Randomized Algorithms 2013A Lecture 3 – Proof of Hoeffding's bound and sketching algorithms^{*}

Robert Krauthgamer

We first finish something from last class on streaming algorithms, showing a key application of point queries.

1 Heavy hitters via point queries

Heavy hitters set: $HH^p_{\phi}(x) = \{i : |x_i| \ge \phi ||x||_p\}.$

Observe that the number of HH^1_{ϕ} is bounded by $1/\phi$.

Hence, we may hope to compute it using small space. However, we cannot expect to solve it exactly, since this set is very sensitive to small changes in x_i and we cannot "remember" the exact value of each x_i .

Approximate HH problem:

Parameters: $\phi > \varepsilon > 0$.

Goal: return a set $S \subseteq [n]$ such that

$$HH^p_{\phi} \subseteq S \subseteq HH^p_{\phi-\varepsilon}.$$

Reduction of HH to point query:

Assume we have an algorithm for ℓ_p point queries with parameter $\alpha = \varepsilon/2$ and error probability 1/3n.

Execute this algorithm to compute for every $i \in [n]$ an estimate \tilde{x}_i (this step takes time $O(n \log n)$ or even more) and report the set $S = \{i \in [n] : |\tilde{x}_i| \ge (\phi - \varepsilon/2) ||x||_p\}.$

Remark: This assumes we know $||x||_p$ exactly. We saw in previous class how to approximate $||x||_2$.

Storage: For p = 1, we saw in previous class how to answer such point queries via a Count-Min sketch using $O(\varepsilon^{-2} \log n)$ machine words.

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Analysis: With probability $\geq 2/3$, all the *n* estimates are correct within additive $\varepsilon/2$. In this case, *S* contains all the ϕ -HH, and is contained in the $(\phi - \varepsilon)$ -HH.

2 Proof of Hoeffding's bound

We will prove one variant of the deviations bounds stated in the first class. After proving this theorem, we will see a version of it that resolves the concern raised in the analysis of quicksort that the indicators are really independent.

Theorem 1: Let $X_1, \ldots, X_n \in [0, 1]$ be independent random variables, and let μ_1, \ldots, μ_n be such that for all $i \in [n]$, $\mathbb{E}X_i \leq \mu_i$. Then

$$\forall t > 0, \quad \Pr[\sum_{i} X_i \ge \sum_{i} \mu_i + t] \le e^{-t^2/2n}$$

Proof: The main idea called Chernoff's method is to use Markov's inequality on the moment generating function $e^{\lambda X}$, which requires to analyze, $\lambda \mapsto \mathbb{E}[e^{\lambda X}]$, for an "optimized" choice of $\lambda > 0$.

The proof seen in class requires the following lemma, whose proof uses basic calculus.

Lemma 2: Let $Y \in [a, b]$ be a random variable with $\mathbb{E}Y = 0$. Then

$$\forall \lambda > 0, \quad \mathbb{E}[e^{\lambda Y}] \le e^{\lambda^2 (b-a)^2/8}.$$

We saw in class a somewhat simpler proof for the case [a, b] = [-1, 1], which is the case we actually used for Hoeffding.

Exer: Use/adapt the proof to bound deviation to the other direction. (Hint: Looks at $1 - X_i$, which is equivalent to looking at -Y.)

Theorem 3: Let $X_1, \ldots, X_n \in [0, 1]$ be random variables such that for all i and X_1, \ldots, X_{i-1} we have $\mathbb{E}[X_i \mid X_1, \ldots, X_{i-1}] \leq \mu_i$. Then

$$\Pr[\sum_{i} X_i \ge \sum_{i} \mu_i + t] \le e^{-t^2/2n}.$$

Exer: Prove this theorem by adapt the previous proof.

