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Definitions
Properties

A property m

A property of a distribution is a function 7 : D, — R, where D, is
the set of probability distributions on [n].

A binary property 775

A property 7 and pair of real numbers a < b induce a binary
property w2 : D, — {"yes”," no", @} defined by:

"yes" if (p) > b
m2(p) =< "no" ifn(p)<a
1%} otherwise

A\
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Definitions

A tester

Let 72 be a binary property on D,.

A tester

An algorithm T is a “r°—tester with sample complexity k(-)”
if, given a sample of size k(n) from a distribution p € D,,
algorithm T will:

@ accept with probability greater than % if 72(p) ="yes", and
@ reject with probability greater than % if 2(p) ="no", and

The tester's behavior is unspecified when 72(p) = ¢, i.e. when

a<m(p) <b.
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Definitions
Symmetry, (€, d)—weak continuity

A Symmetric Property

A property 7 is symmetric if for all distributions p and all
permutations o we have 7(p) = m(p o o).

An (e, d)-weakly continuous property

A property 7 is (€, d)-weakly continuous if for all distributions
pt, p~ satisfying |pT — p7| < & we have |r(pT) —7(p7)| < e.

|x — y| denotes the L; distance.
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Example
Distance from the uniform distribution

Distance from the uniform distribution is a symmetric and
(6, 6)-weakly continuous property.

@ Let U, be the uniform distribution on [n].

o Let m(p) = |U, — p| for p € D,.
e Let p™,p~ € D, be such that |[pt — p~| < 4.
@ Assume WLOG that w(p™) > m(p™).

Im(p*) —7(p7)| = |Un — pT| — |Up— p~|
<|Un—p |+ |pt=p | = |Us—p|
=|p"—p7| <4
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Example
Entropy

The entropy is a symmetric and (1, ﬁ) -weakly continuous
property.

Easy. [
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The Canonical Tester

Canonical Tester T? for x2

Consider a sample of size k from distribution p over [n]. Let h; be

the number of appearances of i in the sample.

The Canonical Tester with parameter 6
Q Insert the constraint ), p; = 1.

@ For each j such that h; > 60 insert the constraint p; = %
Otherwise insert the constraint p; € [0, %]

© Let P be the set of solutions to these constraints.

Q |If the set 2(P) (the image of elements of P under 72)
contains only “yes” and & return “yes”. If it contains only
“no” and @ return “no”. Otherwise answer arbitrarily.
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The Canonical Tester
Canonical Tester T? for x2

@ It seems plausible that the canonical tester behaves correctly
for the high frequency elements.

@ The tester effectively discards all information regarding the
low frequency elements.

@ If we can show that no tester can extract information from
these elements then it will follow that the canonical tester is
almost optimal.
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The Canonical Testing Theorem We Wish For

Not True Theorem

Given a symmetric (e, d)-weakly continuous property 7 : D, — R

and two thresholds a < b, such that the Canonical Tester T? for

§ = 600 log n/62 on 7T§ fails to distinguish between = > b and

m < a in k samples, then no tester can distinguish between 7 > b
and m < a in k samples.

Sadly, this is not true.
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Canonical Testing Theorem

Theorem

Given a symmetric (e, d)-weakly continuous property 7w : D, — R
and two thresholds a < b, such that the Canonical Tester T? for
6 = 6001log n/6? on 7’ fails to distinguish between ™ > b+ ¢ and
m < a— € in k samples, then no tester can distinguish between
m>b—eandm <a+e€ink- —3) samples.
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Low Frequency Blindness

The crux is to prove that the canonical tester does the “right
thing” (i.e., nothing!) for the low frequency elements.

Low Frequency Blindness Theorem

Let 7 be a symmetric property on distributions on [n] that is
(e, 0)-weakly continuous.
Let p™, p~ be two distributions that are identical for any index

occurring with probability at least % in either distribution, where
0 = 600 log n
= 762 _

If 7(p*) > b and w(p~) < a, then no tester can distinguish
between m > b—eand Tt < a-+e€in k- ) samples.

v

If we could show that such p™ and p~ exist whenever the canonical
tester fails than this would imply the canonical testing theorem.
Example: Entropy
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Low Frequency Blindness = Canonical Testing Theorem

Given a distribution p and a parameter 0, if we draw k random
samples from p then with probability at least 1 — % the set P
constructed by the Canonical Tester will include a distribution p

log n

such that [p — p| < 244/ =p".

