = 1/3), and |E | = 2an · 2(1−2a)nm =
Θ(2(1−a)nm). The main idea is that the middle layer bound the flow from every α to every γ , which
are the only pairs that we need to find the maximum flow for. To be more precise, for every α ′ and
γ ′ we show a cut of capacity k = O (2(1−2a)nm) separating them, by considering

S = {α ′} ∪ {β l
i : i ∈ [m],∀β }.

Clearly, the only outgoing edges from S are from α ′ and from vertices of the form β l
i . α ′ has an

outgoing degree at most O (2(1−2a)nm), and for each β and i ∈ [m], vertices of the form β l
i have a

total outgoing degree at most 2. Hence, the total capacity of the cut is bounded byk = O (2(1−2a)nm).
The claimed range of k is attained, because setting a = 1/2 yields k = O (m) = O (log |V |) ≤ O (nc),
and letting a approach 1/3 yields k tending to O (2n/3m) = O (|V |). Note that |E | = O (|V |k), and
|V |2k = O ((2an)2 · 2(1−2a)nm) = O (2nm), and, finally, to get any c ∈ [0, 1] we can pick a(= b) such
that additionally c = 1/a − 2, and Theorem 4.2 holds. �

Theorem 4.3 (Generalization of Theorem 1.7). If for some fixed constants ε > 0 and c ∈ [0, 1],
kPMF in graphs with n nodes, k = Õ (nc),m = O (n) edges, and capacities in [n] can be solved in time

O ((n2k)1−ε), then for some δ (ε) > 0, MAX-CNF-SAT on n′ variables and O (n′) clauses can be solved

in time O (2(1−δ)n′), and in particular SETH is false.

Proof. We apply Lemma 3.1 in a similar fashion to the application of Lemma 2.1 in the proof of
Theorem 4.2, where the choices of a andb are done in exactly the same way as before, also allowing
again a free choice of c ∈ [0, 1]. However, now |E | = O (|V |), and we choose the cut as follows. For
every α ′ and γ ′ we show a cut of capacity k = O (2(1−2a)nm) separating them, by considering

S = {α ′} ∪ {C�
i ,C

�

i : i ∈ [m]} ∪ {β l
i , β

c
i : i ∈ [m],∀β }.

Clearly, the only outgoing edges from S are of capacity 1, from α ′ and from vertices of the forms
β l

i and βc
i . For each β and i ∈ [m], these vertices have a total of at most two edges going out to the

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

Conditional Lower Bounds for All-Pairs Max-Flow 42:13

rest of the graph. Hence, the size of the cut is bounded by k = O (2(1−2a)nm), and the range of k is
similar to the proof of Theorem 4.2, and so Theorem 4.3 holds. �

Known algorithms solve kPMF in directed graphs in time Õ (n2m ·min(k,
√
n)), which is bigger

than the lower bound in Theorem 4.3 by a factor that is roughly between
√
n and n for sparse

graphs, leaving a gap that is not too big even for relatively small values of k . This running time
can be achieved by O (n2) computations of either the aforementioned O (mk) time algorithm of
Reference [14] (actually, a slightly modified version that halts when the total flow exceeds k) or
the Õ (m

√
n) time algorithm of Reference [23].

It is interesting to note that in graphs that are undirected and uncapacitated, an algorithm
for kPMF with running time O (mk + n2) was shown in Reference [8]. This shows a separation
between the directed and the undirected cases also for uncapacitated graphs, roughly by a fac-
tor Ω(n2k/(mk + n2)) = Ω(min(k,n/k)), since our relevant conditional lower bound is proved for
m = O (kn). Their algorithm actually builds in timeO (mk) a partial Gomory-Hu tree that succinctly
represents the values required by kPMF, and then it is easy to extract all the relevant values in
timeO (n2), as required by our definition of kPMF. For instance, when k = O (

√
n) andm = O (n3/2)

their upper bound for the undirected and uncapacitated case is O (n2), while our lower bound for
the directed case is n2.5−o (1) .

