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1 Testing Homomorphism of a Function

Definition 1 A function f : Zn → Zn is called homomorphism if
∀ x, y ∈ Zn , f(x) + f(y) = f(x+ y).

Definition 2 A function f : Zn → Zn is called ϵ-close to homomorphism if it can be
changed in at most ϵ-fraction of places x ∈ Zn to become a homomorphism, otherwise it is
ϵ-far.

Task Definition: Given a function f , test whether it is a homomorphism or ϵ-far from it.

Theorem 3 [Ben-Or, Luby, Rubinfeld and Coppersmith] ∀ 0 ≤ ϵ ≤ 1
3 there is a tester

for homomorphism that determines w.h.p if f is a homomorphism or ϵ-far from it in time
O(1ϵ ).

Key Idea: Relate ϵ to δ(f) = P∀x,y∈Zn [f(x) + f(y) ̸= f(x+ y)].

Algorithm Test Homomorphism

1. Repeat 4
ϵ times:

(a) Choose x, y ∈ Zn at random and check if f(x) + f(y) = f(x+ y).

2. Accept if all these hold with equality, otherwise Reject.

Analysis:
Runtime: Obvious.
Correctness: Since the algorithm always accepts a homomorphism function, it is a one-sided
error algorithm. For the rest of the discussion, we therefore assume that f is ϵ-far from
homomorphism. We wish to show that P (algorithm accepts f) ≤ 1

3 .
A simple but important observation in this context is that if f is ϵ-close to homomorphism
then there exists a ”corrected” function g : Zn → Zn which is both homomorphism and
ϵ-close to f . This function g is defined as follow: g(x) = pluralityyf(x+ y)− f(y). Intu-
itively, the value f(x+ y)− f(y) can be thought of as the ”vote” of y on x. If f is ϵ-close
to homomorphism, then most of the votes for a given x are the same, resulting in a homo-
morphism function g. To prove this intuition in a formal manner, we state two auxiliary
claims.
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Claim 4 f and g agree on at least 1− 2δ values.

Claim 5 If δ(f) ≤ 1
6 then g is homomorphism.

Assuming these claims to be correct, we turn to prove Theorem 3.

Proof [of Theorem 3]
Recall that we consider the case where f is ϵ-far from homomorphism. First, assume that
δ(f) ≤ ϵ

2 ( < 1
6). By Claim 4 and Claim 5 we have that f is 2δ(f) ≤ ϵ close to homomor-

phism, and we end with a contradiction. Next, assume that δ(f) > ϵ
2 . We will see that in

this case the algorithm will reject the function w.h.p.:
P [alg accepts f ] ≤ (1− δ(f))

4
ϵ ≤ (1− ϵ

2)
4
ϵ < e−2 < 1

3 as required.

It is yet left to prove the supporting claims. We begin with Claim 4.

Proof [of Claim 4]
Let ∆(f, g) denote the fraction of disagreements between f and g.
Let B = {x : Pry[f(x) + f(y) ̸= f(x+ y)] ≥ 1

2}. Notice that B contains all the x′s where f

and g disagree. In addition, δ(f) ≥ |B|
n · 1

2 , where
|B|
n is the probability to choose a bad x,

and 1
2 is a lower bound for the probability to chose a bad partner y. Overall we have that

∆(f, g) ≤ |B|
n ≤ 2δ(f) as required.

As a step toward proving Claim 5, we state the following claim.

Claim 6 The function g is a strong plurality (if δ is small) in the following sense,
∀ x, Py[g(x) = f(x+ y)− f(y)] ≥ 1− δ(f).

Proof [of Claim 6]
We first analyze for an arbitrary x ∈ Zn the ”collision probability” of two votes and then
relate it to the ”plurality probability” as required by the claim.
Fix x and choose y1, y2 at random and independently. Then we have that
Py1,y2 [f(x+ y1)− f(y1) = f(x+ y2)− f(y2)] =

Py1,y2 [f(x+ y1) + f(y2) = f(x+ y2) + f(y1)] ≥

Py1,y2 [f(x+ y1) + f(y2) = f(x+ y2) + f(y1) = f(x+ y1 + f(y2)] ≥ 1− 2δ(f)

Where the last inequality follows by the union-bound. To show that the ”collision proba-
bility” is at most the ”plurality probability”, we consider an experiment A with n possible
outcomes, where o(A) ∈ [1, n] denotes the outcome of A. Let pi = P [o(A) = i], i.e.,
the probability where that the experiment ended with outcome i., where pi > 0 for every

1 ≤ i ≤ n, and
n∑

i=1

pi = 1. The probability that two independent experiments A,B ended

with the same outcome (i.e., collision occurred) is given by
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P [o(A) = o(B)] =

n∑
i=1

p2i ≤ max
j

(pj) ·
n∑

i=1

pi = max
j

(pj) · 1 = max
j

(pj).

Since maxj(pj) is the ”plurality probability” the claim is established.

We are now ready to complete the proof for Claim 5.

