
Advanced Algorithms 2012A

Lecture 13 – Graph Compression and Cut Sparsifiers∗

Robert Krauthgamer

The general idea is: given a graph on n vertices, can we store the “relevant information” (think of
distances or cuts) in a “compressed” form, i.e. using less than O(|E(G)|) machine words? Often,
the compression is achieved at the expense of some (actually, multiplicative) approximation of the
relevant values. The stored information could take any form. A particular interesting representation
is another graph G′ (say, smaller, i.e. with fewer edges), which would be useful if we later want
to run some graph algorithms (on G′ instead of G). Sometimes we prefer a representation (data
structure) that can answer queries about the relevant information quickly (say in O(1) time).

Today we will focus on representing all cuts in a graph. For instance, if we want to solve some
cut problem (say st-cut), the runtime may depend on number of edges, which may be as large as
n2. Can we approximate all the cuts in the input graph using a sparse graph (and compute this
approximation quickly)?

1 Graph Sparsification for Cuts I

Let G = (V,E) be an unweighted (multi-)graph, and suppose we want to approximate all cuts
within factor 1 ± ε. (Since we allow parallel edges, we can actually handle “small” weights.) We
shall write G ≤ G′ if for every cut (S, S̄), the capacity in G at most that in G′.

First try – subsampling. Let’s sample (i.e. keep) every edge independently with probability
p ∈ [0, 1]. Denote the resulting graph G′ = (V,E′). Consider a cut (S, S̄), and suppose it’s capacity
(size) in G is c = |E(S, S̄)|. Denote the capacity of the corresponding cut in G′ by a random
variable c′ = |E′(S, S̄)|. Then

E[c′] = pc.

So in expectation, cuts are preserved up to scaling by a factor of 1/p (which can be “corrected” by
giving every sampled edge capacity 1/p). But is c′ likely to be close to its expectation? The answer
is essentially yes, because it is the sum of independent indicators (one for each edge in the cut), as
follows.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Theorem [Chernoff-Hoeffding concentration bound]. Let X =
∑

i∈[n]Xi where each Xi ∈
[0, 1] and (Xi : i ∈ [n]) are independently distributed. Then

1. ∀t > 0, Pr[|X − EX| > t] ≤ e−2t2/n.

2. ∀0 < ε < 1, Pr[X < (1− ε)EX] ≤ e−ε2EX/2.

3. ∀0 < ε < 1, Pr[X > (1 + ε)EX] ≤ e−ε2EX/3.

4. ∀t > 2eEX, Pr[X > t] ≤ 2−t.

Example/Motivation: X is binomial B(n, 1/2); then we can compare to Central Limit Theorem
(tail of a Gaussian).

Analysis of subsampling. Using the concentration bound from above,

Pr[c′ > (1 + ε)Ec′] ≤ e−ε2pc/3.

Suppose we make sure that p ≥ 3d logn
ε2c

for some fixed d (say d = 5); then the RHS is ≤ 1/nd. And
since a similar bound applies to deviation in the other direction, we get

Pr[c′ /∈ (1± ε)Ec′] ≤ 2/nd.

But is it possible to guarantee this approximation to all (exponentially many) cuts? The answer
is yes, because in the number of small cuts is not too large, as shown in Theorem 1 below. We
can then apply a union bound in “groups”, each group having a number of events (cuts) that is
inversely proportional to their probabilities.

Theorem 1 [Karger]. Let G be a graph on n vertices, and let ĉ denote its min-cut capacity.
Then for every α ≥ 1, the number of cuts of capacity ≤ αc is at most n2α.

(Without proof.)

Theorem 2 [Karger]. Let G be a graph on n vertices and min-cut capacity ĉ. Build G′ by
including every edge from G with probability 1 ≤ p ≥ 12(d+ 1) lnn/ε2ĉ. Then with probability at
least 1−O(1/nd), every cut in G′ has capacity within 1± ε factor from its expectation.

Proof: shown in class.

Exer: Where did we use the fact that G is unweighted? Extend the theorem to weighted graphs.

Later today we will need the following variant of Theorem 2.

2

Theorem 3 [Karger]. Let G = (V,E) be a graph and Xe be independent random variables for
e ∈ E such that Xe ∈ [0,M]. Let G(Xe) be the random graph obtained from G by placing edge
weights equal to Xe, and denote by ĉ the minimum expected capacity over all cuts in G(Xe). Then
with probability ≥ 1−O(1/nd), we have every cut in G(Xe) has capacity within 1± ε factor of its
expectation, where ε =

√
2(d+ 2)(M/ĉ) lnn.

Example: if we are given a desired accuracy ε̃, we can set p = 2(d+2) lnn
ĉε̃2

. and let Xe = 1/p
with probability p, and xe = 0 (i.e. non-edge) otherwise. Then M = 1/p and we indeed get
ε =

√
2(d+ 2)(M/ĉ) lnn = ε̃. Notice this graph is exactly the one from previous theorem scaled

by 1/p factor.

Exer: Prove this theorem (similarly to the previous one).

2 Graph Sparsification for Cuts II

The downside of the above result is that the number of edges decreases roughly by a factor of
ĉ/ lnn, and in some cases it might still be quite dense (e.g. two cliques connected by a single edge,
hence ĉ = 1). We now aim to overcome this.

