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1 The linear algebra of linear programs

Many optimization problems can be formulated as linear programs. The main features of a
linear program are the following:

• Variables are real numbers. That is, they are continuous rather than discrete.

• The objective function is a linear function of the variables. (Each variable effects the
object function linearly, at a slope independent of the values of the other variables.)

• Constraints on the variables are linear.

One of the first recorded examples of a linear program is the so called diet problem.
Assume that a persons diet is composed entirely of n foods. Assume that there are m
nutrients, and the person is required to consume at least bi units of nutrient i (for 1 ≤ i ≤
m). Let aij denote the amount of nutrient i present in one unit of food j. Let ci denote
the cost of one unit of food item i. The problem is to design a diet of minimal cost that
supplies at least the required amount of nutrients.

Using matrix and vector representation (in which vectors are column vectors, Ai is row
i of matrix A given as its column vector, and xT is the transpose of vector x and hence a
row vector), we have the following linear program:

minimize cTx
subject to
Ax ≥ b
x ≥ 0
Let us remark that one could add constraints bounding from above the amount of

nutrients consumed (e.g., not too much fat in the diet).
(Modeling the diet problem as a linear program includes many hidden assumptions such

as that the cost is linear, that there are no interdependencies in the nutritional values of
various foods, that any fractional amount of food can be bought, etc. As these assumptions
are only approximations of the true state of affairs, an optimal solution to the linear program
can only be viewed as a guideline for selecting a desirable solution, and not as the ultimate
solution.)

A solution satisfying all constraints is feasible. A feasible solution that also optimizes
the objective function is optimal.
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1.1 Fourier-Motzkin elimination

In the coming lectures we will see approaches for solving linear programs. But first, let us
sketch an inefficient approach.

Consider first the case of finding a feasible solution. If all constraints were equalities
rather than inequalities, we could use Gaussian elimination (and find a feasible solution in
polynomial time). For inequalities we may perform a similar (but less efficient) procedure
known as Fourier-Motzkin elimination. To eliminate a variable xi, we bring all inequalities in
which it participates into one of two forms: xi ≤ αj and xi ≥ βj , where for every 1 ≤ j ≤ m,
αj and βj are linear functions of the rest of the variables. We can now eliminate xi, and
replace all constraints that included it by the new constraints βj ≤ αk (for 1 ≤ j ≤ m,
1 ≤ k ≤ m). Repeating this procedure for the other variables gives eventually a set of
inequalities in one variable, that can easily be solved. Note that each variable elimination
at most squares the number of constraints. Hence the complexity of the above procedure is
O(m2n) in the worst case. (Note however that if we can in each elimination step choose a
variable that appears in at most four inequalities, then the number of inequalities does not
grow, and the procedure becomes polynomial.)

Given the ability to find feasible solutions, we can in principle also find near optimal
solutions. This can be done by replacing the objective function by a constraint cTx ≤ t,
and searching for feasible solution. By doing binary search on t (assuming that we have
reasonable estimates for lower and upper bounds of t), we can find a solution arbitrarily
close to the true optimum. For the specific case of using Fourier-Motzkin elimination, we
can treat t as a variable and leave it last in the elimination order. This allows us to find
the exact optimum.

We shall now develop some theory that will allow us to design more efficient algorithms
for solving linear programs.

1.2 Forms

The linear program for the diet problem is in canonical form. In a linear program in general
form, the constraints are linear but may involve inequalities of both types (≤ and ≥),
as well as equalities (=). Variables may be required to be nonnegative ≥ 0, or else be
unconstrained. Another useful form of a linear program is the standard form:

minimize cTx
subject to
Ax = b
x ≥ 0
All forms are equivalent in terms of their expressive power, and it is simple to transform

a linear program in general form to standard form and to canonical form.
To replace an unconstrained variable xi by nonnegative variables, introduce to auxil-

iary variables x+i and x−i , replace every occurrence of xi by x+i − x−i , and add the two
nonnegativity constraints x+i ≥ 0 and x−i ≥ 0.