5 GLOBAL MAX-FLOW

Proof of Theorem 1.10. Given a CNF-formula F onn variables andm clauses {Ci }i ∈[m] as input
for MAX-CNF-SAT, we split the variables into two sets U1 and U2 of size n/2 each and enumerate
all 2n/2 partial assignments (with respect to F) to each of them, when the objective is to find a pair
(α , β) of assignments toU1 andU2 that satisfy the maximal number of clauses. We construct a graph
G = (V ,E) such thatV = L ∪ R ∪C as follows. L contains a node α for every assignment α toU1, R
contains a node β for every assignment β toU2, andC contains three nodes c�,�, c�,�, and c�,� for
every clauseCi . We use the notation α for nodes in L and assignments toU1, β for nodes in R and
assignments to U2. However, it will be clear from the context. For every assignment α to U1 and
clauseCi , we add an edge from α to c�,� and c�,� if α � Ci , and an edge from α to c�,� otherwise.
Similarly, for every assignment β to U2 and clause Ci , we add an edge from β to c�,� and c�,� if
β � Ci and an edge from β to c�,� otherwise. This graph hasN = 2n/2 + 2n/2 + 3m = O (2n/2) nodes
and at most N · 2m + N · 2m = Õ (N) edges. For every pair of assignments α and β and clause Ci ,
there is exactly one path (of length 2) from α to β through nodes associated with Ci if and only if
α � Ci or β � Ci , and no paths through them otherwise. Hence, the number of edge disjoint paths
from α to β is exactly the number of clauses that are satisfied by both of the assignments α and
β , and so an algorithm for Maximum Local Edge Connectivity with running time Õ (n2−ε) implies
an algorithm for MAX-CNF-SAT with running time Õ ((2n/2)2−ε) = Õ (2(1−ε/2)n), completing the
proof for δ (ε) = ε/2. �

ACKNOWLEDGMENTS

We thank Rajesh Chitnis and Bundit Laekhanukit for some useful conversations and for their part
in achieving the result on Global Max-Flow.

REFERENCES

[1] Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. 2017. SETH-based lower bounds for subset sum
and bicriteria path. CoRR (2017). http://arxiv.org/abs/1704.04546.

[2] Amir Abboud, Virginia Vassilevska-Williams, and Huacheng Yu. 2015. Matching triangles and basing hardness on an
extremely popular conjecture. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15).
ACM, 41–50. DOI:http://dx.doi.org/10.1145/2746539.2746594

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

http://arxiv.org/abs/1704.04546
http://dx.doi.org/10.1145/2746539.2746594

42:14 R. Krauthgamer and O. Trabelsi

[3] Amir Abboud, Ryan Williams, and Huacheng Yu. 2015. More applications of the polynomial method to algorithm
design. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 218–230. DOI:
http://dx.doi.org/10.1145/2722129.2722146

[4] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1993. Network Flows—Theory, Algorithms and Applica-

tions. Prentice Hall, Upper Saddle River, NJ.
[5] Srinivasa R. Arikati, Shiva Chaudhuri, and Christos D. Zaroliagis. 1998. All-pairs min-cut in sparse networks. J. Algor.

29, 1 (1998), 82–110. DOI:http://dx.doi.org/10.1006/jagm.1998.0961
[6] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights update method: A meta-algorithm and

applications. Theor. Comput. 8, 1 (2012), 121–164. DOI:http://dx.doi.org/10.4086/toc.2012.v008a006
[7] Mokhtar S. Bazaraa, John J. Jarvis, and Hanif D. Sherali. 2010. Linear Programming and Network Flows (4 ed.). John

Wiley & Sons, Inc., New York, NY.
[8] Anand Bhalgat, Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. 2007. An Õ (mn) Gomory-Hu tree

construction algorithm for unweighted graphs. In Proceedings of the 39th Annual ACM Symposium on Theory of Com-

puting (STOC’07). ACM, 605–614. DOI:http://dx.doi.org/10.1145/1250790.1250879
[9] Glencora Borradaile, David Eppstein, Amir Nayyeri, and Christian Wulff-Nilsen. 2016. All-pairs minimum cuts in

near-linear time for surface-embedded graphs. In Proceedings of the 32nd International Symposium on Computational

Geometry (SoCG’16). Leibniz International Proceedings in Informatics, Vol. 51. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 22:1–22:16. DOI:http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.22

[10] Glencora Borradaile and Philip Klein. 2009. An Õ (n log n) algorithm for maximum st -flow in a directed planar graph.
J. ACM 56, 2, Article 9 (2009), 30 pages. DOI:http://dx.doi.org/10.1145/1502793.1502798

[11] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and Stefan Schneider. 2016.
Nondeterministic extensions of the strong exponential time hypothesis and consequences for non-reducibility. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science (ITCS’16). ACM, 261–270.
DOI:http://dx.doi.org/10.1145/2840728.2840746

[12] Timothy M. Chan and Ryan Williams. 2016. Deterministic APSP, orthogonal vectors, and more: Quickly derandomiz-
ing Razborov-Smolensky. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16).
1246–1255. DOI:http://dx.doi.org/10.1145/2884435.2884522

[13] Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. 2011. Graph connectivities, network coding, and expander graphs.
In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS’11). IEEE Computer
Society, 190–199. DOI:http://dx.doi.org/10.1109/FOCS.2011.55

[14] L. R. Ford, Jr. and D. R. Fulkerson. 1956. Maximal flow through a network. Can. J. Math. 8 (1956), 399–404. DOI:http://
dx.doi.org/10.4153/CJM-1956-045-5

[15] Greg N. Frederickson. 1995. Using cellular graph embeddings in solving all pairs shortest paths problems. J. Algor.

