
Randomized Algorithms 2013A

Lecture 1 – Introduction and Concentration Bounds∗

Robert Krauthgamer

1 Introduction

We shall consider algorithms that have access to randomnesss (equivalently, can toss coins) during
the execution. Throughout, we shall we consider worst-case inputs, and analyze the algorithm’s
performance in expectation or with high probability.

2 Randomized Quicksort

Problem definition: The input is a list (array) of n integers, and the goal is to sort the array.
We use the RAM model, but assume unit-time comparisons.

Quicksort algorithm: Pick a pivot, split the list into those smaller/bigger than pivot, sort each
one recursively, and output in order.

Randomized version: the pivot is chosen uniformly at random from the list.

Theorem 1: The expected number of comparisons is at most 2nHn, where Hn = lnn +Θ(1) is
the nth harmonic number. Thus, the expectation of the running time is O(n log n).

Proof: seen in class, based on letting the random variable Xij be an indicator for the event that
the i-th and j-th smallest elements in the list are compared, and analyzing E[

∑
i<j Xij]. Analyzing

E[Xij] relies on the principle of deferred decision.

Exer: Let X,T be random variables taking real values, and suppose there is a ∈ R such that for
all t ∈ R,

E[X | T = t] ≤ a.

Prove that E[X] ≤ a. Note: This problem formalizes the principle of deferred decision used in
class, e.g., T could be the “time” (iteration or tree-node) in which the value of X is determined.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Can we get a high-probability bound? Using Markov’s inequality below, we see that with probability
at least 1 − ε, the runtime is O(1εn log n). We will soon see a stronger bound by more direct
computation.

Markov’s inequality: Let X be a nonnegative random variable with finite expectation. Then

∀t > 1, Pr[X ≥ t · E] ≤ 1/t.

3 Concentration bounds

Chernoff-Hoeffding bound: Let X =
∑

i∈[n]Xi where Xi ∈ [0, 1] for i ∈ [n] are independently
distributed random variables. Then

∀t > 0, Pr[|X − E[X]| ≥ t] ≤ 2e−2t2/n.

∀0 < ε ≤ 1, Pr[X ≤ (1− ε)E[X]] ≤ e−ε2E[X]/2.

∀0 < ε ≤ 1, Pr[X ≥ (1 + ε)E[X]] ≤ e−ε2E[X]/3.

∀t ≥ 2eE[X], Pr[X ≥ t] ≤ 2−t.

Exer: Let X have a binomial distribution B(n, 1/3). What is the probability that X deviates from
its expectation additively by r > 1 standard deviations? Think of r being 10, log n,

√
n.

Exer: Let a1, . . . , an be an array of numbers in the range [0, 1]. Design a randomized algorithm that
estimates their average within additive error ±ε, by reading only O(1/ε2) elements. The algorithm
should succeed with probability at least 90%.

Exer: Let S1, . . . , Sn be subsets of [n]. Design an algorithm for 2-coloring the elements [n], such
that in every set Si the balance, defined as |#black−#white|, is at most O(

√
n log n).

Exer: Let a1, . . . , an be again an array of numbers in the range [0, 1]. Now design similarly a
randomized algorithm that estimates their population variance 1

n

∑
i a

2
i − (1n

∑
i ai)

2. (Note: popu-
lation variance refers to a set of n reals, while the usual word variance refers to a random variable.)
Hint: estimate each of the two terms separately using the previous exercise.

4 High-probability bound for quicksort

Theorem: With probability at least 1− 1/n, the algorithm terminates in O(n log n) time.

Proof: seen in class, by considering a fixed element a ∈ L, and bounding the probability it will
participate in more than l = 21 log n levels of the recursion. This analysis uses a Chernoff-Hoeffding
bound from above. Finally, we apply a union bound over all a ∈ L.

Exer: Analyze the following algorithm, a variant of binary search, for finding a query element q in
a sorted array A of size n, and show that with high probability it finishes in O(log n) steps.

2

Algorithm Randomized-Search: Starting with the interval [l, h] = [1, n], repeatedly choose uni-
formly at random a pivot p ∈ [l, h], compare q to A[p] and update the interval to be either [l, p− 1]
or [p+ 1, h], stopping if A[p] = q or l > h.

5 Balls and Bins (Occupancy Problems)

Problem definition: Suppose we throw balls independently and uniformly into n bins. We stop
after m = m(n) balls and examine the most/least loaded bin.

Expected behavior: Let Xi be the load of bin i ∈ [n]. The expected load of a fixed bin i is
E[Xi] = m/n.

But don’t we expect deviations?

Empty bins for m = n balls:

We expect one ball per bin. But how many bins will be empty?

Pr[bin i is empty] = Pr[Xi = 0] = (1− 1/n)n ≈ 1/e.

Therefore,

E[# of empty bins] = E[
∑
i

I{Xi=0}] =
∑
i

Pr[Xi = 0] ≈ n/e.

Exer: How many bins are expected to have load 1?

Maximum load for m = n balls:

Pr[Xi ≥ 2 log n] ≤ 2−2 logn = 1/n2

and therefore

Pr[max
i

Xi ≥ 2 log n] ≤
∑
i

Pr[Xi ≥ 2 log n] ≤ 1/n.

We can actually do better by a direct computation:

Pr[Xi = k] =

(
n

k

)
(1/n)k(1− 1/n)n−k ≤ (nek)k(1/n)k = (ek)

k.

It follows that Pr[Xi ≥ k] ≤ O(1) · (ek)
k by geometric series, and by plugging k∗ = e lnn/ ln lnn,

we have

Pr[Xi ≥ k∗] ≤ 1/n2,

and by a union bound,

Pr[max
i

Xi ≥ k∗] ≤ 1/n.

3

What about expected maximum? Denote Xmax = maxiXi, then by the law of total expectation

E[Xmax] = Pr[Xmax < k∗] · E[Xmax | Xmax < k∗] + Pr[Xmax ≥ k∗] · E[Xmax ≥ k∗]

≤ k∗ + 1
n · n = k∗ + 1.

Exer: Suppose the expected load of a fixed bin is m/n ≥ 10 log n. Show that with high probability
the maximum load among all bins is within factor 2 of the expected load. Show a similar bound
for and the minimum bin load. For what value of m this ratio will be 1± ε (assuming ε < 1)?

4