To change a ≤ inequality AT
i x ≤ bi to a ≥ inequality, negate it, obtaining −AT

i x ≥ −bi.
To change an equality AT

i x = bi to inequalities, replace it by AT
i x ≤ bi and AT

i x ≥ bi.
To change an inequality AT

i x ≤ bi to an equality, introduce a slack variable yi, the
inequality AT

i x+ yi = bi, and the nonnegativity constraint yi ≥ 0.
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Note that the above transformations change a general linear program with n variables
and m constraints to a linear program with O(n+m) variables and constraints.

For linear programs in standard form, it is convenient to assume that the constraints
(rows of the matrix A) are linearly independent. If the rows are not linearly independent,
then it suffices to consider rows of A that constitute a basis for the row space (a maximal
linearly independent set of row vectors). Either every solution that satisfies the constraints
that correspond to the basis satisfies all constraints, or the LP is infeasible.

1.3 Basic feasible solutions

Consider an LP in standard form, with linearly independent constraints. Let B be a sub-
matrix of A containing exactly m linearly independent columns. This is a basis of the
column space of A. Let xB be the set of basic variables corresponding to the columns of
B. If B−1b ≥ 0, then the following is a basic feasible solution: the basic variables are set to
B−1b, and the nonbasic variables are set to 0. Clearly this solution is feasible. Note that
it satisfies n linearly independent constraints with equality: the m constrains of Ax = b,
and n−m of the nonnegativity constraints. The other (nonnegativity) constraints are also
satisfied, though not necessarily with equality.

Each basis gives at most one basic feasible solution. (It gives none if the condition
B−1b ≥ 0 fails to hold.) Two different bases may give the same basic feasible solution, in
which case the basic feasible solution is degenerate (more than n−m variables are set to 0).

Basic feasible solutions play an important role in linear programs.

Lemma 1 For every basic feasible solution, there is a choice of objective function ctx for
which the bfs is the unique optimal solution.

Proof: Consider an objective function for which ci = 0 if xi is positive in the bfs, and
ci = 1 otherwise. The objective function is nonnegative for every feasible solution (because
of the nonnegativity constraints), and 0 for the particular bfs. As there is no other feasible
solution with the same (or larger by containment) set of 0 variables (otherwise B−1b would
have more than one solution), the bfs is the unique minimum. 2

Lemma 2 Every LP in standard form is either infeasible, or the optimal value is un-
bounded, or it has a basic feasible solution that is optimal.

Proof: Assume that the LP is feasible and that its optimum is bounded from below.
Let q be used to denote the value of the objective function. First we show that for every
value of q, if there is a solution x of value q (namely, ctx = q), then there is a basic feasible
solution x∗ of value at most q.

Let x+ be the set of positive variables in x. If the columns in A corresponding to
x+ are linearly independent, then we can complete them to a basis giving x as a bfs.
Hence it remains to deal with the case that the columns in A corresponding to x+ are not
linearly independent. Denote them by A1, . . . , At and the values of the positive variables
by z1, . . . , zt. Then we have

∑t
i=1A

izi = b. There is also a solution w to
∑t

i=1A
ixi = 0.

Consider now the sign of ctw. If ctw < 0, then perturbing x by a positive multiple of w
reduces the value of the objective function. As the value of the objective function is bounded
from below, it must be the case that changing x by a multiple of w eventually causes a new
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nonnegativity constraint to becomes tight. This gives a feasible solution with lower value
for the objective function and at least one more variable that is 0. If ctw > 0, then the same
effect is reached by perturbing x by a negative multiple of w. If ctw = 0 then using the
fact that w has at least one nonzero variable (and is 0 whenever x is), there is a multiple of
w that we can add to x that causes one more variable to become 0, without changing the
value of the objective function. Repeating the above process we must eventually reach some
solution x∗ for which the columns in A corresponding to (x∗)+ are linearly independent,
implying a bfs.

As there are only finitely many basic feasible solutions (at most
(n
m

)
), there is one with

minimum value, and this must be an optimum solution for the LP. 2

Remark: The above proof technique also shows that every LP in standard form that
has a feasible solution and has no infinite line must also have a basic feasible solution. (In
the above proof, change x by a multiple of w in the direction where this line in bounded,
until the first time a new nonnegativity constraint becomes tight.)

