
Advanced Algorithms 2012A

Lecture 7 – Cheeger’s inequality (cont’d)∗

Robert Krauthgamer

1 Continuing with Cheeger’s inequality

Last week we stated the following Theorem and proved only its first inequality.

Theorem [Alon, Alon-Milman, Sinclair-Jerrum, Mihail, after Cheeger]: Let λ2 be the
second smallest eigenvalue of the normalized Laplacian L̂G. Then

1
2λ2 ≤ ϕ(G) ≤

√
2λ2.

Exer: Let G be a graph of maximum degree dmax. Show a connection between λ2 (or all the
eigenvalues) of L and L̂, and derive from it an analogue of Cheeger’s inequalities that relates the
isoperimetric number/edge-expansion h(G) to λ2(L).

1.1 Interesting consequence for planar graphs

Theorem [Spielman-Teng]: Every (unweighted) planar graph of bounded degree has λ2(L) ≤
O(1/n).

An immediate corollary (using the exercise) is that such graphs always have a cut of edge-expansion
O(1/

√
n). Moreover, such a cut can be derived from an (approximate) eigenvector of λ2, giving

formal justification for spectral partitioning algorithms. As we discuss later today, this bound
implies that such graphs have a 2/3 balanced-cut of with O(

√
n) edges.

1.2 Tightness of these inequalities

The cycle graph. Let G be a cycle on n vertices with unit-weight edges. To compute ϕ(G), we
use a variant of our homework exercise which shows that ϕ(G) is attained by a connected set S of

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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size s ≤ n/2:

ϕ(G) = min
S⊂V

w(S,S̄)
min{d(S),d(S̄)} = min

1≤s≤n/2

2
2s = 2

n .

We can show an upper bound on λ2(L̂) by “guessing” a vector 0⃗ ̸= x ⊥ 1⃗ and computing its
Rayleigh quotient. We can set xj = n/4− j and xn/2+j = −n/4 + j for j = 0, . . . , n/2, then x ⊥ 1⃗
by its symmetry and thus

λ2 ≤
xT L̂x

xTx
=

xTLx

rxTx
=

∑
ij∈E(xi − xj)

2

2
∑

i x
2
i

=
n · 12

8
∑n/4

j=1 j
2
≤ O(1/n2).

We thus obtain that for the difficult direction is tight on the cycle:

Ω(1/n) ≤ ϕ(G) ≤
√

2λ2 ≤ O(1/n).

The hypercube graph. Let G be the hypercube graph {0, 1}k of dimension k = log2 n, with unit
edge-weights. This graph is k-regular. We now denote a vertex as v instead of i. By considering
dimension cuts Sp = {v ∈ {0, 1}k : vp = 0} for any p ∈ {1, . . . , k} (by symmetry, it does not matter
which p), we see that

ϕ(G) ≤ w(Sp,S̄p)

min{d(Sp),d(S̄p)}
= n/2

k·n/2 = 1/k.

The eigenvalues of L̂ can be computed exactly. We will not do it here, but only exhibit one
corresponding eigenvector x: The coordinate xv corresponding to vertex v ∈ V (G) = {0, 1}k is the
bit vp transformed into +1/ − 1 namely (−1)vp (for arbitrary p, again it does not matter which
one). A simple calculation shows this is indeed an eigenvector with eigenvalue 2/k, and we will not
prove here that this is actually λ2(L̂). We conclude that the easy direction is tight:

1/k = 1
2λ2 ≤ ϕ(G) ≤ 1/k.

1.3 The difficult direction

Overview. We will prove something stronger (and useful algorithmically). Given any vector
x ⊥ d⃗1/2 with “small” Rayleigh quotient, say λ′ > 0, we will find a cut S ⊂ V with small
conductance ϕG(S) ≤

√
2λ′. The idea is to partition V using a random threshold t on the xi

values. Notice that xTLx involves terms of the form (xi− xj)
2, and our earlier technique for going

from a tree metric (for which the line metric is a special case) into a cut works when we have
|xi − xj |. The trick will be to use Cauchy-Schwarz inequality (plus other stuff).

First attempt. Consider nonzero x ⊥ d⃗1/2. Using our earlier observation, define y = D−1/2x ̸= 0⃗

and then λ′ = xT L̂x
xT x

=
∑

ij∈E wij(yi−yj)
2∑

i∈V diy2i
, and 0 = xTd1/2 = yTD1/2d1/2 = yTd.
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By scaling y, we may assume WLOG that all yi ∈ [−1, 1]. Choose t ∈ (0, 1) uniformly at random,
and let St = {i ∈ V : y2i ≥ t}. Some calculations show that

min
t

w(St, S̄t)

d(St)
≤ Et[w(St, S̄t)]

Et[d(St)]
≤

√
2
∑

ij∈E wij |yi − yj |2∑
i∈V diy2i

=
√
2λ′,

We can ensure St ̸= ∅ by scaling so that some |yi| = 1, but the problem is that we might have
St = V (in fact, even d(St) > d(V )/2 would be problematic for us).