19, 1 (1995), 45–85. DOI:http://dx.doi.org/10.1006/jagm.1995.1027
[16] R. E. Gomory and T. C. Hu. 1961. Multi-terminal network flows. J. Soc. Indust. Appl. Math. 9 (1961), 551–570. DOI:

http://dx.doi.org/10.1137/0109047
[17] Dan Gusfield. 1990. Very simple methods for all pairs network flow analysis. SIAM J. Comput. 19, 1 (1990), 143–155.

DOI:http://dx.doi.org/10.1137/0219009
[18] Jianxiu Hao and James B. Orlin. 1994. A faster algorithm for finding the minimum cut in a directed graph. J. Algor.

17, 3 (1994), 424–446. DOI:http://dx.doi.org/10.1006/jagm.1994.1043
[19] Russell Impagliazzo and Ramamohan Paturi. 2001. On the complexity of k-SAT. J. Comput. Syst. Sci. 62, 2 (2001),

367–375. DOI:http://dx.doi.org/10.1006/jcss.2000.1727
[20] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential com-

plexity?J. Comput. Syst. Sci. 63, 4 (2001), 512–530. DOI:http://dx.doi.org/10.1006/jcss.2001.1774
[21] David R. Karger and Matthew S. Levine. 2002. Random sampling in residual graphs. In Proceedings of the 34th Annual

ACM Symposium on Theory of Computing (STOC’02). ACM, New York, NY, 63–66. DOI:http://dx.doi.org/10.1145/
509907.509918

[22] Jakub Lacki, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. 2012. Single source – All sinks max flows
in planar digraphs. In Proceedings of the 53rd IEEE Annual Symposium on Foundations of Computer Science (FOCS’12).
IEEE Computer Society, 599–608. DOI:http://dx.doi.org/10.1109/FOCS.2012.66

[23] Yin Tat Lee and Aaron Sidford. 2014. Path finding methods for linear programming: Solving linear programs in

Õ(
√

rank) iterations and faster algorithms for maximum flow. In Proceedings of the 2014 IEEE 55th Annual Symposium

on Foundations of Computer Science (FOCS’14). IEEE Computer Society, 424–433. DOI:http://dx.doi.org/10.1109/FOCS.
2014.52

[24] Aleksander Mądry. 2016. Computing maximum flow with augmenting electrical flows. In Proceedings of the 57th

IEEE Annual Symposium on Foundations of Computer Science (FOCS’16). IEEE Computer Society, 593–602. DOI:http://
dx.doi.org/10.1109/FOCS.2016.70

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

http://dx.doi.org/10.1145/2722129.2722146
http://dx.doi.org/10.1006/jagm.1998.0961
http://dx.doi.org/10.4086/toc.2012.v008a006
http://dx.doi.org/10.1145/1250790.1250879
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.22
http://dx.doi.org/10.1145/1502793.1502798
http://dx.doi.org/10.1145/2840728.2840746
http://dx.doi.org/10.1145/2884435.2884522
http://dx.doi.org/10.1109/FOCS.2011.55
http://dx.doi.org/10.4153/CJM-1956-045-5
http://dx.doi.org/10.1006/jagm.1995.1027
http://dx.doi.org/10.1137/0109047
http://dx.doi.org/10.1137/0219009
http://dx.doi.org/10.1006/jagm.1994.1043
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1145/509907.509918
http://dx.doi.org/10.1109/FOCS.2012.66
http://dx.doi.org/10.1109/FOCS.2014.52
http://dx.doi.org/10.1109/FOCS.2016.70

Conditional Lower Bounds for All-Pairs Max-Flow 42:15

[25] Alexander Schrijver. 2002. On the history of the transportation and maximum flow problems. Math. Program. 91, 3
(2002), 437–445. DOI:http://dx.doi.org/10.1007/s101070100259

[26] Virginia Vassilevska-Williams. 2015. Hardness of easy problems: Basing hardness on popular conjectures such as the
strong exponential time hypothesis (invited talk). In Proceedings of the 10th International Symposium on Parameterized

and Exact Computation (IPEC’15). Leibniz International Proceedings in Informatics, Vol. 43. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 17–29. DOI:http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.17

[27] Virginia Vassilevska-Williams. 2018. On some fine-grained questions in algorithms and complexity (unpublished).
[28] Ryan Williams. 2005. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci.

348, 2 (2005), 357–365. DOI:http://dx.doi.org/10.1016/j.tcs.2005.09.023

Received July 2017; revised February 2018; accepted April 2018

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 42. Publication date: August 2018.

http://dx.doi.org/10.1007/s101070100259
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.17
http://dx.doi.org/10.1016/j.tcs.2005.09.023

