
Seminar on Sublinear Time Algorithms

Lecture 5

April 21, 2010

Lecturer: Robert Krauthgamer Scribe by: Anat Ganor Updated: May 16, 2010

1 Lower Bound For Element Distinctness

Given a list of n integers, the problem of element distinctness is to determine if the list has
distinct elements or is ε-far from it, meaning at least ε-fraction of the elements must be
changed to make all the elements in the list distinct.
We present a lower bound on the query complexity of any algorithm that solves this problem.

Theorem 1 Every algorithm that tests if the list has all distinct elements makes Ω(
√

n
ε
)

queries.

Remark As a sanity check, taking ε = 1

n
means that there is one “interesting” element

(a witness for a collision) and intuitively it requires Ω(n) queries to find it.

Proof Idea For any two specific inputs there exists an algorithm that is adapted to these
inputs. For example, if we take the two inputs x = (1, 2, ..., n) as a “yes” example, and
y = (1, 1, 2, 2, ..., εn, εn, εn + 1, εn + 2, ..., n(1 − ε)) as a “no” example, then an algorithm
that checks the second coordinate can distinguish between them. Therefore, we look on
distributions over inputs. We need two distributions, one over “yes” instances and the other
over “no” instances. Then, we require that the algorithm accepts every “yes” instance and
rejects every “no” instance with high probability. We assume that the algorithm is random,
meaning it looks on random coordinates of the input. Given

√
n samples we get

(

√
n

2

)

≈ n

correlated pairs. It should find one out of εn pairs that are “interesting” (witnesses for
collisions). The probability that a random pair is one of these witnesses is only εn

n2 = ε
n
.

By looking at less than n
ε

pairs we might not catch any of them. We will assume that the
algorithm makes less than Θ(

√

n
ε
) queries and show that statistically, it is likelt to get the

same answers to its queries on inputs from D0 and D1, so it cannot distinguish between
them with high probability. Hence, we need different distributions D0,D1 (the ones above
are not “hard enough”).

Proof Attempt Consider the following distributions D0 = uniform over all permutations
of {1, 2, ..., n} and D1 = uniform over all permutations of {1, 1, 2, 2, ..., εn, εn, εn + 1, εn +
2, ..., n(1 − ε)}. The algorithm that checks the second coordinate does not work any more.
However, after only O(1

ε
) queries we can see a number that is bigger than n(1 − ε) with

high probability.

Proof Let D0 be uniform over all permutations of {1, 2, ..., n} as before and D1 be as
follows: start with a uniform permutation of {1, 2, ..., n}, pick εn random elements from

5-1

the first half and copy them to εn random positions in the second half of the list. Clearly,
instances given from the D1 distribution are ε-far from the all distinct list.

Consider an algorithm A that makes q queries where q ≤
√

n
16ε

and suppose for the sake
of contradiction that it errs with probability at most 1

3
, i.e.

Pr
x∼D0

[A accepts x] ≥ 2

3
and Pr

x∼D1

[A accepts x] ≤ 1

3
(1)

Assume for now that A is a non-adaptive algorithm, i.e. all queries are determined in
advance, not according to answers to previous queries. In this case, we can think of A as
an algorithm that first tosses some coins R and then proceeds as a deterministic algorithm
which we denote as AR. Let i1, ..., iq ∈ [n] be the deterministic positions in the input that
AR queries. Note that we can assume that the algorithm queries exactly q distinct positions
since any other behaviour can be reduced to that.

Define P
j
R = Pr

x∼Dj
[AR accepts x] for j ∈ {0, 1}. We need to show that for every R,

|P 0
R −P 1

R| is small. Under D0 the algorithm reads q random distinct values from [n]. Under

D1, for every pair j 6= j′ ∈ [q] it holds that Pr
x∼D1

[xij = xij′
] ≤ εn

n
2

· 1
n
2

=
4ε

n
. By the union

bound, Pr
x∼D1

[∃j 6= j′ ∈ [q] s.t. xij = xij′
] ≤ 4εq2

n
. If this event does not occur then AR sees

distinct elements that are distributed uniformly, i.e. xi1 , ..., xiq are random q values from

[n]. Therefore, |P 0
R −P 1

R| ≤
4εq2

n
≤ 1

4
where the last inequality holds due to the assumption

that q ≤
√

n
16ε

.
We saw that D0,D1 are “bad” for any deterministic algorithm so they are also “bad”

for any distribution over deterministic algorithms, i.e. for any randomized algorithm A it
holds that Pr

x∼Dj
[A accepts x] = ER[P j

R] and therefore,

Pr
x∼D0

[A accepts x] − Pr
x∼D1

[A accepts x] = ER[P 0
R − P 1

R] ≤ 1

4
(2)

in contradiction with (1). This is essentially based on Yao’s min-max principle.
To complete the proof for adaptive algorithms, note that this property of element dis-

tinctness is invariant under permutations, so if there exists an adaptive algorithm that uses
q queries then there exists also a non-adaptive one that uses the same number of queries.

