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Definition of Monotonicity

For x=(x.x,...x,), y=(y,¥,...y,) €10,1}", x<y if for
all i, x;<y,, and for some j, x<y..

A function f€{0,1}"—-{0,1} is monotone if for
all x<y, fix)<fly).

A DNF formula with no negations over {x}.

A function respecting the partial order defined
by a directed boolean hypercube.



Testing Monotonicity

* There is an algorithm with query complexity
O(n/€) that always accepts monotone
functions and rejects function that are e-far
from monotone with constant probability.

* Known lower bound - Q(n”) for 1-sided error,
Q(logn) for 2-sided error.



The Algorithm (Single Step)

For fe{0,1}"—=>{0,1}:

1. Uniformly at random selectie{1,...,n} and
xe{0,1}".
2. If f(xX'(0)) < f(x'(1)) accept, otherwise reject.

Where x/(b)=x,...x.bx.,;..X,.



Definitions

* 0(f) — The probability the algorithm rejects f.

* £(f) — The distance of f from the monotone
functions.

e Claim:

e(f)/n < 6(f) < 2¢(f)



Analysis of the Algorithm

* Trivially, the algorithm always accepts
monotone functions

* Assuming the claim, O(n/¢) iterations suffice.



Definitions

U ={(x(0), x(1)) | xe{0,1}", ie{1..n}}, all the
pairs that differ on one coordinate.

|U|=n2""1.

A(f) ={(x, y)eU | fix)>f(y)}, all the pairs
violating monotonicity.

5(f)=1ANI/1U].



Upper Bound on 6

* |n order to make f monotone, one output
from each violating pair must be changed.

* Every string belongs to at most n pairs.
 The number of changes is

e(f)12" 2 [A(f)|/n=6(|U|/n = b(f)2"

* Thus, 6(f) < 2¢(f).



Definitions

Function S(f):

* If f{x(0))sfx(1)), Si(f){x)=A(x).
* Otherwise, S.(f)(x)=1-f(x).

* Di(N=1{x | S;(f)(x) # fix)}].
* XD(N)=2|Aa()].



Non Decreasing Monotonicity

* Lemma: D(S(f))<Dif).

* Let x be such that S/(f)(x) # S{S;(f))(x).
* Define h(a,b)=S{f)(x"(a,b).



Non Decreasing Monotonicity

* Possible values of h(a,b):

* |n all cases, there is a unique y with

Ay) = S{N(y).



Lower Bound on 6

* By inductive application of the lemma,
D(S; ,...5,(f)) < D(f).

*g=S5.S,,..5,5,(f).
* g is monotone, so £(f) < dist(f,g).



Lower Bound on 6

* 8(f) = AN I/]U].
* XDi(f)I=2[A(N)].
e g(f) < dist(f,g).

o 2dist(f,g) < >D(S. ;..-S;(f)) < >DAf).

* 6(f) = [ANI/IU] = 2"3D{f)/n 2 dist(f,g)/n 2
e(f)/n.




Almost Tight Bounds on 6

* For >0, there are functions g and h such that:
e(g), (h) = €-o(¢)
&(g) = 2e/n
o(h) =€



Almost Tight Bounds on 6

* Let g be an anti-dictatorship function (1 if
x,=0, 0 otherwise).

* 6(g) =1/n.

* £(g) =7, since there is a perfect matching
between the set of values with x,=0 and x,=1,

and at least one value in each pair must be
modified.



Almost Tight Bounds on 6

* Consider the boolean hypercube as a directed
graph, where the directed edges are from
(X X5 X 10X, q..X,)) TO (X X5 X 11X, 100X ,).

* Let L, be the set of vertices with hamming
weight /.

* There are only edges from L. to L,,,.

* Let h be the function receiving i mod 2 on L.

* &(h) ="



Almost Tight Bounds on 6




Almost Tight Bounds on 6

Consider a pair of layers with all violating
edges between them.

Using Hall’'s Theorem, there is a matching
containing all the vertices of the smaller layer.

The number of unmatched vertices is at most
2Ly -1Lyq] ] < 2|L[n/z]| = 0(2"/vn)
e(h) = %5-0(1/Vn).



Almost Tight Bounds on 6

* These results can be extended to general
values of €, by considering only vertices with a
certain suffix.



Extending the Domain

For fe{1...d}"—=>{0,1}:

1. Uniformly at random selectie{1,...,n} and
xe{l...d}".

2. According to some distribution p, select a<b.
3. If f(x'(a))<f(x'(b)) accept, otherwise reject.



Extending the Domain

* There is an algorithm with query complexity
O(g,(n,&,d)) that always accepts monotone
functions and rejects function that are e-far
from monotone with constant probability.



Extending the Domain

e Using similar arguments, it is possible to show
that

E; [6(foy'))] < 6(f)
e(f)/2n < E, [e(foy)]

* Hence, enough to lower bound &(foy/) in
terms of g(foy).

* foy' is a function from {1...d} to {0,1}.



Distribution #1

Uniform over all pairs (a, a+1).

