
Advanced Algorithms 2012A

Lecture 5 – flow/cut gap for sparse-cut∗

Robert Krauthgamer

1 Concurrent flow and sparse-cut

1.1 Concurrent flow

Consider the same setup as in the multicommodity flow problem, i.e. undirected graph G with
edge-capacities and k demand pairs {si, ti}. In the concurrent flow problem, the goal is to ship λ
units of flow between every demand pair, for the largest possible λ > 0.

The problem can be written as the LP below. We let Pi be the set of all si − ti paths. We have
variables for flow paths and also λ.

maximize λ

subject to
∑
p∈Pi

f i
p ≥ λ ∀i ∈ [k]∑

i∈[k]

∑
p∈Pi:e∈p

f i
p ≤ ce ∀e ∈ E

f i
p ≥ 0 ∀i ∈ [k],∀p ∈ Pi

(1)

Exer: Write an equivalent program that has a polynomial size.

1.2 Sparse-Cut

In the sparse-cut problem, the input is as above, and the goal is to find a set of edges E′ ⊂ E
that minimizes the ratio between capacity(E′) and the number of demands that are disconnected
in G \ E′ (which might have many connected components).

Exer: show directly that in every network

maximum concurrent flow ≤ minimum sparse-cut,

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

and give an example where the inequality is strict (hint: use the complete bipartite graph K2,3).

Exer: Prove that there is always an optimal solution that corresponds to some subset A ⊂ V ,
namely E′ is a cut (A, Ā).

By the exercise, it suffices to seek A ⊂ V that minimizes:

sparsity(A) =
capacity(edges cut)

#(demands separated)
=

∑
uv∈E cuv1{|{u,v}∩A|=1}∑
i∈[k] 1{|{si,ti}∩A|=1}

=

∑
uv∈E cuv|1A(u)− 1A(v)|∑
i∈[k] |1A(si)− 1A(ti)|

.

1.3 LP relaxation for sparse-cut

The dual LP for (1) has variables (ye : e ∈ E) and exponentially many constraints:

minimize
∑
e∈E

ceye

subject to
∑
e∈p

ye ≥ yi ∀i ∈ [k],∀p ∈ Pi∑
i∈[k]

yi = 1

ye ≥ 0 ∀e ∈ E
yi ≥ 0 ∀i ∈ [k]

(2)

Observe that the second constraint can be abolished by changing the objective to be the ratio∑
e∈E ceye∑
i∈[k] yi

. Now, we can assume WLOG that yi is just the shortest-path distance between si and ti

according to edge-lengths ye.

Exer: Prove that this LP is a relaxation of the sparse-cut problem.

1.4 Flow/cut gap

Theorem 1 [Aumann-Rabani and Linial-London-Rabinovich after Leighton-Rao]:

minimum sparse-cut ≤ O(log k) ·maximum concurrent flow.

Proof: Again, interpret the variables ye as edge-lengths, and let d(u, v) denote the distance

(shortest-path) from u to v according to ye. Observe that the LP value is at most
∑

uv∈E cuvd(u,v)∑
i∈[k] d(si,ti)

.

Informally, the next step is to “convert” these arbitrary distance to a “tree metric” with only an
O(log k) factor loss. We then convert the tree distances into a “cut metric” (with no further loss)
which is just a cut (A, Ā).

Lemma 2 [Probabilistic embedding into trees] [Gupta-Nagarajan-Ravi and Fakcharoenphol-
Rao-Talwar after Bartal]: Let d(.) be a metric on a set V of size n, and let T ⊂ V be a collection

2

of k terminals. Then there exists a randomized tree τ with vertex set Vτ ⊇ V (in fact the leaves
are exactly V) and edge-lengths giving some distance dτ , such that:

• For all u, v ∈ V we have E[dτ (u, v)] ≤ O(log k) · d(u, v); and
• For all t, t′ ∈ T we have dτ (t, t

′) ≥ d(t, t′) (with probability 1).

It is instructive to think of the case T = V (thus k = n).

