Randomized Algorithms 2013A Lecture 12 – Nearest Neighbor Searching (NNS) in High Dimension*

Robert Krauthgamer

Let's briefly recall our discussion of sketching algorithms.

What is Sketching: We have some input x, which we want to "compress" into a *sketch* s(x) (much smaller), but want to be able to later compute some f(x) only from the sketch. Often, randomization helps.

1 Sketching for estimating ℓ_1 distance

Theorem 1: For all $0 < \varepsilon < 1$ there is a randomized sketching algorithm for the decision version of estimating the ℓ_1 (or Hamming) distance between vectors within factor $1 + \varepsilon$ with sketch size $O(1/\varepsilon^2)$ bits. Formally, this algorithm determines whether $||x - y||_1 \le R$ or $||x - y||_1 > (1 + \varepsilon)R$.

Proof: As seen in class, the sketching algorithm is based on subsampling the coordinates at a rate of 1/R.

Exer: Show that the error probability can be reduced to $1/n^3$ by further increasing the sketch size to $m = O(\varepsilon^{-2} \log n)$ bits.

Review of key points:

- 1. Design a single-bit sketch with small "advantage"
- 2. "Amplify" success probability using Chernoff bounds

2 NNS under ℓ_1 norm (logarithmic query time)

Problem definition (NNS): Preprocess a dataset of n points $x_1, \ldots, x_n \in \mathbb{R}^d$, so that then, given a query point $q \in \mathbb{R}^d$, we can quickly find the closest data point to the query, i.e. report x_i that minimizes $||q - x_i||_1$.

Performance measure: Preprocessing (time and space) and query time.

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Two naive solutions: exhaustive search with query time O(n), and preparing all answer in advance with preprocessing space 2^d (at least).

Challenge: being polynomial in dimension d, but still getting query time sublinear (or polylog) in n.

Approximate version (factor $c \ge 1$): find x_{i^*} such that $||q - x_{i^*}||_1 \le c \cdot \min_i ||q - x_i||_1$.

Theorem 2 [Indyk-Motwani'98, Kushilevitz-Ostrosvky-Rabani'98]: For every $\varepsilon > 0$ there is a randomized algorithm for $1 + \varepsilon$ approximate NNS in \mathbb{R}^d under ℓ_1 norm with preprocessing space $n^{O(1/\varepsilon^2)} \cdot O(d)$ and query time $O(\varepsilon^{-2}d)$.

Remark 1: We shall neglect the precise polynomial dependence on d, as it depends on the implementation.

Remark 2: The success probability is for a single query (assuming it's independent of coins).

Remark 3: WLOG, we only need to solve the decision version i.e. there is a target distance R > 0, and if there is data point x_{i^*} such that $||q - x_{i^*}||_1 \leq R$ then we need to find point x_i such that $||q - x_i||_1 \leq cR$. If no point is within distance cR, then report NONE. Otherwise, can report either answer.

Proof sketch: The main idea is to repeat the above single-bit sketching algorithm $m = O(\varepsilon^{-2} \log n)$ times to reduce the error probability to (say) $1/n^2$, but prepare in advance the answer for every possible $s(q) \in \{0, 1\}^m$. Details were seen in class.

Review of key points:

- 1. "dimension reduction" to $O(\varepsilon^{-2} \log n)$.
- 2. Prepare all answers in advance (exponential in "reduced" dimension).

Open problem: What about other ℓ_p norm, when 2 ?

Remark: $1 \le p \le 2$ and $p = \infty$ are known.

3 NNS via LSH (polynomial query time)

Consider again the context of doing NNS, in the decision version where there is a target distance R > 0 and approximation factor c > 1 (e.g. $c = 1 + \varepsilon$, but here we actually focus on larger c).

Locality Sensitive Hashing (LSH): A *c*-LSH is a family *H* of hash functions $h : \{0, 1\}^d \to \mathbb{N}$ whose collision probability for all $x, y \in \{0, 1\}^d$ is:

- 1. If $||x y||_1 \le R$ then $\Pr[h(x) = h(y)] \ge p$
- 2. If $||x y||_1 \ge cR$ then $\Pr[h(x) = h(y)] \le p'$.

Here, R, p are given as input, c is the approximation factor, and p' determines the performance (should be much smaller than p).

Note: We also need that $h \in H$ can be chosen quickly and h(x) can be computed quickly. Here, we ignore this issue.

Theorem 3 [LSH for Hamming distance; Indyk-Motwani'98]: For every d, R, c and p < 1/3 there is *c*-LSH for Hamming distance in $\{0, 1\}^d$, such that $p' \leq O(p^c)$.

Proof: As seen in class, in the case p = 1/e, h(x) is constructed by sampling t = d/R coordinates from [d] independently ar random.

Theorem 4 [c-NNS scheme from c-LSH]: Consider the decision version (i.e. we have target distance R) and fix an approximation c > 1. Let H be a c-LSH with some p and p' = O(1/n). Then there is c-NNS with query time O(1/p) and preprocessing O(n/p).

Remark: For ℓ_1 norm $p = 1/n^{1/c}$.

Proof sketch: The main idea is to use the LSH to hash the data points x_1, \ldots, x_n , and then given a query q, hash also q and check (by computing the actual distance) all the x_i that are in the same bucket.