Advanced Algorithms 2012A
Lecture 7 — Cheeger’s inequality (cont’d)*

Robert Krauthgamer

1 Continuing with Cheeger’s inequality

Last week we stated the following Theorem and proved only its first inequality.
Theorem [Alon, Alon-Milman, Sinclair-Jerrum, Mihail, after Cheeger|: Let Ay be the
second smallest eigenvalue of the normalized Laplacian Lg. Then

A < 9(G) < /2.

Exer: Let G be a graph of maximum degree dy.x. Show a connection between Ao (or all the
eigenvalues) of L and L, and derive from it an analogue of Cheeger’s inequalities that relates the
isoperimetric number/edge-expansion h(G) to Aa(L).

1.1 Interesting consequence for planar graphs

Theorem [Spielman-Teng]: Every (unweighted) planar graph of bounded degree has \o(L) <
O(1/n).

An immediate corollary (using the exercise) is that such graphs always have a cut of edge-expansion
O(1/+/n). Moreover, such a cut can be derived from an (approximate) eigenvector of Ay, giving
formal justification for spectral partitioning algorithms. As we discuss later today, this bound
implies that such graphs have a 2/3 balanced-cut of with O(y/n) edges.

1.2 Tightness of these inequalities

The cycle graph. Let G be a cycle on n vertices with unit-weight edges. To compute ¢(G), we
use a variant of our homework exercise which shows that ¢(G) is attained by a connected set S of
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size s <n/2:
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We can show an upper bound on )\g(ﬁ) by “guessing” a vector 0 # x L 1 and computing its
Rayleigh quotient. We can set x; =n/4 — j and 2,54 = —n/4+j for j =0,...,n/2, then z 1 1
by its symmetry and thus
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We thus obtain that for the difficult direction is tight on the cycle:

Q(1/n) < $(G) < v/2A2 < O(1/n).

The hypercube graph. Let G be the hypercube graph {0, 1}* of dimension k = log, n, with unit
edge-weights. This graph is k-regular. We now denote a vertex as v instead of i. By considering
dimension cuts S, = {v € {0,1}* : v, = 0} for any p € {1,...,k} (by symmetry, it does not matter
which p), we see that

w(Sp,S n/2
¢(G) < mm{disz;),g()gp)} - k-1{/2 = 1/k.

The eigenvalues of L can be computed exactly. We will not do it here, but only exhibit one

corresponding eigenvector x: The coordinate x, corresponding to vertex v € V(G) = {0, 1}* is the

bit v, transformed into +1/ — 1 namely (—1)" (for arbitrary p, again it does not matter which

one). A simple calculation shows this is indeed an eigenvector with eigenvalue 2/k, and we will not

prove here that this is actually Ag(f/). We conclude that the easy direction is tight:

1/k = 3X < 6(G) < 1/k.

1.3 The difficult direction

Overview. We will prove something stronger (and useful algorithmically). Given any vector
z L dY/? with “small” Rayleigh quotient, say A’ > 0, we will find a cut S C V with small
conductance ¢g(S) < v2)N. The idea is to partition V using a random threshold ¢ on the x;
values. Notice that 27 Lz involves terms of the form (z; — :Ej)2, and our earlier technique for going
from a tree metric (for which the line metric is a special case) into a cut works when we have
|z; — 2;]. The trick will be to use Cauchy-Schwarz inequality (plus other stuff).

First attempt. Consider nonzero x 1 a2, Using our earlier observation, define y = D~1/2z £ 0
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By scaling y, we may assume WLOG that all y; € [-1,1]. Choose t € (0,1) uniformly at random,
and let Sy ={i eV : %2 > t}. Some calculations show that
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We can ensure S; # () by scaling so that some |y;| = 1, but the problem is that we might have
Sy =V (in fact, even d(S¢) > d(V)/2 would be problematic for us).

Remark: So far we did not really use the fact that y L d.

Second attempt. Let m be a median of the y;’s i.e.

0< > di<d(V)/2, and 0< > d;<d(V)/2.

iyi<m iyi>m
Define z+ € RV by increasing values that are smaller than m, i.e. Z;L = max{y;, m}, and similarly
define z; = min{y;, m}. As seen in class, at least one of them, say 2T, can be used with some

manipulations to find z € R"™ such that
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Now we can apply the analysis of our first attempt (choosing random ¢ and defining S; using 21-2
instead of y?), to conclude that
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It was important here that for all ¢ we have 0 < d(S;) < d(V)/2, and thus the LHS is indeed
ming ¢ (St). Applying the above to N = Ay we get ¢(G) < /2)\,.
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Exer: Prove a statement similar to the Theorem that relates Ao(L) to the isoperimetric number/edge-
expansion h(G) = mingcy % Note that now the inequalities might involve the maximum

degree dy.x = max;cy d;.

2 Applications of sparse-cut

2.1 From sparse-cut to edge-expansion

Consider a graph G(V, E) with edge-capacities c¢(e) > 0. The edge-expansion or isoperimetric
number (also the Cheeger constant) of G is defined as:
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Observation: the edge-expansion objective is approximated within factor 2 by uniform-demands

sparse-cut, i.e., when every pair of vertices forms a demand-pair and thus the objective is %

Proof: Asumming WLOG |S| < |V|/2 then |V]/2 < |V \ S| < |V].

We remark that both problems are NP-hard. But recall that our theorem about flow/cut gap
actually yields a polynmial-time algorithm with approximation O(logk) for sparse-cut (and we
have k = (72‘) in our case of uniform-demands).

Corollary: The problem of finding S that minimizes edge-expansion can be approximated within
factor O(logn) in polynomial time.

2.2 From edge-expansion to balanced-cut

Let b € [%, 1). In b-balanced cut, the input is a graph G(V, E) with edge-capacities and the goal is
to find a minimum capacity cut (S, S) under the restriction that both [S], |V '\ S| < b|V|. The case
b =1/2 is called Minimum Bisection.

The following algorithm computes a 2/3-balanced cut, whose capacity (cost) can be “compared” to
the optimal 1/2-balanced cut. (This type of guarantee is called bicriteria approximation algorithm.)

Bicriteria algorithm for Minimum Bisection

Input: graph G = (V, E) with edge capacities

Output: a cut (V/,V\ V')

1. Initialize V' « V.

2. Repeat while [V'| > 2|V/|

2a. Find in G[V'] a cut S that approximately minimizes edge-expansion
2b.  Remove S (the smaller side) i.e. V' < V'\ S.

3 Output V.

Theorem [bicriteria approximation for Minimum Bisection]: For every graph G, the above
algorithm reports a cut (V', V'\V’) that is 2/3-balanced and its capacity is at most O(OPT} /5 logn)
where OPT} /5 is the minimum bisection of G.

Exer (similar bound based on spectral arguments): Design a polynomial time algorithm whose
input is a graph G and ¢* > 0, if G has 1/2-balanced cut of conductance < ¢*, then the algorithm
finds a 2/3-balanced cut of conductance O(y/¢*).



