Seminar on Algorithms and Geometry – Handout 6

Robert Krauthgamer

May 21, 2009

Today's topics

We describe an alternative proof of the Johnson-Lindenstrauss lemma, this time from the perspective of measure concentration. Along the way, we will see the following two theorems, which were first proved by P. Levy (1951). Throughout, μ is the uniform (Haar) probability measure on the unit sphere S^{n-1} . We make no attempt to optimize the constants.

Theorem 1. Let $A \subset S^{n-1}$ be a measurable set, and let $B \subset S^{n-1}$ be a cap such that $\mu(A) = \mu(B)$. Then for all $\varepsilon \ge 0$, $\mu(A_{\varepsilon}) \ge \mu(B_{\varepsilon})$. Here, $A_{\varepsilon} = \{x \in S^{n-1} : d(x, A) \le \varepsilon\}$ and similarly for B_{ε} .

Theorem 2. Let $A \subset S^{n-1}$ be a measurable set with $\mu(A) \ge 1/2$. Then $\mu(A_{\varepsilon}) \ge 1 - 2e^{-\varepsilon^2 n/2}$.

Reading material. For more details, see Matousek's book, and the lecture notes by Goemans and by Barvinok. The course webpage will contain exact details and links for these references.

Homework

1. Let $x \in S^{n-1}$ be drawn randomly according to μ . Give a high-probability bound for its largest coordinate in absolute value, namely find t = t(n) such that

$$\Pr_{x \in \mu}[\|x\|_{\infty} \ge t] \le 1/4.$$

How many standard deviation is it away from the expectation of a single coordinate x_1 ?

2. Show how to extend the JL lemma to triangles, i.e. a dimension reduction theorem for a finite set $X \in \ell_2$, such that for every 3 points in X, the area of the triangle they form is distorted by at most $1 + \varepsilon$.

Hint: First find an example for a triangle and an embedding of it with distortion $1 + \varepsilon$ (for all its pairwise distances), yet this embedding distorts its area by a much larger factor. Second, add to X additional points, and show that preserving distances in this bigger set within $1 + \varepsilon'$ implies that all triangles in X are preserved within $1 + \varepsilon$.

3. Show an analogue of Theorem 2 for expander graphs, as follows. For fixed $r, \alpha > 0$, consider all graphs G = (V, E) with maximum degree at most r and edge-expansion $\alpha > 0$. Show for $1 - \mu(A_t)$ an upper bound that drops exponentially in t (with dependence on r and α , but not on G or |V|).

Here, edge-expansion means that $e(S, \overline{S}) \ge \alpha |S|$ for all $S \subseteq V$ with $0 < |S| \le |V|/2$. μ is the uniform distribution over the vertices, i.e. $\mu(v) = 1/|V|$ for all $v \in V$, and A_t defined as above with respect to shortest-path distance in G.