Recall Cramer’s rule for solving Bx = b, where B is an invertible order n matrix. The
solution is

xj =
detBj

detB

for 1 ≤ j ≤ n, where here Bj is the matrix B with column j replaced by b. If each entry
in B and b is an integer with absolute value at most M , then each xj is a rational number
with numerator and denominator bounded by at most Mnn!. This can be used to show
that the length of numbers involved in a basic feasible solution are polynomially related to
the input size. (Moreover, it can be shown that when a system of linear equations is solved
by Guassian elimination, the length of intermediate numbers produced by the algorithm is
also polynomially related to the input size.)

Lemma 2 and its proof have the following algorithmic consequences:

1. Given a feasible solution of value q, one can find in polynomial time a basic feasible
solution of value at most q.

2. In order to solve an LP optimaly, it suffices to consider only basic feasible solutions.
As there are at most

(n
m

)
basic feasible solutions, we can solve LPs optimaly in this

time.

1.4 An application – the Beck-Fiala theorem

Let us first remark that one can extend the notion of basic feasible solutions also to LPs
that are not in standard form. Consider the case that among the constraints of the LP
there are n constraints that are linearly independent. (For LPs in standard form, these can
simply be taken to be the nonnegativity constraints.) Then a basic feasible solution is one
that satisfies n linearly independent constraints with equality. Also here, every LP that is
feasible and bounded has a bfs.

The existence of basic feasible solutions is a property that is used in many contexts.
Here is a nice example.

There is a set S on n items. We are given a collection of subsets Si ⊂ S, 1 ≤ i ≤ m.
The goal is to color the items red and blue, such that every subset is “nearly balanced”,
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namely, has roughly the same number of red items as blue items. The (absolute value of
the) maximum difference between number of red and blue items in a subset is called the
discrepancy of the coloring. The Beck-Fiala theorem gives sufficient conditions for a coloring
of low discrepancy to exist, regardless of the values of n and m.

Theorem 3 If every item is contained in an most d subsets, then there is a coloring with
discrepancy at most 2d− 1.

Proof: Think of 0 as denoting the color red and 1 as denoting the color blue. Think of
xj as a variable representing the color of item j. Let aij be 1 if set i contains item j, and 0
otherwise. Hence we seek a 0/1 solution satisfying |

∑
j aijxj − |Si|/2| ≤ d − 1/2 for every

set Si.
Consider the following set of linear constraints:

1. For all 1 ≤ j ≤ n, xj ≥ 0.

2. For all 1 ≤ j ≤ n, xj ≤ 1.

3. For all 1 ≤ i ≤ m,
∑

1≤j≤n aijxj = |Si|/2.

This set has a feasible solution, namely, xj = 1/2. We shall “round” this fractional
solution to an integer solution. This rounding will introduce a slackness of at most d− 1/2
in the subset constraints.

As the set of constraints is feasible, it has a basic feasible solution. In a bfs, at least
n − m variables are set to either 0 or 1. Update the set of constraints by removing the
integer variables, and updating the right hand side of every subset constraint by the sum
of values removed from its left hand side. Some subset constraints are “small”, in the sense
that they have at most d noninteger variables left. For them, no matter how we set the
remaining variables, the slackness introduced will be at most d−1/2. (We used here the fact
that the right hand side of each constraint is half-integer, and the right hand side of small
constraints must lie between 1/2 and d− 1/2.) Hence we can ignore the small constraints.
So we are left with a set of residual constraints and a set of variables whose fractional values
satisfy the residual constraints. As each residual constraint has more than d variables, and
each variable appears in at most d residual constraints, then m′, the number of residual
constraints, must be smaller than n′, the number of fractional variables. Again, moving
to a bfs of the residual system of constraints, n′ −m′ > 0 variables receive integral value.
Continuing with this process until no residual constraints are left, the theorem is proved.
2

We note that the proof (together with the proof of Lemma 2) gives a polynomial time
algorithm for finding a coloring of low discrepancy.