2 Lower Bound For Testing Juntas

Definition 2 A function f : {0, 1}n → {0, 1} is called a k-junta if it depends on at most k

of its variables, i.e. there exist i1, ..., ik ∈ [n] such that f(x) = f(y) whenever x, y agree on
the coordinates i1, ..., ik.

We say that f is ε-far from a k-junta if we need to change at least ε-fraction of the values
of f to make it a k-junta. Note that f is given as a truth table, i.e. 2n bits.

Here we show a result of [1].

5-2

Theorem 3 For every 0 ≤ ε ≤ 1

8
, every tester for k-junta (k < n) must make Ω(k) queries.

Remark

• This holds also for adaptive algorithms.

• The bound is not known to be tight. Also, it does not depend on ε.

Proof Let D0 be a uniform distribution over all functions that depend only on x1, ..., xk+1.
To create an instance of D0 pick g : {0, 1}k+1 → {0, 1} uniformly at random and define
f(x1, ..., xn) = g(x1, ..., xk+1).

Claim 4 A function f taken from D0 is 1

8
-far from k-junta (and therefore ε-far for any

ε ≤ 1

8
) with high probability (say ≥ 0.99) for large enough k.

Proof Idea Define random variables Zi for every i ∈ [k + 1], indicating if there exists
x ∈ {0, 1}n such that f(x) 6= f(x + ei). The number of variables that f depends on is
∑

Zi. Use Chernoff’s inequality to show that the probability that f depends on at most k

variables (i.e. there exists i such that Zi = 0) is smaller than 1

100
.

Let D1 be a uniform distribution over all functions that depend only on {x1, ..., xk+1}\{xj?},
where j? is chosen uniformly from [k+1]. Clearly, every f that is taken from D1 is a k-junta.

Consider an (adaptive and randomized) algorithm A that makes q < k
10

queries. Let its
queried points be S = {x1, ..., xq}. Note that xi is a random variable for any i ∈ [q] (even
if the algorithm is deterministic, because they depend on f ∈ Dj for j ∈ {0, 1}).

Definition 5 We say that x is a witness for the fact that f depends on i ∈ [q] if f(x) 6=
f(x + ei) (where ei has only one 1 in the ith coordinate).

Definition 6 For a given i ∈ [n] we say that x, y are i-twins if they disagree only on the
ith coordinate, i.e. y = x + ei.

Define twins(S) = {i|∃x, y ∈ S that are i-twins}.

Claim 7 |twins(S)| ≤ |S| − 1.

Proof Think of S as a subset of vertices in the hypercube {0, 1}n. Let E be the subset of
edges such that for every i, if S contains i-twins then E contains one edge corresponding to
this i-twins. Therefore, i.e. |E| = |twins(S)|. The graph induced by E is acyclic (because
every cycle must repeat some i-twins twice), so it must be that |E| ≤ |S| − 1.

Fix randomness R and call the deterministic algorithm AR. As long as the first ` queries
do not contain j?-twins, the distributions of f(x1), ..., f(x`) under D0 and under D1 are the
same. Meaning,

Pr
f←D0

[AR accepts | didn’t see j?-twins] = Pr
f←D1

[AR accepts | didn’t see j?-twins] (3)

5-3

In addition, for j ∈ {0, 1}

Pr
f∈Dj

[AR sees j?-twins at query x` | didn’t see j?-twins before x`]

=
|twins{x1, ..., x`}\twins{x1, ..., x`−1}|

k + 1 − |twins{x1, ..., x`−1}|

≤ |twins{x1, ..., x`}| − |twins{x1, ..., x`−1}|
k
2

where the last inequality holds due to Claim 7 and the fact that ` ≤ q ≤ k
10

.

Altogether, Pr
f∈Dj

[AR sees j?-twins] ≤
k
10

k
2

=
1

5

⇒ Pr
f∈D1

[AR accepts f] ≤ Pr
f∈D0

[AR accepts f] +
1

5
Taking expectation over R, we have Pr

f∈Dj
[AR accepts f] = ER Pr

f∈Dj
[AR accepts f]

⇒ Pr
f∈D1

[A accepts f] ≤ Pr
f∈D0

[A accepts f] +
1

5
But the LHS is at least 2

3
(since every f ∈ D1 is a k-junta) while the RHS is at most

99

100
· 1

3
+ 1

100
· 1 + 1

5
< 2

3
, and we get a contradiction.

References

[1] Chockler A. and Gutfreund B. A lower bound for testing juntas. Information Processing
Letters, 2004, Volume 90, Issue 6, Pages 301-305.

5-4