Remark: So far we did not really use the fact that y ⊥ d.

Second attempt. Let m be a median of the yi’s i.e.

0 <
∑

i:yi<m

di ≤ d(V )/2, and 0 <
∑

i:yi>m

di ≤ d(V )/2.

Define z+ ∈ RV by increasing values that are smaller than m, i.e. z+i = max{yi,m}, and similarly
define z−i = min{yi,m}. As seen in class, at least one of them, say z+, can be used with some
manipulations to find z ∈ Rn such that

λ′ ≥
∑

ij∈E wij(z
+
i − z+j )

2∑
i∈V di(z

+
i −m)2

≥
∑

ij∈E wij(zi − zj)
2∑

i∈V diz2i
.

Now we can apply the analysis of our first attempt (choosing random t and defining St using z2i
instead of y2i ), to conclude that

min
t

w(St, S̄t)

d(St)
≤ Et[w(St, S̄t)]

Et[d(St)]
≤

√
2
∑

ij∈E wij |zi − zj |2∑
i∈V diz2i

≤
√
2λ′.

It was important here that for all t we have 0 < d(St) ≤ d(V )/2, and thus the LHS is indeed
mint ϕG(St). Applying the above to λ′ = λ2 we get ϕ(G) ≤

√
2λ2.

Exer: Prove a statement similar to the Theorem that relates λ2(L) to the isoperimetric number/edge-

expansion h(G) = minS⊂V
w(S,S̄)

min{|S|,|S̄|} . Note that now the inequalities might involve the maximum

degree dmax = maxi∈V di.

2 Applications of sparse-cut

2.1 From sparse-cut to edge-expansion

Consider a graph G(V,E) with edge-capacities c(e) ≥ 0. The edge-expansion or isoperimetric
number (also the Cheeger constant) of G is defined as:

h(G) = min
S⊂V

c(S, S̄)

min{|S|, |V \ S|}
.
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Observation: the edge-expansion objective is approximated within factor 2 by uniform-demands

sparse-cut, i.e., when every pair of vertices forms a demand-pair and thus the objective is c(S,S̄)
|S|·|V \S| .

Proof: Asumming WLOG |S| ≤ |V |/2 then |V |/2 ≤ |V \ S| ≤ |V |.

We remark that both problems are NP-hard. But recall that our theorem about flow/cut gap
actually yields a polynmial-time algorithm with approximation O(log k) for sparse-cut (and we
have k =

(
n
2

)
in our case of uniform-demands).

Corollary: The problem of finding S that minimizes edge-expansion can be approximated within
factor O(log n) in polynomial time.

2.2 From edge-expansion to balanced-cut

Let b ∈ [12 , 1). In b-balanced cut, the input is a graph G(V,E) with edge-capacities and the goal is
to find a minimum capacity cut (S, S̄) under the restriction that both |S|, |V \S| ≤ b|V |. The case
b = 1/2 is called Minimum Bisection.

The following algorithm computes a 2/3-balanced cut, whose capacity (cost) can be “compared” to
the optimal 1/2-balanced cut. (This type of guarantee is called bicriteria approximation algorithm.)

Bicriteria algorithm for Minimum Bisection

Input: graph G = (V,E) with edge capacities

Output: a cut (V ′, V \ V ′)

1. Initialize V ′ ← V .

2. Repeat while |V ′| ≥ 2
3 |V |

2a. Find in G[V ′] a cut S that approximately minimizes edge-expansion

2b. Remove S (the smaller side) i.e. V ′ ← V ′ \ S.

3 Output V ′.

Theorem [bicriteria approximation for Minimum Bisection]: For every graph G, the above
algorithm reports a cut (V ′, V \V ′) that is 2/3-balanced and its capacity is at most O(OPT1/2 log n)
where OPT1/2 is the minimum bisection of G.

Exer (similar bound based on spectral arguments): Design a polynomial time algorithm whose
input is a graph G and ϕ∗ > 0, if G has 1/2-balanced cut of conductance ≤ ϕ∗, then the algorithm
finds a 2/3-balanced cut of conductance O(

√
ϕ∗).
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