1.5 An open question

It is quite easy to slightly strengthen the Beck-Fiala theorem. In the proof, call a set small
if it has at most d − 1 fractional variables. Then for small sets the slackness will be at
most d − 3/2, giving a discrepancy of at most 2d − 3. Now it might not be the case that
all sets eventually end up being small – all residual sets might contain exactly d fractional
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variables. In this case, rounding all remaining fractional variables to their nearest integer
gives a slackness of at most d/2. Hence the discrepancy is at most max[2d − 3, d]. For d
equals 1 and 2, this is best possible. (For d = 1, a single set with one item has discrepancy 1.
For d = 2, three sets, each containing two out of three items, requires discrepancy 2.) For
d ≥ 3 we have that 2d − 3 ≥ d, and hence the discrepancy is at most 2d − 3, a mild
improvement over the Beck-Fiala theorem.

It is conjectured that under the terms of the Beck-Fiala theorem, there always is a
coloring with discrepancy O(

√
d), offering a large improvement when d is large. If true, this

bound would be best possible (up to constant multiplicative factors), as even for a collection
of d random subsets of a set of d items, every coloring has a discrepancy of Ω(

√
d). (This

last statement can be proven by a straightforward probabilistic argument.)

2 The geometry of linear programs

In Section 1 we presented linear programs from a linear algebra point of view. The use of a
geometric representation helps build intuition about linear programming. This is easiest to
visualize in two dimensions (when there are only two variables, or only two constraints), and
still manageable in three dimensions. Much of the low dimension intuition is also true in
higher dimensions, and can be formalized and applied for linear programs with an arbitrary
number of dimensions.

2.1 Two variables or two constraints

The constraints of a linear program with two variables in canonical form can be drawn as
half-planes, and the feasible region as an intersection of half-planes. The objective function
can be represented either as a vector pointing in its direction, or as equivalue lines.

The vertices will correspond to bfs for the linear program, when transformed to standard
form (using slack variables). A degeneracy is the result of three constraints intersecting at
a point on the boundary of the feasible region. (When transforming the LP from canonical
form to standard form, this will give three slack variables that are 0, which will be larger
than n−m.)

For linear programs in standard form, the two-dimensional representation above be-
comes uninteresting. There can be at most two equality constraints, and the feasible region
degenerates to a point.

When there are two constraints in standard form, each column of the matrix A (which
corresponds to a variable) can be viewed as a point in the plane. The vector b is another
point in the plane. A feasible solution is two vectors that can be added (with nonnegative
coefficients) to give the point b. (In canonical form, a feasible solution is a set of vectors
that can be added to give a point in the quarter plane to the right and above b.) There
is a degenerate solution if a single vector points in the direction of b. (More than n − m
variables can be set to 0.)

2.2 Some standard terminology

Convex combination, convex set, convex hull. A point x ∈ Rn is a convex combination
of points x1, . . . , xt if there are some λi ≥ 0 with

∑t
i=1 λi = 1 such that x =

∑t
i=1 λixi. A
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set S is convex if for every two points x, y ∈ S, every convex combination of them (namely,
their convex hull) is in S. The intersection of convex sets is a convex set.

Linear and affine vector spaces. A linear (vector) subspace in Rn is a set of vectors
closed under addition and under multiplication by scalars. Equivalently, it is the set of
solutions to a system of homogeneous linear equations Ax = 0. It is a convex set. The
dimension of a linear space is the maximum number of linearly independent vectors that
it contains. It can be shown that this is equal to n minus the rank (number of linearly
independent rows) of the matrix A above. For a vector b ∈ Rn and vector space S ∈ Rn, the
set {b+ s|s ∈ S} is called an affine subspace. It has the same dimension as S. Equivalently,
an affine subspace is the set of solutions to a set of linear equations Ax = b. The dimension
of a set T ∈ Rn is the dimension of the minimal affine subspace containing it. In particular,
the dimension of the set of solutions to a linear program in standard form (with linearly
independent constraints) is at most n−m.

