
Testing Monotonicity

Oded Goldreich, Shafi Goldwasser,
Eric Lehman, Dana Ron, Alex

Samorodnitsky

Presented by Shlomo Jozeph

Definition of Monotonicity

• For x=(x1x2…xn), y=(y1y2…yn){0,1}n, x<y if for
all i, xi≤yi, and for some j, xj<yj.

• A function f{0,1}n→{0,1} is monotone if for
all x<y, f(x)≤f(y).

• A DNF formula with no negations over {xi}.

• A function respecting the partial order defined
by a directed boolean hypercube.

Testing Monotonicity

• There is an algorithm with query complexity
O(n/ε) that always accepts monotone
functions and rejects function that are ε-far
from monotone with constant probability.

• Known lower bound - Ω(n½) for 1-sided error,
Ω(logn) for 2-sided error.

The Algorithm (Single Step)

For f{0,1}n→{0,1}:

1. Uniformly at random select i{1,…,n} and
x{0,1}n.

2. If f(xi(0)) ≤ f(xi(1)) accept, otherwise reject.

Where xi(b)=x1…xibxi+1…xn.

Definitions

• δ(f) – The probability the algorithm rejects f.

• ε(f) – The distance of f from the monotone
functions.

• Claim:

ε(f)/n ≤ δ(f) ≤ 2ε(f)

Analysis of the Algorithm

• Trivially, the algorithm always accepts
monotone functions

• Assuming the claim, O(n/ε) iterations suffice.

Definitions

• U = {(xi(0), xi(1)) | x{0,1}n, i{1..n}}, all the
pairs that differ on one coordinate.

• |U|=n2n-1.

• ∆(f) = {(x, y)U | f(x)>f(y)}, all the pairs
violating monotonicity.

• δ(f)=|∆(f)|/|U|.

Upper Bound on δ

• In order to make f monotone, one output
from each violating pair must be changed.

• Every string belongs to at most n pairs.

• The number of changes is

ε(f)2n ≥ |∆(f)|/n = δ(f)|U|/n = δ(f)2n-1

• Thus, δ(f) ≤ 2ε(f).

Definitions

Function Si(f):

• If f(xi(0))≤f(xi(1)), Si(f)(x)=f(x).

• Otherwise, Si(f)(x)=1-f(x).

• Di(f)=|{x | Si(f)(x) ≠ f(x)}|.

• ∑Di(f)=2|∆(f)|.

Non Decreasing Monotonicity

• Lemma: Dj(Si(f))≤Dj(f).

• Let x be such that Si(f)(x) ≠ Sj(Si(f))(x).

• Define h(a,b)=Si(f)(x
ij(a,b).

Non Decreasing Monotonicity

• Possible values of h(a,b):

• In all cases, there is a unique y with

f(y) ≠ Sj(f)(y).

a\b 0 1

0 0 0

1 1 0

a\b 0 1

0 1 0

1 1 0

a\b 0 1

0 1 0

1 1 0

a\b 0 1

0 1 0

1 1 1

Lower Bound on δ

• By inductive application of the lemma,

Di(Si-1…S1(f)) ≤ Di(f).

• g = SnSn-1…S2S1(f).

• g is monotone, so ε(f) ≤ dist(f,g).

Lower Bound on δ

• δ(f) = |∆(f)|/|U|.

• ∑Di(f)=2|∆(f)|.

• ε(f) ≤ dist(f,g).

• 2ndist(f,g) ≤ ∑Di(Si-1…S1(f)) ≤ ∑Di(f).

• δ(f) = |∆(f)|/|U| = 2-n∑Di(f)/n ≥ dist(f,g)/n ≥
ε(f)/n.

Almost Tight Bounds on δ

• For ε>0, there are functions g and h such that:

ε(g), ε(h) = ε-o(ε)

δ(g) = 2ε/n

δ(h) = ε

Almost Tight Bounds on δ

• Let g be an anti-dictatorship function (1 if
x1=0, 0 otherwise).

• δ(g) = 1/n.

• ε(g) = ½, since there is a perfect matching
between the set of values with x1=0 and x1=1,
and at least one value in each pair must be
modified.

Almost Tight Bounds on δ

• Consider the boolean hypercube as a directed
graph, where the directed edges are from
(x1x2…xi-10xi+1…xn) to (x1x2…xi-11xi+1…xn).

• Let Li be the set of vertices with hamming
weight i.

• There are only edges from Li to Li+1.

• Let h be the function receiving i mod 2 on Li.

• δ(h) = ½.

Almost Tight Bounds on δ

L2j-1, f1

L2j, f0

L2j+1, f1

Almost Tight Bounds on δ

• Consider a pair of layers with all violating
edges between them.

• Using Hall’s Theorem, there is a matching
containing all the vertices of the smaller layer.

• The number of unmatched vertices is at most

∑||L2i|-|L2i-1|| ≤ 2|L[n/2]| = O(2n/√n)

• ε(h) = ½-O(1/√n).

Almost Tight Bounds on δ

• These results can be extended to general
values of ε, by considering only vertices with a
certain suffix.

Extending the Domain

For f{1…d}n→{0,1}:

1. Uniformly at random select i{1,…,n} and
x{1…d}n.

2. According to some distribution p, select a<b.

3. If f(xi(a))≤f(xi(b)) accept, otherwise reject.

Extending the Domain

• There is an algorithm with query complexity
O(qp(n,ε,d)) that always accepts monotone
functions and rejects function that are ε-far
from monotone with constant probability.

Extending the Domain

• Using similar arguments, it is possible to show
that

Ei,y[δ(f○yi))] ≤ δ(f)

ε(f)/2n ≤ Ei,y[ε(f○yi)]

• Hence, enough to lower bound δ(f○yi) in
terms of ε(f○yi).