If & = 600 log n/? then this reads [p — p| < 6.

“The proof is elementary: use Chernoff bounds on each index i
and then apply the union bound to combine the bounds.” []
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Low Frequency Blindness = Canonical Testing Theorem

Reminder: the canonical testing theorem states that if the
canonical tester fails with k samples then any slightly weaker tester
also fails.

Proof: Canonical Testing Theorem

@ Assume canonical tester says “no” with probability 1/3 to
some p for which w(p) > b+ € (so it should have said yes).

@ = with probability 1/3 there exists p~ € P such that
m(p7) < a.

@ By the lemma, P contains some p™ such that |p — p*| < ¢
with probability 1 —4/n. m(p™) > b by continuity.

@ = there exists a single P with both of these properties.

@ = there exist p~ and p™ with the same #-high-frequency
elements such that 7(p~) < a and 7(p™) > b.

@ = the theorem follows by application of low frequency
blindness.
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Fingerprints
Definition

Histogram

The histogram h of a vector v = (v1, ..., v) is a vector such that
h; is the number of components of v with value i.

Fingerprint

A fingerprint f of a vector v is the histogram of the histogram of v.
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Fingerprints

Example

Let v=(3,1,2,2,5,1,2). Then:
@ lts histogram is h = (2,3,1,0,1).
o lts fingerprint is f = (2,1, 1).

@ We omit the zero component of f.

A tester for a symmetric distribution 7 may consider just the
fingerprint of the sample and discard the rest of the information.
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Poisson Moments Vector

e Let p be a distribution on [n].

@ Let the sample size be k.

) k,' = E[h,] =k- Pi-
Let A\, := ) ; poiy.(a).
Then A = {\;}32, is the Poisson moments vector of p for
sample size k.

@ p has histogram h and fingerprint f.
o The distribution of h; is well approximated by poiy.(-).
o E[f)] =) ;Plhi=a]l = A,
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Coffee Break

Coffee Break

Coffee Break
Coffee Break
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Low Frequency Blindness

Theorem

Let m be a symmetric property on distributions on [n| that is

(e, 0)-weakly continuous.

Let p™, p~ be two distributions that are identical for any index

occurring with probability at least % in either distribution, where
__ 600logn

If m(p*) > b and 7(p~) < a, then no tester can distinguish

betweenm > b—eandm < a+eink- 1) samples.
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Low Frequency Blindness

(simplified)

We'll limit our analysis to distributions with low frequencies.
Suppose all elements have probability < £ where § = 990181

Lemma

|
I
(=2}
N

Let w be a symmetric property on distributions on [n] that is
(e, 0)-weakly continuous.

Let p*, p~ be two distributions for which all indices occur with
probability at most %, where 0 = 6006'#.

If m(p*) > b and w(p~) < a, then no tester can distinguish
between m > b—eandm < a-+e€ink- —31) samples.
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Proof Sketch

Let p™ and p~ be low frequency distributions such that
m(p*t) > band 7(p~) < a.
© We construct p* and p~ such that
o |pT — p*| < 4, and therefore 7(pT) > b — € and
m(p7)<a+e
e p* and p~ have similar Poisson moments vector for sample
size k = knffl
@ For any sample size for which two distributions have similar
Poisson moments vectors, they also have similar fingerprints.

© We now have two distributions with similar fingerprints; one
has the property and the other doesn't. It is therefore
impossible to test for 7rf with k samples.

Steps two and three are the “Wishful Thinking Theorem”.
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Wishful Thinking Theorem

Intuition

Each component of the fingerprint is a sum of many
indicators. For example, f3 is the sum of the indicators of the
events h; = 3.

Wishfully assume that the h;s are independent and distributed
Poisson with parameter k; = k - p;. Then E[f;] = Var[f,] = A,.
Wishfully assume that the f;s are independent and
distributed Poisson with parameter \,.

If for p* and p~ and each a we have that |\; — A} is smaller
than \/E then we expect the distributions’ fingerprints to be
indistinguishable.