Hyperplane, halfspace. For a vector a ∈ Rn, a ̸= 0, and b ∈ R, the set of points
x satisfying aTx = b is called a hyperplane. It is an affine subspace of dimension n − 1.
The set of points satisfying aTx ≥ b is a halfspace. Hyperplanes and halfspaces are convex.
Observe that a hyperplane is the intersection of two halfspaces.

Polyhedron, polytope. The intersection of finitely many halfspaces is a polyhedron.
It follows that the set of constraints of a linear program define a polyhedron which is the
region of feasible solutions. It is a convex set. A polyhedron P that is bounded (namely, for
some scalar c, xTx ≤ c for all x ∈ P ) is a polytope.

Face, facet, edge, vertex. Let P be a polytope of dimension d in Rn, HS a halfspace
supported by hyperplane H. If f = P

∩
HS is contained in H and not equal to P , then f

is a face of P and H is a supporting hyperplane or P . A facet is a face of dimension d− 1.
An edge is a face of dimension 1. A vertex is a face of dimension 0. Equivalently, we can
define a vertex of a polytope (or polyhedron) P as point x ∈ P such that for some vector
c ∈ Rn, cTx < cty for every y ∈ P − {x}. The equivalence between the two definitions can
be seen by taking c to be the normal of H at x, pointing inwards towards the polytope.

Extreme point. An extreme point of a polyhedron P is a point x ∈ P such that there
are no other two points y, z ∈ P such that x is a convex combination of them.

Recall that in Section 1.3 we defined basic feasible solutions for linear programs in stan-
dard form. This can be generalized to any linear program, where we define a BFS as a
feasible solution for which n linearly independent constraints are tight (including nonnega-
tivity constraints).

Lemma 4 For a polyhedron P and a point x ∈ P , the following three statements are
equivalent.

1. x is an extreme point of P .

2. x is a vertex of P .

3. x is a basic feasible solution.

Proof: We shall prove the lemma for an LP in standard form. The proof for an LP in
general form is left as homework.

BFS implies vertex. This is essentially Lemma 1 from Section 1.3.
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Vertex implies extreme point. If w is a vertex, then for some vector c, cTx is uniquely
minimized over P at w. If w were not extreme, then we could write w = λy + (1− λ)z for
some y, z ∈ P − {w} and 0 < λ < 1, and then for either y or z, their inner product with c
would be smaller. A contradiction.

Extreme point implies BFS. We show that not BFS implies not extreme. Let w =
(w1, . . . , wn) ∈ P not be a BFS. Let x+ be the set of nonzero variables in w, and let A+ be
the columns of A that correspond to the nonzero variables. The columns in A+ are linearly
dependent (as w is not a BFS). Hence there is a nonzero solution to A+x+ = 0. Call it
d+. Let d be a vector that agrees with d+ on the variables of x+, and is zero elsewhere.
Consider the points y = w + ϵd and z = w − ϵd, where ϵ is chosen small enough to ensure
that y ≥ 0 and z ≥ 0. Both y, z ∈ P , and w = y/2+ z/2, showing that w is not an extreme
point. 2

Another useful way of characterizing a polytope is as the convex hull of all its vertices.

Lemma 5 For a polytope P of dimension d, every point in it is the convex hull of at most
d+ 1 of its vertices.

Proof: The proof is by induction on d. The base case (dimension 0, a single vertex) is
trivial. For the inductive step, we need the following facts:

1. Every polytope has a vertex. (We have seen something similar in Section 1.3 – the
existence of basic feasible solutions for LPs in standard form.)

2. Every face of a polytope is a polytope of lower dimension. (The face satisfies a linear
equality that is not satisfied by some points in P .)

Take an arbitrary point x ∈ P . Take an arbitrary vertex v of the polytope. Follow the
line from v through x (this portion must lie entirely within the polytope) until is hits a
face of P (which is must do, as the polytope in bounded) at a point z. Then x is a convex
combination of v and z. By induction, z is a convex combination of at most d vertices,
showing that w is a convex combination of at most d+ 1 vertices. 2
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