Theorem 4 [Benczur-Karger]. For every weighted graph G = (V,E) on n vertices and error
parameter ε > 0, there is a weighted subgraph G′ = (V,E′) with O(ε−2n log n) edges such that
G′ ∈ (1± ε)G. Moreover, G′ can be constructed in O(|E| log2 n) time.

Such a graph G′ is called a (1 + ε)-cut sparsifier.

In class we proved a slightly weaker version, for unweighted graphs, with another log2 n factor, and
without the near-linear time algoritm.

Main idea. Sample edges non-uniformly, each edge e with probability pe that is inversely pro-
portional to its “connectivity” ce. So “dense” regions will be sampled with smaller probability,
thereby reducing the number of edges there more aggresively.

Definitions of Connectivity. A graph is k-connected if every cut in it has capacity ≥ k. A
k-strong component is a maximal vertex-induced subgraph that is k-connected.

It follows that the k-strong components partition the vertices of the graph, and that a (k+1)-strong
components is a refinement of that partition.

The strong connectivity of an edge e ∈ E, denoted ce, is the maximum value k such that it is
contained in a k-strong component. An edge is called k-strong if its strong connectivity is at least
k, otherwise k-weak.

Note that strong connectivity differs from the usual definition of connectivity.

3

Construction of sparsifier G′. Let qε = 4(d+ 2)ε−2 lnn. Then sample every edge e ∈ E with
probability pe = min{qε/ce, 1}, in which case it is given weight 1/pe.

Lemma 5. If every edge e is sampled with probability min{q/ce, 1} then with at least 1−O(1/nd)
the resulting graph G′ has O(qn) edges.

Claim 5a. A graph with total edge weight ≥ k(n− 1) has a k-strong component (which may be
the graph itself).

Exer: Prove the claim. (Hint: repeatedly find a cut of capacity < k.)

Proof of Lemma 5. We shall only consider the expected number of edges; the high-probability
bound follows by Chernoff bound. The expected number of edges is at most q

∑
e∈E(1/ce).

To analyze this, consider a graph G̃, which is like G but with edge weights 1/ce. It suffices to
prove that this graph has total weight at most n. So let’s assume to the contrary; then by the
claim, it has a n

n−1 -strong component F̃ . Let F be the corresponding subgraph of G, and let ẽ have
minimum cẽ over e ∈ F .

By definition of cẽ, F cannot be more than cẽ-connected, hence there is a cut C of F of capacity
cap(C,F) ≤ cẽ. Consider the same cut C in F̃ ; each edge of C has capacity 1/ce ≤ 1/cẽ (compared
with 1 in F), thus

cap(C, F̃) ≤ (1/cẽ) cap(C,F) ≤ 1,

which contradicts the fact that F̃ is n
n−1 -strong.

Exer: Complete the high-probability proof using Chernoff bound.

Lemma 6 With high probability G′ ∈ (1± ε log |E|)G.

Note that this indeed proves a weaker version of Theorem 4, by simply using Lemmas 5 and 6 with
a smaller value ε′ = ε/ log |E|.

The main idea is to use the uniform sampling (Theorem 3) in “parts”. We thus divide the sampling
process into phases: at phase i = 0, 1, . . . we flip the coins only for edges e with 2i ≤ ce < 2i+1.

Proof Decompose G into graphs Gi for i = 0, 1, . . ., where e ∈ Gi if 2i ≤ ce < 2i+1. In the
analysis (in order to use Theorem 3), at phase i we actually consider the graph G≥i = ∪j≥iGj ;
notice that it contains all 2i-strong components. At phase i, we sample edges of G≥i as follows:

X(i)
e =

{
1/pe w.p. pe, and 0 otherwise if e ∈ Gi;

1 otherwise (i.e. e ∈ G≥i+1)

Recall that pe = min{qε/ce, 1}. (Edges of levels lower than i are not touched or considered at all.)

4

Consider a 2i-strong component H. Edges in H ∩Gi are sampled with probability pe, and edges in

H −Gi are always kept. Now in H(X
(i)
e), we can apply Theorem 3 with ĉ ≥ 2i and M = 2i+1/qε.

Since M/ĉ ≤ 2qε, we get that with high probability

H(X(i)
e) ∈ (1±

√
2(d+ 2)(2/qε) lnn)H = (1± ε)H.

By combining this argument to the disjoint 2i-strong components in G≥i, we have G≥i(X
(i)
e) ∈

(1± ε)G≥i.

Finally, we consider the entire graph G, incurring an error of ε at each level i (notice all 1 ≤ ce ≤
|E|):

G′ =

log |E|∑
i=0

Gi(X
(i)
e) =

∑
i

(
G≥i(X

(i)
e)−G≥i+1

)
∈
∑
i

(1± ε)G≥i −
∑
i

G≥i+1 =
∑
i

(1± ε)Gi ± ε
∑
i

G≥i+1

∈ (1± ε log |E|)G.

Theorem 7 now follows from Lemmas 5 and 6.

Exer: It is sometimes easier/faster to compute an approximation to ce. So suppose we use in pe an
approximation to ce, say within factor 3, i.e., values c′e ∈ [ce, 3ce]. Explain how how the theorem
and analysis shown in class extend.

5

