
Randomized Algorithms 2013A

Lecture 12 – Nearest Neighbor Searching (NNS) in High Dimension∗

Robert Krauthgamer

Let’s briefly recall our discussion of sketching algorithms.

What is Sketching: We have some input x, which we want to “compress” into a sketch s(x)
(much smaller), but want to be able to later compute some f(x) only from the sketch. Often,
randomization helps.

1 Sketching for estimating ℓ1 distance

Theorem 1: For all 0 < ε < 1 there is a randomized sketching algorithm for the decision version
of estimating the ℓ1 (or Hamming) distance between vectors within factor 1 + ε with sketch size
O(1/ε2) bits. Formally, this algorithm determines whether ∥x− y∥1 ≤ R or ∥x− y∥1 > (1 + ε)R.

Proof: As seen in class, the sketching algorithm is based on subsampling the coordinates at a
rate of 1/R.

Exer: Show that the error probability can be reduced to 1/n3 by further increasing the sketch size
to m = O(ε−2 log n) bits.

Review of key points:

1. Design a single-bit sketch with small “advantage”

2. “Amplify” success probability using Chernoff bounds

2 NNS under ℓ1 norm (logarithmic query time)

Problem definition (NNS): Preprocess a dataset of n points x1, . . . , xn ∈ Rd, so that then,
given a query point q ∈ Rd, we can quickly find the closest data point to the query, i.e. report xi
that minimizes ∥q − xi∥1.

Performance measure: Preprocessing (time and space) and query time.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1



Two naive solutions: exhaustive search with query time O(n), and preparing all answer in advance
with preprocessing space 2d (at least).

Challenge: being polynomial in dimension d, but still getting query time sublinear (or polylog) in
n.

Approximate version (factor c ≥ 1): find xi∗ such that ∥q − xi∗∥1 ≤ c ·mini ∥q − xi∥1.

Theorem 2 [Indyk-Motwani’98, Kushilevitz-Ostrosvky-Rabani’98]: For every ε > 0 there
is a randomized algorithm for 1+ε approximate NNS in Rd under ℓ1 norm with preprocessing space
nO(1/ε2) ·O(d) and query time O(ε−2d).

Remark 1: We shall neglect the precise polynomial dependence on d, as it depends on the imple-
mentation.

Remark 2: The success probability is for a single query (assuming it’s independent of coins).

Remark 3: WLOG, we only need to solve the decision version i.e. there is a target distance R > 0,
and if there is data point xi∗ such that ∥q − xi∗∥1 ≤ R then we need to find point xi such that
∥q−xi∥1 ≤ cR. If no point is within distance cR, then report NONE. Otherwise, can report either
answer.

Proof sketch: The main idea is to repeat the above single-bit sketching algorithm m =
O(ε−2 log n) times to reduce the error probability to (say) 1/n2, but prepare in advance the answer
for every possible s(q) ∈ {0, 1}m. Details were seen in class.

Review of key points:

1. “dimension reduction” to O(ε−2 log n).

2. Prepare all answers in advance (exponential in “reduced” dimension).

Open problem: What about other ℓp norm, when 2 < p < ∞?

Remark: 1 ≤ p ≤ 2 and p = ∞ are known.

3 NNS via LSH (polynomial query time)

Consider again the context of doing NNS, in the decision version where there is a target distance
R > 0 and approximation factor c > 1 (e.g. c = 1 + ε, but here we actually focus on larger c).

Locality Sensitive Hashing (LSH): A c-LSH is a family H of hash functions h : {0, 1}d → N
whose collision probability for all x, y ∈ {0, 1}d is:

1. If ∥x− y∥1 ≤ R then Pr[h(x) = h(y)] ≥ p

2. If ∥x− y∥1 ≥ cR then Pr[h(x) = h(y)] ≤ p′.

Here, R, p are given as input, c is the approximation factor, and p′ determines the performance
(should be much smaller than p).

2



Note: We also need that h ∈ H can be chosen quickly and h(x) can be computed quickly. Here,
we ignore this issue.

Theorem 3 [LSH for Hamming distance; Indyk-Motwani’98]: For every d,R, c and p < 1/3
there is c-LSH for Hamming distance in {0, 1}d, such that p′ ≤ O(pc).

Proof: As seen in class, in the case p = 1/e, h(x) is constructed by sampling t = d/R coordinates
from [d] independently ar random.

Theorem 4 [c-NNS scheme from c-LSH]: Consider the decision version (i.e. we have target
distance R) and fix an approximation c > 1. Let H be a c-LSH with some p and p′ = O(1/n).
Then there is c-NNS with query time O(1/p) and preprocessing O(n/p).

Remark: For ℓ1 norm p = 1/n1/c.

Proof sketch: The main idea is to use the LSH to hash the data points x1, . . . , xn, and then
given a query q, hash also q and check (by computing the actual distance) all the xi that are in the
same bucket.

3