Proof [of Claim 5]
Fix x, z. By applying Claim 6 three times, first for x, then for z and finally for x + z, we
get

1) Py[g(x) ̸= f(x+ y − x)− f(y − x)] ≤ 2δ(f) < 1
3

2) Py[g(z) ̸= f(z + y)− f(y)] ≤ 2δ(f) < 1
3

3) Py[g(x+ z) ̸= f(x+ z + y − x)− f(y − x)] ≤ 2δ(f) < 1
3

With positive probability none of these events happen, implying that
∃y such that g(x) + g(z) = [f(y)− f(y − x)] + [f(z + y)− f(y)] = g(x+ z)
where the first equality is followed by (1,2) and the second equality is followed by (3). The
Claim follows.

2 Testing a Dense Graph for Bipartiteness

Definition 7 Graph G = (V,E) is ϵ-far from bipartite if it is necessary to remove more
than ϵ|V |2 edges so that it becomes bipartite.

Task definition: Given a dense graph G = (V,E), determine w.h.p if it is bipartite or ϵ-far
from it.

Theorem 8 (Goldreich-Goldwasser-Ron) There is a tester for bipartiteness that deter-
mines whether G is bipartite or ϵ-far from it in time (1ϵ )

O(1).

In particular, the tester we present always accepts bipartite graphs and rejects ϵ-far in-
stances with probability at least 2

3 .

Key Idea: Sampling small number of vertices is in fact representative.

Algorithm Test-Bipartite

1. Uniformly and independently select m = Θ(
log( 1

ϵ
)

ϵ2
) vertices.

2. Accept iff the subgraph induced on them is bipartite (by BFS)
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Analysis:

Runtime: Θ(
log2( 1

ϵ
)

ϵ4
). Quadratic in the size of the sample due to construction of the induced

subgraph.
Correctness: If G is bipartite then clearly so is every subgraph of it. Hence, this is a one-
sided error tester. We next assume that G is ϵ-far from bipartite and wish to show it is
rejected by the algorithm with probability greater than 2

3 .
Let R denote the set of sampled vertices. It is convenient to view R as composed of two parts
that are sampled one after the other, namely U and S respectively. Let |U | = O(1ϵ log

1
ϵ )

and |S| = O( |U |
ϵ ). One can check that indeed m = |U | + |S|. Note, that since the vertices

are selected independently, repetitions may occur (e.g., U and S may overlap). We first
provide some definitions.

Definition 9 A vertex v is high-degree if its degree is greater than ϵn
3 .

Definition 10 Set U ∈ V is good if all but at most ϵn
3 of the high-degree vertices of V are

adjacent to U .

Let Γ(w) = {v : (w, v) ∈ E} (the neighbors of w).
Let Γ(W ) = ∪w∈WΓ(w).

Claim 11 With probability of at least 5
6 over the choice of U , the set U is good.

Proof
Let v ∈ V be a high-degree vertex. The probability that U contains none of v′s neighbors
is at most

(1− ϵ

3
)|U | < e

ϵ
3
·|U | (1)

If we sample |U | = 3
ϵ · ln(

18
ϵ ), we get that this probability is at most ( ϵ

18). By linearity of
expectation, the expected number of such v′s is ≤ ϵn

18 . Finally by Markov’s inequality, the
probability that there are more than ϵn

3 such v′s (high-degree vertices with no neighbor in
U) is at most 1

6 as required.

Definition 12 An edge is said to disturb a partition U = U1
∪

U2 if its endpoints are in
the same Γ(Ui) for i ∈ [1, 2].

Claim 13 If G is ϵ-far from bipartite then for every good U and for every partition of
U = U1

∪
U2 there are at least ϵn2

3 disturbing edges.

Proof
Assume U is indeed good and consider a fixed partition U = U1

∪
U2. Let N = Γ(U) and

C = V \N . Since U is good, we have that C contains at most ϵn
3 high-degree vertices. We

next use the partition of U to induce a partition of N and eventually on V in the following
manner:
N1 = Γ(U1) and N2 = Γ(U)\N1. Let C1, C2 be any partition of C such that (C

∩
U1) ⊆ C1
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and (C
∩

U2) ⊆ C2. The final partition of V = V1
∪

V2 is V1 = N1
∪

C2 and V2 = N2
∪

C1.
Observe that since G is ϵ-far from bipartite, every partition of V has more than ϵn2 ”dis-
turbing” edges. In particular this is correct for the partition (V1, V2). We next show that
many of these ”disturbing” edges are incident to vertices in U .
Q: How many disturbing edges at-most can be incident to C (i.e., not incident to N)?
Ans.: C contains at-most n edges from each of at-most ϵn

3 high-degree vertices. In addition,
it contains at-most ϵn

3 edges from each of at-most n non-high-degree vertices.

Overall, we get that the are at least ϵn2

3 disturbing edges that are incident to N .

We are now ready to complete the proof of Theorem 8.

Proof [of Theorem 8]
Let G[R] be the graph induced by the the selected set R. For G[R] to be bipartite we must
have either:

1) U is not good (w.p ≤ 1
6)

2) U is good and ∃ a partition U = U1
∪

U2 such that none of its disturbing edges occur
in G[R]. Applying the union-bound over the possible 2|U | partitions of |U | and combining
Claim 13, we get that the probability for such an event is at most

2|U |(1− ϵ
3)

|S|
2 = 2|U | · e

−ϵ|S|
6 < 1

6 .
Overall, the probability to accept an ϵ-far graph G is at-most 1

6 + 1
6 = 1

3 as required.
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