Hint: The key step where we used independence is changed along the following lines:

$$\mathbb{E}[e^{\sum_{i} X_{i}}] = \mathbb{E}_{X_{1},\dots,X_{n-1}}[\mathbb{E}_{X_{n}}[e^{\sum_{i} X_{i}} \mid X_{1},\dots,X_{n-1}]] \qquad \text{law of total expectation}$$
$$= \mathbb{E}_{X_{1},\dots,X_{n-1}}[e^{\sum_{i\leq n-1} X_{i}} \cdot \mathbb{E}_{X_{n}}[e^{X_{n}} \mid X_{1},\dots,X_{n-1}]]$$

and now apply the lemma where Y is the conditioned $X_n - \mathbb{E}[X_n \mid X_1, \ldots, X_{n-1}]$.

3 Sketching Algorithms

What is Sketching: We have some input x, which we want to "compress" into a *sketch* s(x) (much smaller), but want to be able to later compute some f(x) only from the sketch. Often, randomization helps.

Applications: Many in the context of massive data sets (internet, query logs).

Example we already saw: Sketching $x \in \mathbb{R}^n$ so that later we could estimate any x_i (point queries).

We consider today the problem of estimating the l_p distance between two vectors x, y within factor $1 + \varepsilon$.

Problem definition: Estimating ℓ_p distance:

Parameters: approximation $\varepsilon > 0$ and integer n.

Algorithms: a randomized sketching function $s = s_r$ (here r is the random coins) and an answer function a, such that for all $x, y \in [n]^n$,

$$\Pr[a(s_r(x), s_r(y)) = (1 \pm \varepsilon) ||x - y||_p] \ge 2/3.$$

Note: a operates on the sketches; might use the randomness $(a = a_r)$. We care mostly about the sketch size |s(x)|, usually measured in bits. We care "less" about computation time.

Example: ℓ_2 distance between two vectors:

Let s be the linear sketch $L : [n]^n \mapsto \mathbb{Z}^k$ for $k = O(1/\varepsilon^2)$ that we saw in the previous class for estimating the ℓ_2 norm. We want function a to apply algorithm B (from previous class) to x - y. Is it possible?

Recall algorithm *B* basically compute the linear sketch L(x-y), and outputs the average squaredcoordinate $\frac{1}{k} ||L(x-y)||_2^2$. This is just $\frac{1}{k} ||Lx-Ly||_2^2$ (since *L* is linear), hence function *a* can compute this estimate from its inputs Lx and Ly.

The above achieves $(1 \pm \varepsilon)$ -approximation for the ℓ_2 -squared distance, and thus also $(1 \pm \varepsilon)$ approximaton for ℓ_2 distance.

Sketch size: $|s(x)| \leq O(\varepsilon^{-2} \log n)$ bits.

Exer: Use the above to derive a solution for ℓ_1 distance. (Hint: Convert to unary.)

Example application: closest/furthest pair:

Input: n vectors $x^1, \ldots, x^n \in [n]^n$.

Goal: Find $i \neq j$ that minimizes/maximizes $||x^i - x^j||_2$.

Exer: Show that an approximate solution within $1\pm\varepsilon$ factor can be computed in time $O(n^2\varepsilon^{-2}\log n)$.

Theorem [Equality testing]: For every n and t there is a randomized sketching algorithm, meaning s(.) and $a(\cdot, \cdot)$, that uses t bits and such that for all $x, y \in \{0, 1\}^n$ can determine whether x = y with probability $1 - 2^{-t}$.

Proof: Let $h : \{0,1\}^n \to \{0,1\}^t$ be a random (hash) function determined by the common randomness. Let s(x) = h(x) and let $a(s_1, s_2)$ be the indicator for $s_1 = s_2$. Clearly, if x = y then referee always outputs 1 (i.e., YES). If $x \neq y$, then referee outputs 0 (i.e., NO) with probability $1 - 2^{-t}$.

Algorithm with fewer random bits (same sketch size): We start with the algorithm for t = 1. Choose a random $r \in \{0, 1\}^n$ using the common randomness. Define $s(x) = \sum_{i=1}^n x_i r_i \pmod{2}$ which is the inner product $\langle x, r \rangle$. For general t, repeat the above t times (in parallel) and let s(x) be their concatenation. As before, $a(s_1, s_2)$ be the indicator for $s_1 = s_2$.

The analysis was seen in class, using the principle of deferred decision.