• f○yi is a function from {1…d} to {0,1}.

Distribution #1

• Uniform over all pairs (a, a+1).

• If f is non monotone, There is at least (and
possibly at most) one pair (a, a+1) such that
f(a)>f(a+1).

• There are d-1 pairs and ε(f)≤½.

• 2ε(f)/(d-1) ≤ δ(f).

• O(dn/ε) repetitions suffice.

Distribution #2

• Uniform over all pairs (a, b) such that a<b.

• 2e difference between f and f*.

• ε(f) ≤ 2e/d.

• δ(f) ≥ 2(e/d)2 ≥ ε(f)2/2.

f 0 0 1 1 0 1 0 0 1 0 1 1 1 1

f* 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Distribution #2

• Ei,y[δ(f○yi)] ≥ Ei,y[ε(f○yi)2] ≥ (ε(f)/2n)2.

• O(n2/ε2) repetitions suffice.

Distribution #3

• The distribution is uniform over P, where P is
the set containing all pairs {a, b} such that 2k

divides a, but 2k+1 does not divide a and b,
and |a-b|≤2k.

• There are O(dlogd) such pairs: each i is a
member of at most O(logd) pairs, by
considering the binary representation of i.

• Claim: there are Ω(dε(f)) violating pairs.

Distribution #3

• Consider P as directed edges on a graph,
where the direction is towards the larger
number.

• If a>b there is a directed path of length at
most 2 from b to a.

• Let i be the MSB where a and b differ. Then,
(a1a2…ai-110…0)=(b1b2…bi-110…0) is the
middle vertex in the path.

Distribution #3

• 2e difference between f and f*.

• ε(f) ≤ 2e/d.

• There are least e=Ω(dε(f)) edge disjoint
paths with a violating edge.

• δ(f) = Ω(dε(f)/dlogd) = Ω(ε(f)/logd).

• O(nlogd/ε) repetitions suffice.

f 0 0 1 1 0 1 0 0 1 0 1 1 1 1

f* 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Extending the Range

For f{1…d}n→{0…c}:

1. Uniformly at random select i{1,…,n} and
x{1…d}n.

2. According to some distribution p, select a<b.

3. If f(xi(a))≤f(xi(b)) accept, otherwise reject.

Extending the Range

• Define fi(x) to be 0 if f(x)<i, 1 otherwise.

• Then

ε(f) ≤ ∑ε(fi)

δ(f) ≥ δ(fi)

• Which implies an additional multiplicative
factor of c to the query complexity.

Extending the Range

• It is possible to show O(nlogdlogc/ε) queries
suffice.

• A different algorithm can achieve query
complexity of O((n/ε)log2(n/ε)).

Unateness

• A function f{0,1}n→{0,1} is unate if there is
a{0,1}n such that f(xa) is monotone.

• A DNF formula where every variable is either
always negated or never negated.

• Similar tester; O(n1.5/ε) pairs to find evidence
for non unateness (using the generalized
birthday paradox).

Improved Testing Algorithms for
Monotonicity

Yevgeniy Dodis, Oded Goldreich, Eric
Lehman, Sofya Raskhodnikova, Dana

Ron, Alex Samorodnitsky

Definitions

• S[f,a,b] – changes the range of f to be
between a and b by changing all values that
are more than b and less than a to be b and a
respectively.

• M[f] – arbitrary monotone function closest to
f.

Definitions

• C[f,a,b] – if S[f,a,b] is different than
M[S[f,a,b]], gives the value of M[S[f,a,b]],
otherwise the value of f.

• dist(f, C[f,a,b]) = ε(S[f,a,b]).

Properties of C[f,a,b]

• Does not add violating pairs.

• Has no violating pairs with values crossing
the interval [a,b].

• If (y,x) is a violating pair with
C[f,a,b](x)<C[f,a,b](y) then f(x)≤C[f,a,b](x),
C[f,a,b](y)≤f(y).

• Proof by case analysis.

Analysis of the Algorithm

• g1=S[f, c/2-1,c/2] f1=C[f, c/2-1, c/2]

• g2=S[f1, 0, c/2-1] f2=C[f1, 0, c/2-1]

• g3=S[f2, c/2, c] f3=C[f2, c/2, c]

• δ(f) ≥ δ(g1), since S does not add violating
pairs.

• δ(f) ≥ δ(g2)+δ(g3), since the set of violating
pairs of g2 and g3 is disjoint.

Analysis of the Algorithm

• g1=S[f, c/2-1,c/2] f1=C[f, c/2-1, c/2]

• g2=S[f1, 0, c/2-1] f2=C[f1, 0, c/2-1]

• g3=S[f2, c/2, c] f3=C[f2, c/2, c]

• f3 is monotone, since it has no violating pairs
in the intervals (or crossing them) [c/2-1,c/2],
[0, c/2-1], [c/2, c].

Analysis of the Algorithm

• g1=S[f, c/2-1,c/2] f1=C[f, c/2-1, c/2]

• g2=S[f1, 0, c/2-1] f2=C[f1, 0, c/2-1]

• g3=S[f2, c/2, c] f3=C[f2, c/2, c]

• ε(f) ≤ dist(f,f3) ≤ dist(f,f1)+dist(f1,f2)+dist(f2,f3)
≤ ε(g1)+ε(g2)+ε(g3).

Analysis of the Algorithm

• Assume c=2s.

• Then, there is K such that ε(f) ≤ Ksδ(f) (for s=1
already proved with K=O(nlogd)):

ε(f) ≤ ε(g1)+ε(g2)+ε(g3) ≤

K(δ(g1)+(s-1)δ(g2)+(s-1)δ(g3)) ≤

K(δ(f)+(s-1)δ(f)) = Ksδ(f)