Proof of lemma: Below. The idea is to use algorithm CKR (from last week) recursively.

By applying Lemma 2 to a solution to LP (2) and terminals T = {s1, t1, . . . , sk, tk}, we obtain a
randomized tree τ such that:

Eτ [
∑

uv∈E cuvdτ (u, v)]∑
i∈[k] dτ (si, ti)

≤ O(log k) ·
∑

uv∈E cuvd(u, v)∑
i∈[k] d(si, ti)

≤ O(log k) ·
∑

e∈E ceye∑
i∈[k] yi

Fix henceforth a tree τ for which
∑

uv∈E cuvdτ (u, v) is no more than its expectation.

Lemma 3 [Extracting a cut from a tree metric]: Given a tree τ , there is A ⊂ Vτ , i.e. a cut
(A, Vτ \A), such that∑

uv∈E cuv|1A(u)− 1A(v)|∑
i∈[k] |1A(si)− 1A(ti)|

≤
∑

uv∈E cuvdτ (u, v)∑
i∈[k] dτ (si, ti)

To understand the lemma, it is instructive to think of the tree τ as a path, and then the cut A will
be some “prefix” of the path.

Proof of lemma: Below. Basically an averaging argument over the tree’s edges.

Using Lemma 3, we get a set A ⊂ Vτ , and WLOG we may assume A ⊂ V (because vertices of
Vτ \ V do not really appear in the lemma), such that:∑

uv∈E cuv|1A(u)− 1A(v)|∑
i∈[k] |1A(si)− 1A(ti)|

≤
∑

uv∈E cuvdτ (u, v)∑
i∈[k] dτ (si, ti)

≤ O(log k) ·
∑

e∈E ceye∑
i∈[k] yi

i.e., a sparse-cut whose value is within factor O(log k) of the LP.

Theorem 2.1 follows using strong duality. QED.

Remark: It’s not hard to verify that this gives a polynomial-time O(log k) approximation algorithm
for the sparse-cut problem, which is NP-hard.

1.5 Proof of Lemma 3 (sketch)

Let Eτ be the set of edges in the tree τ , and let ℓ(.) be the edge lengths. Just like in every tree,
removing a tree-edge separates the tree into two connected components. Thus, every tree-edge
xy ∈ Eτ defines a partition Vτ = Axy ∪Ayx. Observe that we can write

dτ (u, v) =
∑

xy∈Eτ

ℓ(xy)|1Axy(u)− 1Axy(v)|.

3

As seen in class, the lemma follows by using this formula together with the simple inequality:
mini{ ci

di
} ≤ c1+···+cn

d1+···+dn
.

1.6 Proof of Lemma 2 (sketch)

The tree τ will correspond to a hierarchical decomposition (recursive partitioning) of V , as described
below. Assume WLOG the minimum interpoint distance is 4, and set δ = log diam(V) + 2.

Partition V using algorithm CKR (from last week) with R = 2δ, then compute a new partition of
V using algorithm CKR with R = 2δ−1, and so forth using R = 2i for i = δ, δ− 1, . . . , 1, 0. At each
stage, “force” the partition of level i partition to be a refinement of all the previous partitions (by
breaking level i clusters according to all higher level partitions). The result of this forced nesting
is that now every level i cluster is completely contained in some level i+ 1 cluster.

The tree τ is the natural representation of this hierarchical decomposition, with the root of the
tree representing the vertex-set V , its children represent the clusters at level δ, and so forth, until
the leaves of the tree which represent the clusters for R = 1. Edges between a tree node at level
i and its parent are given length 2i+2. Ordinarily, the clusters at the leaves of the tree represent
a cluster of size 1 (single vertex of V), but not always because CKR algorithm has a “leftover”
cluster V0. In this last case we add under this leaf |V0| children, each representing a single vertex
of V0, connected with zero edge lengths. It follows that the leaves of Vτ can be thought of as V .

The rest of the analysis (bounds on dτ) was seen in class, and uses the important remark about

how algorithm CKR depends on the term O(log |BT (u,3·2i)|
|BT (u,2i/2)|).

4