If fis non monotone, There is at least (and
possibly at most) one pair (a, a+1) such that

fla)>fla+1).

There are d-1 pairs and &(f)<)%.
2e(f)/(d-1) < 6(f).

O(dn/e) repetitions suffice.



Distribution #2

Uniform over all pairs (a, b) such that a<b.

00110100101111

00000011111111

2e difference between f and f*.
e(f) < 2e/d.
5(f) =2 2(e/d)? 2 £(f)?/2.



Distribution #2

* E; [6(foy)] 2 E; [e(foy)?] = ((f)/2n)>.
* 0O(n?/e?) repetitions suffice.



Distribution #3

 The distribution is uniform over P, where P is
the set containing all pairs {a, b} such that 2*
divides a, but 2¥*1 does not divide a and b,
and |a-b| <2k,

* There are O(dlogd) such pairs: eachiis a
member of at most O(logd) pairs, by
considering the binary representation of |.

 Claim: there are Q(de(f)) violating pairs.



Distribution #3

 Consider P as directed edges on a graph,
where the direction is towards the larger
number.

 If a>b there is a directed path of length at
most 2 from b to a.

e Let/bethe MSB where a and b differ. Then,
(0,0,...0,,10...0)=(b,b,...b, ;10...0) is the
middle vertex in the path.



Distribution #3

00110100101

1 1 1
00000011111111

2e difference between f and f*.

e(f) < 2e/d.

There are least e=Q(ds(f)) edge disjoint
paths with a violating edge.

5(f) = Q(de(f)/dlogd) = Q(e(f)/logd).
O(nlogd/e) repetitions suffice.



Extending the Range

For fe{l...d}"—=>{0...c}:

1. Uniformly at random selectie{1,...,n} and
xe{l...d}".

2. According to some distribution p, select a<b.
3. If f(x'(a))<f(x'(b)) accept, otherwise reject.



Extending the Range

* Define f(x) to be O if f(x)<i, 1 otherwise.
* Then

e(f) < e(f)

5(f) = 8(f)

 Which implies an additional multiplicative
factor of c to the query complexity.



Extending the Range

It is possible to show O(nlogdlogc/e) queries
suffice.

A different algorithm can achieve query
complexity of O((n/g)log?(n/¢)).



Unateness

* A function f€{0,1}"->{0,1} is unate if thereis
a<{0,1}" such that f(x®a) is monotone.

A DNF formula where every variable is either
always negated or never negated.

» Similar tester; O(n*~/g) pairs to find evidence
for non unateness (using the generalized
birthday paradox).
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Definitions

* Sl[f,a,b] — changes the range of f to be
between a and b by changing all values that
are more than b and less than a to be b and a

respectively.
 M]f] —arbitrary monotone function closest to

f




Definitions

Clf,a,b] —if S[f,a,b] is different than
MI|S[f,a,b]], gives the value of M[S|[f,a,b]],
otherwise the value of f.

dist(f, C[f,a,b]) = €(S[f,a,b]).



Properties of Cl[f,a,b]

Does not add violating pairs.

Has no violating pairs with values crossing
the interval [a,b].

If (y,x) is a violating pair with
Clf,a,bl(x)<Cl[f,a,b](y) then f(x)<C[f,a,b](x),

Clf,a,b](y)sfly).
Proof by case analysis.



Analysis of the Algorithm

g.=Slf, c/2-1,c/2] f,=Clf, c/2-1, c/2]
g,=Slf,, 0, ¢/2-1] f,=Clf,, 0, c/2-1]
g5=Slf,, ¢/2, c] f5=Clf,, ¢/2, c]

6(f) 2 6(g,), since S does not add violating
pairs.

o(f) =2 6(g,)+6(gs), since the set of violating
pairs of g, and g, is disjoint.



Analysis of the Algorithm

g.=Slf, c/2-1,c/2] f,=Clf, c/2-1, c/2]
g,=Slf,, 0, ¢/2-1] f,=Clf,, 0, c/2-1]
g5=Slf,, ¢/2, c] f5=Clf,, ¢/2, c]

f5 is monotone, since it has no violating pairs
in the intervals (or crossing them) [c/2-1,c/2],
[O) C/2'1], [C/zl C]'



Analysis of the Algorithm

* g,=S[f, ¢/2-1,c/2] f,=Clf, c/2-1, c/2]
* 9,=5lf1, 0,¢/2-1]  f,=C[f}, O, ¢/2-1]
* g,=S[f,, ¢/2, c] f3=Clf,, ¢/2, c]

o g(f) < dist(f.f3) < dist(f,f,)+dist(f,.f,)+dist(f,.f3)

< g(g,)+el(g,)+e(g;).



Analysis of the Algorithm

* Assume c=2°.
 Then, thereis K such that £(f) < Ksb(f) (for s=1

already proved with K=0O(nlogd)):
e(f) < elg,)+e(g,)+e(g;) <
K(6(g,)+(s-1)0(g,)+(s-1)0(gs)) <
K(6(f)+(s-1)6(f)) = Kso(f)



