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1 Dimension reduction in l2

Theorem 1 (Johnson-Lindenstrauss, 1984) For every n-point subset X ⊆ l2 and every
0 < ε < 1, there is an embedding f : X → lk2 with distortion 1 + ε and dimension k =
O( 1

ε2
log n).

Remark

• Proof gives randomized algorithm.

• Many algorithmic applications.

• Naive approach: isometric embedding with dimension n−1. The J-L theorem is gives
exponential improvement in the dimension, which is logarithmic in n, at the expense
of arbitrarily small distortion.

• Often, it is important that f is random (and/or a linear transformation), not depend-
ing on X.

Proof Idea Choose a linear transformation f : Rn −→ Rk at random, independently of
X. We will optimize k at the end. Different ways to choose f :

1. Choose at random a linear subspace L of dimension k, and project every x ∈ X onto
L.

Definition 2 (Projection) Projection of x ∈ X onto subspace L is the (unique)
point in L closest to x. An equivalent definition is the (unique) point where a line
going through x and orthogonal to L intersects L.

Observation 3 (Random subspace) Let Sn−1 = {x ∈ Rn : ‖x‖ = 1} be the unit
sphere. Choose unit-length orthogonal vectors b1, ..., bk ∈ Rn, where each bj has ”uni-
form” distribution on the unit sphere. Then:

L = span{b1, ..., bk} ⇒ f(x) = (〈b1, x〉, ..., 〈bk, x〉) ∈ Rk.

2. Choose b1, ..., bk ∈ Sn−1 independently at random and again let f(x) = (〈b1, x〉, ..., 〈bk, x〉).
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3. Choose each coordinate of each bi independently at random:

• To be a standard Gaussian N(0, 1).

• Uniformly from {±1} or from {1,−1, 0}.
This (multidimensional) Gaussian distribution has a very useful property: it is ro-
tation invariant, i.e. applying any fixed rotation in Rn to this distribution produces
a the same Gaussian distribution. The “uniform” distribution on the sphere which
has the same property, is formally called the Haar measure, and is essentially unique.
(Proving the rotation invariance is beyond the scope of the class.) It follows, for in-
stance, that sampling a vector in Rn from the Gaussian distribution and normalizing
it to be unit length, produces a uniformly random vector on the sphere. Another
immediate consequence is the following useful fact, which says that “measuring” the
Gaussian vector along any fixed direction produces a Guassian distribution.

Fact 4 Let G1, ...Gn be independent random variables with Gaussian distribution
N(0, 1), and let v ∈ Rn. Then G̃ =

∑n
i=1 viGi = 〈(G1, ..., Gn), v〉 has Gaussian

distribution N(0, σ2 =
∑n

i=1 v2
i ).

We are going to prove variant 3 shown in the proof idea.

Theorem 5 Let Bn×k be a matrix whose entries are i.i.d. N(0, 1), and let f : Rn → Rk be
given by f(x) = Bx√

k
. Then with high probability (say ≥ 1

2 or ≥ 1 − 1
n), for all x 6= y ∈ X

we have 1− ε ≤ ‖f(x)−f(y)‖
‖x−y‖ ≤ 1 + ε.

Proof It suffices to prove that for all v ∈ Rn,

Pr
f

[1− ε ≤ ‖f(v)‖
‖v‖ ≤ 1 + ε] > 1− 1

n3 . (1)

This is enough because applying (1) to v = x−y for x, y ∈ Rn, we get f(x, y) = f(x)−f(y),
and by a union bound over

(
n
2

)
pairs x 6= y ∈ X the theorem follows.

In fact, it suffices to prove (1) for unit length v, since f is a linear transformation and
f

(
v
‖v‖

)
= f(v)

‖v‖ for all v.

Assume ‖v‖ = 1. Each coordinate of Bv = (〈b1, v〉, ..., 〈bk, v〉) has distribution N(0, σ2 =
‖v‖2 = 1) by Fact 4, and they are clearly independent. Denoting gi = 〈bi, v〉, we have:

E[‖f(v)‖2] = E
[‖Bv‖2

k

]
=

1
k
E[g2

1 + ... + g2
k] = 1, (2)

so E[‖Bv‖2] = k. We will bound Pr[‖f(v)‖2 ≥ (1 + ε)2] = Pr[‖Bv‖2 ≥ k(1 + ε)2]. A similar
argument works for the event ‖Bv‖2 ≤ k(1 + ε)2.
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Define the shorthand α = k(1 + ε)2, and let S > 0 be chosen later. Then by Markov’s
inequality and the independence of gj ,

Pr[‖Bv‖2 ≥ α] = Pr[S · ‖Bv‖2 ≥ Sα] = Pr[eS‖Bv‖2 ≥ eSα] ≤ E[eS‖Bv‖2 ]
eSα

= e−Sα · E[eS
∑k

j=1 g2
j ] = e−Sα · E[

∏

j

eSg2
j ] = e−Sα ·

∏

j

E[eSg2
j ]

A direct computation of the integrals shows that

E[eSg2
j ] =

1√
1− 2S

.

Plugging this in, with the choice of S such that 1 − 2S = k
α = (1 + ε)−2, and using (by

Taylor expansion) ln(1 + x) ≤ x− x2

2 + O(x3), we have:

Pr[‖Bv‖2 ≥ α] ≤ e−Sα(1− 2S)−
k
2 = e−α( 1

2
− k

2α
)( k

α)−
k
2

= e−
α
2
+ k

2 (1 + ε)
2k
2 = e−

α
2
+ k

2
+ 2k

2
ln(1+ε)

≤ e−
k
2
(2ε+ε2)+ 2k

2
(ε− ε2

2
+O(ε3)) ≤ e−ε2k+O(kε3)

≤ e−
1
2
ε2k ≤ e−3 ln n =

1
n3

.

We conclude that Pr[‖f(v)‖ > 1 + ε] = Pr
[‖Bv‖

k ≥ 1 + ε
]

= Pr[‖Bv‖2 ≥ α] ≤ 1
n3 .
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