If 7(p*) > b and 7(p~) < a then no tester can test 7.
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Wishful Thinking Theorem

Statement

Wishful Thinking Theorem

Given an integer k>0, let pt and p~ be two distributions, all of
. Let AT and A\~ be their

Poisson moments vectors for sample size k. If it is the case that

A - ALl 1
\/1 + max{\}, A7} %

then it is impossible to test any symmetric property that is true for
pt and false for p~ in k samples.

Reminder: whenever the canonical tester fails we are guaranteed to
have such p™ and p~.
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Wishful Thinking Theorem
Overview

©00O0O0

Show h; = poi,, (and h =~ Poi(kp)).
Show f; ~ poiy_ (and f = Poi())).
Bound |Poi(AT) — Poi(A7)].
Deduce a bound on |[fT — f~|.

Finally, conclude that since the fingerprints are
indistinguishable (even though the distributions might not
be), then the property can't be tested.

23/33



Poissonization

Poissonization
A k-Poissonized tester T is a function that correctly classifies a
property on a distribution p with probability 7/12 on input samples
generated in the following way:

e Draw k' + poi,.

@ Return k’ samples from p.

| 5\

Lemma

If there exists a k-sample tester T for a property 7r§ then there
exists a k-Poissonized tester T’ for 7.
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Poissonization

o After Poissonization, the histogram component h; is
distributed poiy, and the different h;s are independent.

o By additivity of expectations and variances
E[f.] = Var[fi] =, poiki(a) =\,
@ However, the different f;s aren’t independent.
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Generalized Multinomial Distribution

Definition: MP”, the generalized multinomial distribution(p)

@ Let p be a matrix with n rows, such that row p; represents a
distribution.

@ From each such row, draw one column according to the
distribution.

@ Return a row vector recording the total number of samples
falling into each column (the histogram of the samples).

Lemma

The distribution of fingerprints of poi(k) samples from p (the
distribution of f after Poissonization) is the generalized
multinomial distribution, M”, when using p;(a) = poi,.(a) to
define the rows p;.
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Roos's Theorem

Roos's theorem

Given a matrix p, letting A, = ), pi(a) be the vector of column
sums, we have

|MP — Poi()\)] <882223'0/)’I(‘:))

So, the multivariate Poisson distribution is a good approximation
for the fingerprints, if p is small enough.
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Roos's Theorem

Bounding p using the low-frequencies

Suppose that for some 0 < € < % it holds that p; < . Then
) —k; ka *k'Pi k- i a
pi(a) = poiy,(a) = =; (ool < (k- pi)? < €.

Thus:

za:%f;:(a <Zmaxp, <Ze < 2e¢

and by Roos's theorem:

|MP — Poi(\)] < 2 8.8c.

28/33



Multivariate Poisson Statistical Distance

Bounding the statistical distance between AT and A\~

The statistical distance between two multivariate Poisson
distributions with parameters A™, A\~ is bounded by

+ _ —
[Poi(AT) — Poi(A7)| <2 A Al
a \/1 + max{\}, \; }

Hence, by the theorem’s hypothesis:

IPoi(A+) — Poi(A-)] < % J
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Wishful Thinking Theorem

(reminder)

Wishful Thinking Theorem

Given an integer k>0, let p' and p~ be two distributions, all of

whose frequencies are at most 501012. Let AT and A~ be their

Poisson moments vectors for sample size k. If it is the case that

Z AT =7 oL
a \/1 + max{\3, 7} &

then it is impossible to test any symmetric property that is true for
pt and false for p~ in k samples.
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Wishful Thinking Theorem

Proof of Wishful Thinking Theorem

o £~ MP*.
° Combining Roos s theorem with the bound on p, and assuming

+ 2-8.8
that p < 500k' we get that ]Mp - Poi(A¥)] < 557 < 25

@ The theorem's hypothesis implies |Poi(AT) — Poi(A7)| < 2 -

@ Using the triangle inequality, we get that the statistical

distance between the distributions of fingerprints of Poi(k)

samples from p' versus p~ is at most % < %.

@ A k-tester (poissonized) must have a gap> % (succeed with
probability 7). This is impossible if [p* — p~| < 1/6.

o If a k-Poissonized tester doesn't exist, then neither does a
k-tester.

= it is impossible to test any symmetric property that is true for
p' and false for p~ in k samples. O
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Questions?
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Thanks!
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